Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 2 (779)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.9 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 45.
C. 67.

Câu 1. Tìm m để hàm số y =
A. 34.

D. 26.

Câu 2. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C 0√
D) bằng



2a 3
a 3
a 3
A.
.
B.


.
C.
.
D. a 3.
2
3
2
Câu 3. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
.
B.
u
=
.
A. un =
n
5n + n2
(n + 1)2

C. un =

n2 − 2
.
5n − 3n2

D. un =

n2 − 3n
.

n2

Câu 4. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vng góc

√ với đáy, S C = a 3. Thể
√ tích khối chóp S .ABCD
3
3
3
a 3
a 3
a
A.
.
B.
.
C.
.
D. a3 .
3
9
3
x−1
Câu 5. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng √

AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 6.
D. 2.
2
Câu 6. Tính mô đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.

Câu 7. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 8. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. −4.

D. 2.

Câu 9. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.

B. 20.

C. 8.
D. 12.
p
ln x
1
Câu 10. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
9
3
0 0 0 0
0
Câu 11.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6

a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
2
2
7

Câu 12. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
12
24

6
Câu 13. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D. 13.
Trang 1/11 Mã đề 1


Câu 14. [1] Đạo hàm của hàm số y = 2 x là

1
.
ln 2
Câu 15. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

D. y0 =

1
2 x . ln


x

.

D. m , 0.

Câu 16. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 17. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
1 − n2

Câu 18. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. 0.
B. .
C. − .
D. .
3
2
2
Câu 19. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
1

Câu 20. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = (1; +∞).

Câu 21. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].

B. (−∞; 6, 5).
C. [6, 5; +∞).

D. (4; +∞).

Câu 22. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.

C. 8.

D. 12.

Câu 23. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.

Câu 24. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 25. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là


11a2
a2 7
a2 2
a2 5
.
B.
.
C.
.
D.
.
A.
16
32
8
4
12 + 22 + · · · + n2
Câu 26. [3-1133d] Tính lim
n3
1
2
A. .
B. 0.
C. +∞.
D. .
3
3
2
x −9
Câu 27. Tính lim

x→3 x − 3
A. +∞.
B. 6.
C. 3.
D. −3.
Câu 28. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Trang 2/11 Mã đề 1


Câu 29. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m ≥ 0.
D. m > 0.
1 + 2 + ··· + n
Câu 30. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un không có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .

2
Câu 31. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 9 năm.
D. 10 năm.
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
3
10a
A. 20a3 .
B.
.
C. 40a3 .
D. 10a3 .
3
!2x−1
!2−x
3
3
Câu 33. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).

B. [3; +∞).
C. (−∞; 1].
D. [1; +∞).
Câu 34.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒
!0
Z
f (x)dx = f (x).
C.
A.

f (t)dt = F(t) + C. B.

Z

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
Z
D.
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 35.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √

3
3
3
.
B.
.
C.
.
A.
4
12
2
Câu 36. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. −2.
C. .
2
2

D.

3
.
4

D. 2.

tan x + m

nghịch biến trên khoảng
Câu 37. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).

Câu 38. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
4
4
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 2
a 3

a 3
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
Câu 40. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 41. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.

.
C.
.
D.
.
24
8
24
48
Trang 3/11 Mã đề 1


Câu 42. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 43. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).

C. Cả ba mệnh đề.

D. (II) và (III).
x+3
Câu 44. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng

x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 45. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.
D. Chỉ có (II) đúng.

Câu 46. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.

C.
.
D.
.
A.
36
6
6
18
Câu 47. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
1
Câu 48. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. 3.
C. −3.
D. .
A. − .
3
3
Câu 49. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.

B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 50. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).

C. D = R.

D. D = R \ {1}.

Câu 51. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 64cm3 .
C. 84cm3 .
D. 91cm3 .
2

2

Câu 52.
số f (x) = 2sin x + 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm √
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.
Trang 4/11 Mã đề 1



Câu 53. [1] Tính lim
x→3

A. 1.

x−3
bằng?
x+3
B. +∞.

C. −∞.

D. 0.

Câu 54. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12

12
6
4
Câu 55. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 56. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 57. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac

3b + 3ac
A.
.
B.
.
C.
.
c+2
c+1
c+2
Câu 58. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

C. 8.

D.

3b + 2ac
.
c+3

D. 12.

Câu 59. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 3).

Z 1
Câu 60. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B. 1.

C.


Câu 61. [12215d] Tìm m để phương trình 4 x+
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
4

1−x2

1
.
4

D. 0.


− 3m + 4 = 0 có nghiệm

9
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+

1−x2

Câu 62. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 6%.
D. 0, 8%.
Câu 63. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.

Câu 64. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 65. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Trang 5/11 Mã đề 1



Câu 66. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
2
6

3
6
cos n + sin n
Câu 67. Tính lim
n2 + 1
A. 1.
B. +∞.
C. −∞.
D. 0.
log2 240 log2 15
Câu 68. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 3.
C. 4.
D. 1.
Câu 69. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 2).

