Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (75)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.56 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3
a3 5
a3 15
a3 15
.
B.
.
C.
.
D.
.
A.
5
3
25
25
Câu 2. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng


tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 13 năm.
D. 12 năm.
x−3
bằng?
Câu 3. [1] Tính lim
x→3 x + 3
A. 0.
B. 1.
C. +∞.
D. −∞.
log7 16
Câu 4. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. 2.
C. 4.
D. −2.
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 20a3 .

A. 40a3 .
B. 10a3 .
C.
3
Câu 6. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 7. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
4
2
Câu 8. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > −1.
D. m > 1.
Câu 9. Dãy số nào có giới hạn bằng 0?

n3 − 3n
A. un =
.
B. un = n2 − 4n.
n+1

!n
!n
6
−2
C. un =
.
D. un =
.
5
3

Câu 10. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vơ số.
Câu 11. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lăng trụ.

D. Hình lập phương.


Câu 12. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 13. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.
Trang 1/10 Mã đề 1


C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 14. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 27.
D.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 15. [2] Phương trình log x 4 log2
12x − 8
A. 1.

B. 3.
C. 2.
D.
2x + 1
Câu 16. Tính giới hạn lim
x→+∞ x + 1
A. 2.
B. 1.
C. −1.
D.
 π
Câu 17. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2

1 π3
3 π6
C.
e .
D.
A. 1.
B. e .
2
2
Câu 18. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D.
3

log 2x
Câu 19. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D.
3
x ln 10
2x ln 10
x3
2
Câu 20. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D.

12.

Vô nghiệm.


1
.
2

2 π4
e .
2
1
V = S h.
2

y0 =

2x3

1
.
ln 10

|z| = 5.

Câu 21. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 22. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng


1
.
ln 10
Câu 23. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
8
48
Câu 24. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
C. 30.

D. 12.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 25. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) = 1.

D. f 0 (0) =

3

Câu 26. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e3 .
Câu 27. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
n−1
Câu 28. Tính lim 2
n +2
A. 0.

B. 1.

D. e2 .

C. 8.

D. 20.

C. 3.

D. 2.
Trang 2/10 Mã đề 1


Câu 29. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. 9.
D. .
2
2
Câu 30. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 31. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?

A. Khơng có.
B. Có một hoặc hai.
C. Có một.
D. Có hai.
Câu 32. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
[ = 60◦ , S O
Câu 33. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ BC) bằng
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S

2a 57
a 57
a 57
.
B. a 57.
.
D.
.
C.
A.
17
19
19
Câu 34. Phát biểu nào trong các phát biểu sau là đúng?

A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 35. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. −3.
D. 3.
Câu 36. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
8
Câu 37. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 81.
D. 96.
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng




abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x−2
Câu 39. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
C. 2.
D. 1.
3
1

Câu 40. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.

C. D = R.

D. D = (−∞; 1).

Câu 41. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 3/10 Mã đề 1


!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Z 1
Câu 42. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2


0

B.

1
.
4

x+1
bằng
Câu 43. Tính lim
x→−∞ 6x − 2
1
1
A. .
B. .
2
6

C. 1.

D. 0.

1
.
3

D. 1.


C.

Câu 44.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

B.
Z

1
dx = ln |x| + C, C là hằng số.
x

D.

Câu 45. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

xα dx =

xα+1
+ C, C là hằng số.
α+1


0dx = C, C là hằng số.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

D. S = 135.

Câu 46. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
Câu 47. Hàm số nào sau đây khơng có cực trị
x−2
A. y = x4 − 2x + 1.
B. y =
.
2x + 1



Câu 48. [12215d] Tìm m để phương trình 4 x+
9
A. m ≥ 0.
B. 0 ≤ m ≤ .

4

1
C. y = x + .
x
1−x2



D. y = x3 − 3x.

− 3m + 4 = 0 có nghiệm
3
3
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4

− 4.2 x+

1−x2

Câu 49. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).



4n2 + 1 − n + 2
Câu 50. Tính lim
bằng
2n − 3
3
A. 2.
B. 1.
C. +∞.
D. .
2
Câu 51. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
3

a 2
a 3
a 2
A.
.

B.
.
C.
.
D. a3 3.
12
6
4
Trang 4/10 Mã đề 1


Câu 53. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 6
a3 5
a3 15
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3

Câu 54. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
A.
.
B. 2.
C. 2 13.
D. 26.
13
! x3 −3mx2 +m
1
Câu 55. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m , 0.
D. m ∈ (0; +∞).
Câu 56. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc
√ với đáy và S C = a 3.3 √

a3 6

a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
12
4
2
9
Câu 57. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 3.
D. 1.
1
Câu 58. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e − 1.

C. xy0 = −ey + 1.
D. xy0 = ey + 1.
3a
, hình chiếu vng
Câu 59. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
4
3
3
Câu 60. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 61. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .

A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 62. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. (−∞; 2).
D. [2; +∞).
Câu 63. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).

D. (0; −2).

Câu 64. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).

B. (−∞; −3].
C. [−1; 3].
D. [−3; 1].
Câu 65. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
16
48
Trang 5/10 Mã đề 1


Câu 66. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.

Câu 67. √
Thể tích của khối lập phương có cạnh bằng a 2
3


2a 2
.
B. V = 2a3 .
C. 2a3 2.
A.
D. V = a3 2.
3
Câu 68. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√M + m
√ của hàm số. Khi đó tổng
B. 7 3.
C. 8 2.
D. 16.
A. 8 3.
Câu 69. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 70. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 2400 m.
D. 1134 m.
Câu 71. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).

D. [6, 5; +∞).


Câu 72. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
3
A.
.
B. a .
C.
.
D.
.
2
6
3
Câu 73. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
5
9
.
B.
.

