TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
x = 1 + 3t
Câu 2. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
3t
x = 1 + 7t
A.
D.
.
y = −10 + 11t . B.
y = −10 + 11t . C.
y = 1 + 4t .
y=1+t
z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
Câu 3. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
B. 5.
A. .
C. 5.
5
√
Câu 4. Tính giới hạn lim
x→2
A. 1.
x2 − 5x + 6
x−2
B. 0.
C. 5.
D. 25.
D. −1.
Câu 5. Cho
Z hai hàm y =
Z f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 6. [2] Phương trình log x 4 log2
A. 2.
B. 3.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. Vơ nghiệm.
D. 1.
Câu 7. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 8. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. e2016 .
D. 1.
Trang 1/10 Mã đề 1
Câu 9. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 10. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. Vơ số.
C. 1.
D. 0.
Câu 11. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m ≥ 0.
D. m > 1.
Câu 12. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = −18.
1
Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 1.
D. 2.
Câu 14. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 9 năm.
D. 10 năm.
Câu 15. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Ba mặt.
D. Bốn mặt.
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là
√
√
3
3
√
2a
a
3
3
a3 3
.
B. a3 3.
C.
.
D.
.
A.
6
3
3
Câu 17. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
12
24
6
Câu 18. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
Câu 19. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4
Z 1
6
2
3
Câu 20. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.
B. 2.
C. 4.
D. 6.
Câu 21. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Trang 2/10 Mã đề 1
Câu 22. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 14.
D. ln 10.
Câu 23. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
2
Câu 24. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 5.
Câu 25. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. − .
C. −e.
A. − .
e
2e
D. 2.
D. −
1
.
e2
3
Câu 26. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.
D. e5 .
Câu 27. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
D. y0 = 1 + ln x.
C. y0 = ln x − 1.
Câu 28. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 2.
C. 1.
D. 3.
Câu 29. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x3 − 3x.
C. y = x4 − 2x + 1.
D. y = x + .
2x + 1
x
Câu 30. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
q
Câu 31. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 32. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {3; 4}.
D. {5; 3}.
Câu 33. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.
Câu 34. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
Câu 35. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
x+3
Câu 36. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. Vô số.
D. 3.
Trang 3/10 Mã đề 1
Câu 37. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Câu 38. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
√
Câu 39. √Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. −6 2.
B. −7.
C. 7.
D. 6 2.
Câu 40. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.
C. 6.
2
D. −6.
Câu 41. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 10 mặt.
D. 6 mặt.
√
Câu 42. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
Câu 43. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 5.
C. 9.
D. 7.
1
Câu 44. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
Câu 45. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 46.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
k f (x)dx = f
B.
Z
D.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 47. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.
C. 144.
Câu 48. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.
C. 8.
D. 4.
D. 12.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 49. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 4.
C. 3.
D. 2.
Câu 50. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
d = 30◦ , biết S BC là tam giác đều
Câu 51. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
13
9
26
Câu 52. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. 72.
D. −7, 2.
Trang 4/10 Mã đề 1
√
Câu 53. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
3a
3a 58
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 54. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.
C. 8.
D. 12.
Câu 55. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
C. √
.
D. √
.
.
B. √
A. 2
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
5
Câu 56. Tính lim
n+3
A. 3.
B. 1.
C. 2.
D. 0.
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 2
a3 3
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
16
48
24
Câu 58. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. .
C.
.
D. 1.
2
2
log(mx)
= 2 có nghiệm thực duy nhất
Câu 59. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 60. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
!2x−1
!2−x
3
3
Câu 61. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).
D. [3; +∞).
Câu 62. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
C. 12.
Câu 63. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 30.
D. 4 mặt.
Câu 64. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
[ = 60◦ , S O
Câu 65. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng
√
a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
x−1
Câu 66. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
√
A. 2 2.
B. 2 3.
C. 2.
D. 6.
Câu 67. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 84cm3 .
C. 48cm3 .
D. 91cm3 .
Trang 5/10 Mã đề 1
√
Câu 68. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vơ số.
D. 62.
Câu 69. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
1 3
x − 2x2 + 3x − 1.
3
C. (1; +∞).
D. (−∞; 3).
Câu 70. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (−∞; 1) và (3; +∞). B. (1; 3).
Câu 71. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3
√
a 3
a 3
a 2
.
B.
.
C. a3 3.
.
A.
D.
2
4
2
Câu 72. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
12
4
6
12
tan x + m
Câu 73. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
Câu 74. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
1
bằng
Câu 75. [1] Giá trị của biểu thức log √3
10
1
A. −3.
B. − .
3
Câu 76. Tính lim
A. 0.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
B. - .
3
C. 20.
D. 30.
C. 3.
D.
C.
7
.
3
1
.
3
D. 1.
Câu 77. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 3.
C. 8.
D. 6.
Câu 78. Các khẳng
!0 định nào sau đây là sai?
Z
Z
Z
A.
f (x)dx = f (x).
B.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 79. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Trang 6/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a 2
a
2a
a
B.
.
C. .
D.
.
A. .
3
3
4
3
x=t
Câu 81. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x − 3) + (y + 1) + (z + 3) = .
