Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 2 (548)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.11 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
2x + 1
Câu 2. Tính giới hạn lim
x→+∞ x + 1
1
D. 1.
A. 2.
B. −1.
C. .
2
Câu 3. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.


Câu 4. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 216 triệu.
B. 212 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 5. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.

C. Chỉ có (I) đúng.

D. Cả hai đều đúng.

Câu 6. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 7. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Bát diện đều.
D. Tứ diện đều.
!
!

!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 8. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2016.
C. T = 2017.
D. T =
.
2017
x2
Câu 9. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = , m = 0.

e
e
Z 1
Câu 10. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. 0.
D. .
4
2
Câu 11. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
A. 1.

x→a

B.


x→b

x→a

x→b

Trang 1/10 Mã đề 1


Câu 12. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.
C. 8.
D. 10.
x−2 x−1
x
x+1
Câu 13. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. [−3; +∞).

D. (−∞; −3).
Câu 14. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều.
Z 2
ln(x + 1)
Câu 15. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 1.
C. −3.

Câu 16. Thể tích của khối lập phương có cạnh bằng a 2


C. V = a3 2.
A. V = 2a3 .
B. 2a3 2.

D. Khối 12 mặt đều.

D. 3.

2a3 2
D.
.
3


Câu 17. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√tích là
√mặt phẳng (AIC) có diện
2
2
2
2
a 2
a 7
a 5
11a
.
B.
.
C.
.
D.
.
A.
32
4
8
16
!
x+1
Câu 18. [3] Cho hàm số f (x) = ln 2017 − ln

. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A.
.
B.
.
C. 2017.
D.
.
2018
2018
2017
!
1
1
1
Câu 19. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
C. 2.
D. .
A. +∞.
B. .
2

2
Câu 20. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 21. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. .
n
n

1
C. √ .
n

D.

n+1
.
n


1 3
x − 2x2 + 3x − 1.
3
C. (−∞; 1) và (3; +∞). D. (−∞; 3).

Câu 22. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; +∞).

B. (1; 3).

Câu 23. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).
Câu 24. Tính lim
x→2

A. 2.

x+2
bằng?
x
B. 3.

C. 0.

D. (−1; 1).

D. 1.
Trang 2/10 Mã đề 1



Câu 25. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Câu 26. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 27. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 28. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 29. Tìm m để hàm số y =
x+m
A. 45.
B. 67.
C. 26.
D. 34.
2
Câu 30. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.

Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.

.
C.
.
D.
.
12
12
6
4
Câu 32. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 33. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.

C. 12.

D. 30.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 34. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 2.
B. 4.

C. 5.
D. 3.
Câu 35.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
1
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
A.
α+1
Z x
Z
C.

dx = x + C, C là hằng số.

D.

0dx = C, C là hằng số.

ln x p 2
1
Câu 36. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8

1
1
A. .
B. .
C. .
D. .
3
9
9
3
1
Câu 37. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 38.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z

Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Trang 3/10 Mã đề 1


Câu 39. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 40. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Khơng có.
D. Có một.

Câu 41. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 2.

C. 3.

D. 1.

2−n
bằng
n+1
B. −1.

C. 0.

D. 2.

Câu 42. Giá trị của giới hạn lim
A. 1.

Câu 43. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).

Câu 44. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
2
2
2
2
2
a +b
2 a +b
a +b
a + b2
12 + 22 + · · · + n2
Câu 45. [3-1133d] Tính lim
n3
2
A. .
B. +∞.

3

C. 0.

Câu 46. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Bốn cạnh.
C. Ba cạnh.

D.

1
.
3

D. Năm cạnh.

0 0 0 0
0
Câu 47.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
.
B.
.
C.

.
D.
.
A.
2
7
2
3
1
Câu 48. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.

Câu 49. Tính lim
x→5

2
A. − .
5

x2 − 12x + 35
25 − 5x
2
B. .
5

Câu 50. Tứ diện đều thuộc loại

A. {4; 3}.
B. {5; 3}.

C. −∞.

D. +∞.

C. {3; 4}.

D. {3; 3}.
Trang 4/10 Mã đề 1


Câu 51. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 52. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.

C. 2.

D. 4.


Câu 53. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 54. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. − < m < 0.
C. m ≤ 0.
D. m ≥ 0.
4
4
1
Câu 55. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. 1.
D. −2.
Câu 56. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3

4a
4a 3
2a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
3
2
Câu 57. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2

A. 3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.

x2 + 3x + 5
Câu 58. Tính giới hạn lim
x→−∞
4x − 1
1

1
A. 1.
B. − .
C. .
4
4


D. −3 + 4 2.

D. 0.

Câu 59. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 3.
D. T = 4 + .
A. T = e + 1.
B. T = e + .
e
e
Câu 60. Giá trị của lim (3x2 − 2x + 1)
x→1

C. +∞.

D. 2.

Câu 61. Khối đa diện đều loại {5; 3} có số mặt

A. 12.
B. 8.

C. 20.

D. 30.

Câu 62. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 6.

A. 3.

B. 1.

D. 10.
q
2
Câu 63. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Trang 5/10 Mã đề 1



Câu 64. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 65. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).

D. R.

Câu 66. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập

vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 8 năm.
D. 7 năm.
Câu 67. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

C. 2.

Câu 68. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 4 mặt.

D. 1.
D. 6 mặt.

Câu 69. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
B. |z| = 17.

Câu 70. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 5
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 71. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4

4
4
4
Câu 72. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(−4; 8).
D. A(4; −8).


Câu 73.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6√− x
A. 3 2.
B. 2 + 3.
C. 2 3.
D. 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 3
a3 2
a3 2
3
A.
.
B. a 3.
C.