D. (−∞; 0) và (2; +∞).

[ = 60◦ , S O
Câu 70. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng



2a 57
a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
19
17
Câu 71.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
12
6
Câu 72. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.



a3 2
C.
.
2


a3 2
D.
.
4

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 73. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 74. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3

a3
A.
.
B.
.
C. a3 .
D.
.
6
2
3
Câu 75. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 34.
C. 5.
D.
.
A. 68.
17
Câu 76. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
√3

Câu 77. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. −3.
B. − .
C. 3.
D. .
3
3
Câu 78. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
C. 8.
D. 6.
2mx + 1
1
Câu 79. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. 1.
C. −2.
D. −5.
Câu 80. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
Trang 6/11 Mã đề 1



!
1
1
1
Câu 81. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
B. +∞.
C. 2.
D. .
A. .
2
2
Câu 82. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
4a 3

a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 83. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
abc b2 + c2
b a2 + c2
c a2 + b2
.
B. √
.
C. √

.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 84. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).


Câu 85. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
x+2
Câu 86. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.

B. Vơ số.
C. 1.
D. 3.
x−2
Câu 87. Tính lim
x→+∞ x + 3
2
B. 2.
C. 1.
D. −3.
A. − .
3
Câu 88. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.

D. Hai cạnh.

Câu 89. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. β = a β .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
1
Câu 90. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3

biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a
4a 3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 92. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.

.
B. .
C. 1.
D. 2.
2
2
Z 3
x
a
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 93. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = −2.
D. P = 16.
Trang 7/11 Mã đề 1


Câu 94. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 72.

D. 0, 8.


π
Câu 95. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2.
C. T = 4.
D. T = 2 3.
A. T = 3 3 + 1.
Câu 96. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = 22.
1
Câu 97. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (1; 3).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
Câu 98. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.
C.
.
D. 2a 2.
2
4
Câu 99. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 100. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.
D. 6 mặt.
 π π
Câu 101. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. 7.
D. −1.

Câu 102. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 24.

D. 4.

Câu 103. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 27.
C. 9.
D. 3 3.
Câu 104. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc

√ với đáy và S C = a 3.3 √
a3 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.

.
4
2
9
12
2n + 1
Câu 105. Tìm giới hạn lim
n+1
A. 3.
B. 0.
C. 1.
D. 2.
Câu 106. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 7 mặt.

D. 6 mặt.

Câu 107. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 108. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
5
9

A.
.
B. −
.
C. − .
D.
.
100
100
16
25
Trang 8/11 Mã đề 1


Câu 109. Trong các mệnh đề dưới đây, mệnh đề !nào sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 110. Giá trị giới hạn lim (x2 − x + 7) bằng?

x→−1
A. 0.
B. 7.

C. 5.

D. 9.

Câu 111. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 − ln x.

3
2
x
Câu 112. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.

Câu 113. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là



a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
4
12
Câu 114. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lăng trụ.
D. Hình lập phương.
Câu 115. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là

4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
36
24
6
Câu 116. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x4 − 2x + 1.
B. y = x + .
C. y = x3 − 3x.
D. y =
.
x

2x + 1
Câu 117. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 118. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 119. [1] Đạo hàm của làm số y = log x là
1
1
.
B.
.
A. y0 =
x ln 10
10 ln x
Câu 120.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
1
4
A.
.
B.
.

3
e

1
C. y0 = .
x

D. y0 =

ln 10
.
x

!n
5
C.
.
3

!n
5
D. − .
3

Câu 121.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
A.
dx = log |u(x)| + C.
u(x)

B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Trang 9/11 Mã đề 1


Câu 122. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 123. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.

D. −3.

Câu 124. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).

D. (2; +∞).

Câu 125. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng

(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
1 − 2n
Câu 126. [1] Tính lim
bằng?
3n + 1
2
1
2
A. 1.
B. .
C. .
D. − .
3
3
3
Câu 127. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.

C. Câu (III) sai.

D. Câu (I) sai.


1
Câu 128. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 129. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B.
.
C. 7.
D. 5.
2
2
7n2 − 2n3 + 1
Câu 130. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
C. 1.
D. 0.
3
3
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.

C

5. A

6.

C

7.

8. A

C

9. A


10.

11. A

12. A

13. A

14. A

15.

D

17.

16.

D
D

25.

C

24.

B


26. A
28. A

29.

B

30.
D

B

39. A

34.

B

36.

B

38.

B

41.

42.


D

45.

B
D

47.

C

49.

48. A
50.

C

51.

52.

C

53.

54. A

D
B

D

55. A
B

58.

D

60. A

57.

C

59.

C

61. A

62.

B

63.

64.

B


65. A

66.

C

43. A

C

46.

56.

D

32. A

C

35. A

44.

D
B

B


33.

C

22.

27.
31.

B

20.

21. A
23.

C

18.

C

19.

37.

B

C


68. A
1

C

67.

D

69.

D


70.

C

71. A

72.

C

73. A

74.

B


76. A

75.

D

77.

D

78.

C

79. A

80.

C

81.

82.

C

83.

B


84.

C

85.

B

86. A

C

87.

C

88.

B

89.

B

90.

B

91.


B

93.

B

D

92.
94.

95.

B

C
D

96. A

97.

98. A

99.

B

100. A


101.

B

102.

B

104.

D

106. A
108.

B

105.

D

109. A
D

111. A
113. A

B

114. A


115. A

116.

117.

D

118.

D

119. A

C

120. A

121. A

122.

D

124.

C

126.


D

123.

C

125.

C

127. A

128. A
130.

D

107. A

110.
112.

103.

129. A
B

2




×