C. (x + 3) + (y + 1) + (z − 3) = .
4
4
Câu 82. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 26.
B. 2 13.
C.
.
D. 2.
13
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 40a3 .
A. 10a3 .
B. 20a3 .
C.
3
9x
Câu 84. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. 2.
D. .
2
Câu 85. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. 3n3 lần.
D. n3 lần.
Câu 80. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 86. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 87. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 88. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.
D. 9.
Câu 89. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
x+1
bằng
x→−∞ 6x − 2
1
B. .
6
Câu 90. Tính lim
A. 1.
C.
1
.
3
D.
1
.
2
Trang 7/10 Mã đề 1
Câu 91. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (0; −2).
Câu 92. Tính lim
A. −∞.
2n − 3
bằng
+ 3n + 1
B. 0.
2n2
C. +∞.
D. (−1; −7).
D. 1.
2
Câu 93. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B. 2 .
C. 3 .
A. √ .
e
e
2 e
Câu 94. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. .
n
n
Câu 95. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B.
u
=
.
n
n2
5n + n2
1
C. √ .
n
C. un =
n2 − 2
.
5n − 3n2
D.
1
.
2e3
D.
n+1
.
n
D. un =
n2 + n + 1
.
(n + 1)2
Câu 96. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
√
D. |z| = 17.
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
Câu 97. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 98. Giá trị của giới hạn lim
A. 1.
B. 0.
2−n
bằng
n+1
C. 2.
D. −1.
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
2a 3
4a3 3
a3
a
.
B.
.
C.
.
D.
.
A.
6
3
3
3
Câu 100. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.
B. y0 = 2 x . ln 2.
C. y0 =
1
.
ln 2
D. y0 =
1
2 x . ln
x
.
Câu 101. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 102. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.
B. m ≤ 0.
Câu 103. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = S h.
C. V = 3S h.
3
1
D. V = S h.
2
Câu 104. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
.
D. P =
.
A. P = 2.
B. P = 2i.
C. P =
2
2
Câu 105. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .
D. 72cm3 .
Trang 8/10 Mã đề 1
Câu 106. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 7.
D. 5.
2
2
d = 60◦ . Đường chéo
Câu 107. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
a3 6
2a3 6
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
x−2 x−1
x
x+1
Câu 108. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. [−3; +∞).
D. (−3; +∞).
Câu 109. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
Câu 110. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. β = a β .
a
Câu 111. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
x−3
Câu 112. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.
C. −∞.
D. 1.
Z 2
ln(x + 1)
Câu 113. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
Câu 114. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
Câu 115. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
√
√
4n2 + 1 − n + 2
Câu 116. Tính lim
bằng
2n − 3
3
A. .
B. +∞.
C. 2.
D. 1.
2
n−1
Câu 117. Tính lim 2
n +2
A. 2.
B. 3.
C. 0.
D. 1.
Câu 118. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.
C. 6.
D. 8.
Câu 119. Nếu khơng sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
Trang 9/10 Mã đề 1
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 120. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.
C. 2.
D. 5.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 121. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
!x
1
Câu 122. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. 1 − log2 3.
B. log2 3.
C. − log2 3.
D. − log3 2.
Câu 123. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
Câu 124. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
C. 10.
D. {5; 3}.
D. 6.
√
Câu 125. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
Câu 126. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
4
6
12
12
π
Câu 127. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 3 3 + 1.
B. T = 4.
C. T = 2.
D. T = 2 3.
√
√
Câu 128. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. m ≥ 0.
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 129. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 12 năm.
D. 11 năm.
2
2
Câu 130. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
√
3
3
3
4a
2a
2a 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
B
3.
D
4.
D
5.
D
6.
D
C
7.
9.
11.
8. A
D
10. A
12.
B
13.
C
14.
15.
C
16.
17.
18.
B
19.
D
21.
C
23.
25.
D
D
B
20.
C
22.
C
26.
27.
D
28.
29. A
30.
31. A
32.
33.
37.
C
24. A
B
D
35.
D
D
B
D
B
34. A
36.
C
B
D
38.
B
39.
D
40.
B
41.
D
42.
B
43.
C
44.
45.
C
46.
47.
C
48.
D
C
B
49.
B
50. A
51.
B
52.
D
53.
C
54.
D
55.
C
56.
D
57.
C
58. A
59.
61.
D
B
68.
62. A
65. A
C
64.
66.
60.
67. A
B
D
69. A
1
D
70. A
71. A
72. A
73.
D
74.
B
75.
B
76.
B
77.
B
78.
79. A
C
80.
81.
D
82.
83.
C
D
B
D
85.
84. A
86.
C
87. A
88.
C
89.
B
90.
B
91.
92.
B
93.
B
95.
B
94.
D
96.
100.
97. A
C
98.
D
B
102.
D
99.
C
101.
C
103.
104. A
105. A
106. A
107.
108.
B
109.
110. A
B
113. A
114.
B
115. A
116.
D
C
B
117.
119.
C
120. A
122.
B
111. A
112.
118.
C
C
B
121. A
C
123. A
124.
D
125.
126.
D
127.
128.
D
129.
130. A
2
C
B
D