Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 2 (359)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.69 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 16π.
D. 8π.
2
x −9
Câu 2. Tính lim
x→3 x − 3
A. +∞.
B. 6.
C. −3.
D. 3.
Câu 3. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
2n − 3
Câu 4. Tính lim 2
bằng


2n + 3n + 1
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 5. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 4 − 2 ln 2.

D. 1.

Câu 6.
khẳng định sau, khẳng định nào sai? Z
Z Trong các α+1
x
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.
0dx = C, C là hằng số.
D.
dx = x + C, C là hằng số.
x2 − 5x + 6

Câu 7. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.

C. 1.

D. 5.

Câu 8. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
Câu 9. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −12.
D. −9.
q
2
Câu 10. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].

C. m ∈ [0; 4].
D. m ∈ [−1; 0].
log 2x
Câu 11. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
0
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
2x3 ln 10
2x3 ln 10
x3 ln 10

x3
Câu 12. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
2
x − 3x + 3
Câu 13. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 3.
C. x = 1.
D. x = 2.
Trang 1/10 Mã đề 1


Câu 14. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 5.
D. V = 6.
Câu 15. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).

C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.
Câu 17. [1] Tính lim
x→3

A. 1.

x−3
bằng?
x+3
B. +∞.

C. −∞.

D. Hai cạnh.

D. 0.

Câu 18. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.

.
C. a.
D. .
3
2
2
Câu 19. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Ba mặt.

D. Hai mặt.

Câu 20. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
1
C. lim k = 0.
n

B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n

Câu 21. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 63.
C. 62.
D. 64.

Câu 22. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Câu 23. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
.
B.
u
=
.
A. un =
n
5n + n2
5n − 3n2

C. un =

n2 + n + 1
.
(n + 1)2

n2 − 3n
.
n2

D. un =


!
3n + 2
2
Câu 24. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 2.
D. 3.
Câu 25. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3
Câu 26. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11

9
A. 7.
B. 5.
C.
.
D. .
2
2
Câu 27. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.
Trang 2/10 Mã đề 1



Câu 28. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



3
πa 6
πa3 3
πa3 3
πa3 3
A. V =

.
B. V =
.
C. V =
.
D. V =
.
6
6
2
3
Câu 29. Hàm số nào sau đây khơng có cực trị
x−2
A. y = x4 − 2x + 1.
B. y =
.
2x + 1

1
C. y = x + .
x

D. y = x3 − 3x.

Câu 30. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. log2 2020.
D. 13.
2

Câu 31. Tính
√ mô đun của số phức z√biết (1 + 2i)z = 3 + 4i. √4
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| = 5.

Câu 32. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
Câu 33. [1] Tính lim
A. 1.

B. Cả ba mệnh đề.
1 − 2n
bằng?
3n + 1
1
B. .
3

C. (I) và (II).

C.


2
.
3

D. (II) và (III).

2
D. − .
3

Câu 34. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 35. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 10.

Câu 36. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 37. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a


x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 38. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. 4.

D. −2.

Câu 39. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là




3
4a3 3
a3 3
5a3 3
2a 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Trang 3/10 Mã đề 1


Câu 40. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a

x→a


C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 41. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B.
.
C. a 2.
D.
.
2
3
Câu 42. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13

9
A. −
.
B. − .
C.
.
D.
.
100
16
100
25
Câu 43. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. 2.

C. 0.

D. +∞.

5
Câu 44. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

1
A. .
B. 25.

C. 5.
D. 5.
5
Câu 45. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 46. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 5}.
D. {4; 3}.
log √a

Câu 47. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng

lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 9 năm.
D. 10 năm.
log7 16
Câu 48. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. 2.
C. −2.
D. −4.
Câu 49. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.

C. 10.

Câu 50. Thể tích của khối lập phương có cạnh bằng a 2


A. V = 2a3 .
B. 2a3 2.
C. V = a3 2.

D. 6.

2a3 2

D.
.
3

d = 300 .
Câu 51. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3

3a 3
a 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
!
!
!
4x
1
2
2016
Câu 52. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f

+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 2017.
C. T = 1008.
D. T =
.
2017
Câu 53. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 6 mặt.

D. 9 mặt.
Trang 4/10 Mã đề 1


Câu 54. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 8%.
D. 0, 7%.
Câu 55. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương

ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
6
15
Câu 56. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a3 6
a3 3
a 3

.
B.
.
C.
.
D.
.
A.
48
16
48
24
Câu 58. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.

.
12
12
4
6
1
Câu 59. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. −2.
D. 2.
Câu 60. Cho

√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
[ = 60◦ , S O
Câu 61. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S√BC) bằng
√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.

.
C.
.
D. a 57.
A.
17
19
19
log(mx)
Câu 62. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m ≤ 0.

Câu 63. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
B.
A. 2; .
;3 .
C. (1; 2).
D. [3; 4).
2
2
Câu 64. Khối đa diện loại {4; 3} có tên gọi là gì?

A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 65. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Trục ảo.
Câu 66. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.

D. {5; 3}.
2

2

Câu 67.
số f (x) = 2sin x + 2cos x lần lượt
√ là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.
Trang 5/10 Mã đề 1



Câu 68. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 387 m.
D. 27 m.
Câu 69. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −2e2 .
D. −e2 .
Câu 70. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 71. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 68.
.
B. 5.
C. 34.
D.
17
tan x + m
Câu 72. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 73. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 10.

D. 6.

Câu 74. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường




√ thẳng BD bằng
abc b2 + c2
c a2 + b2
a b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 75. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.