.
D.
.
6
4
12
Câu 75. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 22.
D. 24.
Trang 6/10 Mã đề 1


Câu 76. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

8a3 3
a3 3
8a3 3
4a3 3

.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 78. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.
D. −1 + sin x cos x.
Câu 79. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.

Câu 80. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.

f (x)dx = f (x).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

d = 120◦ .
Câu 81. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 3a.
B. 4a.
C.
2
x2 − 5x + 6
Câu 82. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.
C. 5.
D. 0.
Câu 83. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (2; 2).


D. (−1; −7).

Câu 84. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
18
6
36
6
cos n + sin n
Câu 85. Tính lim
n2 + 1
A. 1.
B. +∞.

C. −∞.
D. 0.
Câu 86. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1134 m.
C. 2400 m.
D. 1202 m.
1
Câu 87. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. .
C. −3.
D. − .
3
3
2
2
Câu 88. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. .
C. .
D. 9.

2
2
Câu 89. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Trang 7/10 Mã đề 1


Câu 90.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
A.
.
B.
.
12
2
Câu 91. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.
2n + 1
Câu 92. Tính giới hạn lim
3n + 2
1
B. 0.
A. .
2



a3 2
C.
.
4


a3 2
D.
.
6

C. 8.

D. 12.

C.

2
.
3

D.

3
.
2

8

Câu 93. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 64.
D. 82.
Câu 94. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 95. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. 8π.
D. V = 4π.
Câu 96. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 97. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
.
C. 5.
B.
D. 68.
A. 34.
17
Z 1
6
2
3
. Tính
f (x)dx.
Câu 98. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 4.

B. 6.

C. −1.

D. 2.

Câu 99. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là


3
3
2a 6
a 3
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
9
4
12
2
Câu 100. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 101. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.

D. 102.423.000.
Câu 102. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.
B. 2.
C.
.
D. 2 13.
13
x
Câu 103. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 = 2 x . ln 2.
B. y0 = 2 x . ln x.
C. y0 =
.
D. y0 = x
.
ln 2
2 . ln x
Trang 8/10 Mã đề 1


Câu 104. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi

G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
15
9
18
log(mx)
Câu 105. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m < 0.
√3
4
Câu 106. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
5
A. a 8 .

B. a 3 .
C. a 3 .
D. a 3 .

Câu 107. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
x+1
Câu 108. Tính lim
bằng
x→−∞ 6x − 2

1
1
1
B. .
C. 1.
D. .
A. .
3
2
6
Câu 109. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.
C. 12.
D. 6.
Câu 110. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a


3
3
a
a 5
a3 15
a3 15
A.
.
B.
.

C.
.
D.
.
3
25
25
5
 π π
Câu 111. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 7.
D. 1.
3

Câu 112. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e3 .
D. e2 .
Câu 113. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 18.
A. 27.
B. 12.
C.

2
Câu 114. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
C. 20.
D. 30.
Câu 115. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình chóp.

D. Hình lăng trụ.

Câu 116. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 117. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 118. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối bát diện đều.
Trang 9/10 Mã đề 1



log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. −8.

Câu 119. [1-c] Giá trị biểu thức
A. 1.

D. 3.

Câu 120. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
B.
.
C.
.
D.
.
A. a 3.
2

2
3
1
Câu 121. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
2n2 − 1
3n6 + n4
2
A. 0.
B. .
C. 2.
D. 1.
3
Câu 123. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −2.
C. −4.
D. −7.
27
Câu 122. Tính lim



Câu 124. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a3 3
a 3
3
.
B.
.
C. a 3.
D.
.
A.
12
4
3
Câu 125.
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả
B. 5.
C. 1.
D. 2.
A. 3.
Câu 126. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa

√ hai đường thẳng S B và√AD bằng


a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
2
3
Câu 127. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.
C. 8.
D. 6.
Câu 128. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (III).

C. (II) và (III).


Câu 129. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 4 mặt.

D. (I) và (II).
D. 6 mặt.

Câu 130. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
abc b2 + c2
c a2 + b2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

a2 + b2 + c2
0

0

0

0

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

2. A

3. A

4.

B

5. A


6.

B

7.

B

8. A
D

11.
13.

D

10.

9. A

C

12.

B

14. A

15.


C

16.

17.

C

18. A

19.

C

20.

21.

D

22.

23.

D

24. A

B

D
C

25.

B

26.

C

27.

B

28.

C

29.

30.

D

D
C

31. A


32.

33. A

34.

B

36.

B

35.

B
D

37.

38. A

39. A

40. A

41.

C

42.


B

43.

C

44.

C
C

45.

D

46.

47.

D

48.

D

50.

D
D


49.

B

51.

D

52.

53.

D

54. A

55.

D

56. A

57.

D

58.

59.


60.

C

61. A
63.

B

62.
B

D
B

64.

65.

C

66.

67.

C

68.
1


C
B
D


69.

70.

C
D

71.

72.

73. A

76.

C

C

D

81.

B


78. A

B

79.

80. A
82. A

C

83. A

84. A

85.

D

86. A

87.

D

88.

89.


B

74.

75.
77.

C

B

90. A

91. A

92.

93. A

94.
C

96.

97.

98. A
100.

D


102.

C

C

C
D
B

99.

C

101.

C

103. A

105.

B

106.

107.

B


108.

109.

B

110.

C
D
C

111.

D

112. A

113.

D

114.

B

116.

B


115.

B

117.

D

118. A

119.

C

120.

121.

C

122. A

123.

124.

B

D

D

125.

D

126. A

127.

D

128.

D

130.

D

129.

C

2



×