C. −
.
D. − .
A.
25
100
100
16
Câu 74.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
A. 3.
B. 2.
C. 1.
D. 5.
Câu 75. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 0.

C. 1.

D. 2.

Câu 76. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 3, 55.

D. 15, 36.
Câu 77. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.
Trang 6/10 Mã đề 1


log 2x

Câu 78. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.

B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
Câu 79. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 80. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
1
Câu 81. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
1
Câu 82. Hàm số y = x + có giá trị cực đại là

x
A. 1.
B. 2.
C. −2.
D. −1.
Câu 83. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 84. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
x+1
bằng
Câu 85. Tính lim
x→+∞ 4x + 3
1
1
B. .
C. 1.
D. 3.
A. .
3
4


Câu 86. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. .
C. 5.
D. 25.
5
Z 1
6
2
3
Câu 87. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 4.

C. 6.

D. 2.

2

2n − 1
Câu 88. Tính lim 6

3n + n4
2
A. .
B. 2.
C. 1.
D. 0.
3
Câu 89. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
3
3
3
120.(1, 12)
(1, 01)
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1

(1, 01)3 − 1

Câu 90. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
Trang 7/10 Mã đề 1



3a 58
A.
.
29


3a 38
B.
.
29


a 38
D.
.
29
!
3n + 2
Câu 91. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2

của S bằng
A. 3.
B. 4.
C. 2.
D. 5.
x+3
Câu 92. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 3.
D. 2.
3a
C.
.
29

Câu 93. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 2.

D. 0.

Câu 94. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là




2a3 3
4a3 3
a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
x2 − 9
Câu 95. Tính lim
x→3 x − 3
A. −3.
B. 3.
C. +∞.
D. 6.
Câu 96. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. Cả ba mệnh đề.

Câu 97. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
Câu 98. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
B. √ .
A.
n
n

C. (II) và (III).

D. (I) và (II).

C. 12.

D. 8.

C.

1
.

n

D.

n+1
.
n

Câu 99. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 100.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
x−2 x−1
x
x+1
Câu 101. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
Câu 102. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Trang 8/10 Mã đề 1


Câu 103. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.

C. 11 cạnh.

Câu 104. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. [−1; 2).

D. 9 cạnh.
D. (−∞; +∞).

Câu 105. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?

A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 106. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

Câu 107. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 8 mặt.
D. 6 mặt.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 108. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.

B. 0.
C. −2.
D. 1.
Câu 109. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
 π π
Câu 110. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. 3.
D. −1.
3

2

Câu 111. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C. √ .
3
e
2e

2 e

D.

1
.
e2

Câu 112. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 113. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).
5
Câu 114. Tính lim
n+3
A. 2.
B. 0.
C. 3.
D. 1.
Câu 115. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 24 m.
D. 16 m.


Câu 116. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
18
36
6
6
mx − 4
Câu 117. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.

C. 45.
D. 67.
Trang 9/10 Mã đề 1


2−n
Câu 118. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 2.
!4x
!2−x
2
3
Câu 119. Tập các số x thỏa mãn


!
" 3
! 2
#
"
2
2
2
; +∞ .
B. − ; +∞ .
C. −∞; .

A.
5
3
3

D. 0.

#
2
D. −∞; .
5

Câu 120. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. [3; 4).
D. (1; 2).
2
2


ab.

Câu 121. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.

B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 122. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 123. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.

D. Chỉ có (I) đúng.

Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √




a3 3
a3 3
2a3 3
3
.
B. a 3.
C.
.
D.
.
A.
3
3
6
2

2

sin x
Câu 125.
+ 2cos x lần lượt là
√ trị lớn nhất của hàm√số f (x) = 2
√ [3-c] Giá trị nhỏ nhất và giá
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 3.

Câu 126. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.

B. ln 14.
C. ln 12.
D. ln 10.
Câu 127. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.

C. 20.

D. 12.

Câu 128. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

a2 7
a2 5
11a2
a2 2
A.
.
B.
.
C.
.
D.
.

8
16
32
4
Câu 129. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m > 0.
D. m , 0.
Câu 130. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e

D. m =

1 − 2e
.
4e + 2

- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.

D

2.
4. A

3. A
5.

D

6.

C

7.

D

8.


C

9.

D

10.

C

11.

12.

B

13. A

14. A

15. A

16. A

17.

D

18. A


19. A

20. A

21. A

22. A

23.

24.

B

25. A

26. A

27. A

28. A
D

29.
31.

30.

B


33.

D

B
C

34.

C

C

36.

37.

C

38.
D

D

32.

35.
39.


B

D
C

40. A

41. A

42. A

43.

B

44.

45.

B

46.

D

47.

B

48.


D

49.

D

50.

51. A

52.

53. A

54. A

55.

B

B

B
C

56. A

57. A


58. A

59. A

60.

B

61.

D

62.

D

63.

D

64.

D

65. A
68.

67.
D


69.
1

C
B


70.

71.

B

72. A
74.

B
C

73.
75.

B

76.

D

77.


78. A

79. A

80. A

81. A
C

82.

B
C

83. A

84.

D

85.

B

86.

D

87.


B

88.

D

89.

90. A

91.

D
B

92.

C

93.

D

94.

C

95.

D


96.

D

97. A

98.

D

99.

B

101.

B
B

100.

B

102.

D

103.


104.

D

105. A

106.

D

107.

B

109.

B

108.

B

111.

110. A
112.
114.

C


D

113. A
115.

B

D

116. A

117. A

118. A

119.

B

121.

B

120.

B

122.

D


124.
126.

123. A

C
B

C

127.

C

129.

128. A
130.

125.

D

2

D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×