C. 4.

D. 5.

Câu 76. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1

ab
ab
.
C. √
.
D. √
.
.
B. √
A. 2
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 77.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.
Z
B.
Z
C.
Z
D.

f (x)dx +


Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 78. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Không thay đổi.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Câu 79. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.
n−1
Câu 80. Tính lim 2
n +2
A. 1.
B. 3.

C. 24.


D. 2.

C. 2.

D. 0.
Trang 6/10 Mã đề 1


Câu 81. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Không có câu nào C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 82. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.
D. m , 0.
a
1
Câu 83. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 1.

C. 4.
D. 2.
Câu 84. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 8 mặt.

Câu 85.
phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. 7.

D. 4 mặt.
D. −7.

0 0 0 0
0
Câu 86.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.

C.
.
D.
.
2
7
3
2
1
Câu 87. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).

Câu 88. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 89. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Câu 90. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.
1

bằng
Câu 91. [1] Giá trị của biểu thức log √3
10
1
A. − .
B. −3.
3

C. 4.

D. 5.

C. 3.

D.

1
.
3

d = 30◦ , biết S BC là tam giác đều
Câu 92. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39

A.
.
B.
.
C.
.
D.
.
9
26
13
16
Câu 93. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+1
c+2
c+2
c+3
Câu 94. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .

Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
Trang 7/10 Mã đề 1


3
2
Câu 95. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2

A. 3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.



D. −3 + 4 2.

Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là



a3 3
2a3 3
a3 3
3
B.
A. a 3.
.
C.
.
D.
.
3
3
6
Câu 97. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 84cm3 .
C. 48cm3 .
D. 91cm3 .
Câu 98. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±1.

D. m = ± 2.
A. m = ±3.
B. m = ± 3.
Câu 99. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
.
C.
.
D. 2a 2.
B.
A. a 2.
4
2
Câu 100. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
2

Câu 101. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2

A. 2 .
B.
.
C. 3 .
3
e
2e
e

D.

1
√ .
2 e

Câu 102. [1]! Tập xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
2
2
2

!
1

D. −∞; − .
2

Câu 103. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
C. −e.
B. − .
A. − 2 .
e
2e

1
D. − .
e

Câu 104. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
Câu 105. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 2.

D. 1.


Câu 106. Giá trị của lim (3x2 − 2x + 1)
x→1

A. +∞.

B. 1.

Câu 107. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. 3.
4x + 1
Câu 108. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.

C. 3.

D. 2.

C. −∞.


D. 0.

C. 2.

D. 4.

Câu 109. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) = 1.

D. f 0 (0) =

1
.
ln 10

Trang 8/10 Mã đề 1


Câu 110. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.

C. 10.

D. 6.


Câu 111. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
[ = 60◦ , S A ⊥ (ABCD).
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là

3
3

a
2
a
2
a3 3
.
B. a3 3.
C.
.
D.
.
A.
6
4
12

Câu 113. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và

√ (A C D) bằng


a 3
2a 3
a 3
.
B.
.
C. a 3.
.
A.
D.
2
2
3
x−1
Câu 114. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √

A. 6.
B. 2 3.

C. 2.
D. 2 2.
!2x−1
!2−x
3
3


Câu 115. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).
D. (−∞; 1].
t
9
Câu 116. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 1.
D. 0.
Câu 117. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
2
6
3
Câu 118. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
4

2
Câu 119. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3
3

a
15
a
6
a
5
A. a3 6.
B.
.
C.
.
D.
.
3
3
3
Câu 120. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng M + m

A. 8 3.
B. 16.
C. 8 2.
D. 7 3.
Câu 121. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. (4; +∞).

Câu 122. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.

D. 1 − sin 2x.

Câu 123. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. √ .
B.
.
n
n

C.


1
.
n

D.

n+1
.
n
Trang 9/10 Mã đề 1


Câu 124. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. .
C. 1.
D.
.
2
2
2
Câu 125. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.

x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 126. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. [2; +∞).
D. (2; +∞).
Câu 127. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 128. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.

C. 20.

D. 8.


Câu 129. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).
D. (0; −2).
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 130. [2-c] Cho hàm số f (x) = x
9 +3
1
A. .
B. 1.
C. −1.
D. 2.
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

3.

B


4.

D

5.

6. A
8.

B
D
C

12.
B

9.

C

11.

C

13.

C

15.


C

17.

16. A
C

18.

19.

20. A
22.

B

C

25. A
D

27. A

28.

D

29.

B


31.

30. A
32.

C

33.

C

D

35.

34. A
36.

D

37. A

38.

D

39.
41.


B

42. A

C
C
B

43.

48.

D

51.

D
B

53.

C
D

D

56.

57. A


58.

59.

C

49.

B

54.

D

47.

C

52.

C

45.

B

46.
50.

B


23. A

26.

44.

D

21.

24. A

40.

B

7. A

10.
14.

D

C
B

60. A

C


61.

B

62.

63.

B

64.

D

65.

B

66.

D

68.

D

70.

D


67.
69.

C
D
1

C


71.
73.

D
B

74.

D
D

75.

C

76.

77.


C

78.

79. A
81.

B

D

82.

D

84. A

85. A

86.

C

88. A

B
D

89.
91. A

93.

C

80.

83. A
87.

C

72.

C
D

95.

90.

C

92.

C

94.

B


96.

B
D

98.

97. A
99.

100.

C

101. A

B

102.

C

103.

B

104.

105.


B

106.

D

107.

B

108.

D

110.

D

109. A
111.

C
C

115.
117.

112.
D


113.

B

B

C

114.

B

116.

B

118.

C

119.

C

120.

121.

C


122.

C

124.

C

126.

C

123.
125.

D
B

127.

D

128. A

129.

D

130.


2

B

B



×