Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 3 (2)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.47 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Không thay đổi.
Câu 2. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|




12 17
A. 34.
.
C. 68.
B.
D. 5.
17
Câu 3. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15


a3
a3 5
a3 15
.
B.
.
C.
.
D.
.
A.
5
25
3
25
Câu 4. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 5. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2

a 5
a 2
a 7
11a
.
B.
.
C.
.
D.
.
A.
32
16
4
8
Câu 6. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
D. Hình lập phương.

Câu 7. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a3 3

a 3
3
.
B.
.
C. a 3.
D.
.
A.
12
4
3
Câu 8. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

3

2a
3
a 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.

3
3
6
Câu 9. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 13.
D. 0.
Câu 10. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 11. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. −6.
D. 0.
Câu 12. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −9.
C. −5.
D. −12.
x−1
Câu 13. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB


√ có độ dài bằng
A. 2.
B. 6.
C. 2 3.
D. 2 2.
Trang 1/10 Mã đề 1


Câu 14. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
.
B.
.
C.
.
D. a3 .
A.
3
6
2
Câu 15. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.

D. 6 mặt.
Câu 16. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 30.
D. 20.
x
x−3 x−2 x−1
Câu 17. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (2; +∞).
D. (−∞; 2].
Câu 18. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.

C. 2.

D. 5.


Câu 19. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Có một hoặc hai.
D. Khơng có.
Câu 20. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

Câu 21. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
a
a 3
a3 3
3
A. a .

B.
.
C.
.
D.
.
3
3
9
2

Câu 22. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
B. √ .
A. 3 .
C. 3 .
2e
e
2 e

D.

1
.
e2

Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:

A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
1
Câu 24. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 1.
D. −2.
Câu 25. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).

C. (I) và (III).

D. Cả ba mệnh đề.
Trang 2/10 Mã đề 1


Câu 26. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.

B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 27. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 28. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 29. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 30. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 1.

C. f 0 (0) =

1 − n2

Câu 31. [1] Tính lim 2
bằng?
2n + 1
1
A. .
B. 0.
2
2n + 1
Câu 32. Tính giới hạn lim
3n + 2
3
2
A. .
B. .
2
3

C.

1
.
ln 10

1
.
3

C. 0.

D. f 0 (0) = 10.


1
D. − .
2

D.

1
.
2

1

Câu 33. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).

D. D = R \ {1}.

Câu 34. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.

D. 8.

C. 6.

Câu 35. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.

C. Nhị thập diện đều.
!2x−1
!2−x
3
3
Câu 36. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (−∞; 1].
C. (+∞; −∞).

D. Bát diện đều.

D. [1; +∞).

Câu 37. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 38. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
.
e
Câu 39. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng

vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
2
4
12
A. 2e.

B. 3.

C. 2e + 1.

D.

Trang 3/10 Mã đề 1



Câu 40. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 41. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).

D. lim+ f (x) = lim− f (x) = +∞.

x→a

x→a

x→a

Câu 42. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.

u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 43. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 12.
D. ln 4.
Câu 44. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.

C. 12.

D. 20.

x3 −3x+3

Câu 45. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
5
2
A. e.
B. e .
C. e .

D. e3 .

Câu 46. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm

1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4
4
π
Câu 47. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 4.
D. T = 3 3 + 1.
A. T = 2.
B. T = 2 3.




Câu 48. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3

9
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 49. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. n3 lần.
D. 3n3 lần.
2

2

Câu 50. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 51. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 52. Hàm số y =
A. x = 2.


x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

C. x = 0.

D. x = 3.

Câu 53. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Trang 4/10 Mã đề 1


Câu 54. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
C. lim un = 0.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
B. lim un = .
2
D. Dãy số un khơng có giới hạn khi n → +∞.


Câu 55. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m


A. 8 2.
B. 16.
C. 7 3.
D. 8 3.
1
Câu 56. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).
Câu 57. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.


Câu 58. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 20.

x2 + 3x + 5
Câu 59. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. − .
C. 0.
A. .
4
4
x+1
Câu 60. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
6
2
3
Câu 61. [1] Tập

! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. −∞; .
C. − ; +∞ .
2
2
2

D. Cả hai câu trên sai.
D. 8.

D. 1.

D. 1.
!
1
D.
; +∞ .
2

Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).

√ S .ABCD là

3
3

a 2
a 3
a 3
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
Câu 63. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
A.
.
B. 26.
C. 2.
D. 2 13.
13
Câu 64. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7

A. Không tồn tại.
B. −7.
C. −3.
D. −5.
Câu 65. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 3}.
D. {3; 4}.
log(mx)
Câu 66. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Trang 5/10 Mã đề 1


Câu 67. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 2.

B. −1.

3


Z

6
3x + 1

1

. Tính

f (x)dx.
0

C. 4.

D. 6.

Câu 68. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2
.
B.
.

C.
.
D.
.
A.
6
18
36
6
d = 60◦ . Đường chéo
Câu 69. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3

3
Câu 70. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 71. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.

D. D = R \ {0}.

Câu 72. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B. un =
.
2
n
5n + n2

C. D = (0; +∞).
C. un =

n2 − 2
.

5n − 3n2

D. un =

n2 + n + 1
.
(n + 1)2

Câu 73. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (2; 4; 6).
D. (1; 3; 2).

Câu 74. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38
a 38
3a
.
B.
.
C.
.

D.
.
A.
29
29
29
29
12 + 22 + · · · + n2
n3
1
B. .
3

Câu 75. [3-1133d] Tính lim
A. 0.

C. +∞.

Câu 76. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; +∞).
C. (−∞; 6, 5).
Câu 77. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
A. .
B. 25.
C. 5.
5

D.


2
.
3

D. (4; 6, 5].




D.

5.

Câu 78. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
d = 120◦ .
Câu 79. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 4a.
C. 3a.

D. 2a.
2
Trang 6/10 Mã đề 1


!
3n + 2
2
Câu 80. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 5.
C. 4.
D. 2.
x+2
đồng biến trên khoảng
Câu 81. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 1.
D. 2.
!
!
!
x
4

1
2
2016
Câu 82. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
A. T = 2017.
B. T = 2016.
C. T = 1008.
D. T =
2017
Câu 83. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.

.
B.
.
C.
.
D.
.
4
12
12
6
d = 300 .
Câu 84. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √

3
3

3
a
3
3a
A. V = 6a3 .
B. V = 3a3 3.
.
D. V =
.
C. V =
2
2

Câu 85. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 2.
B. 3.
C.
.
D. 1.
3
Câu 86. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 24.
D. 22.
Câu 87. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.

Câu 88. Hàm số nào sau đây khơng có cực trị
A. y = x4 − 2x + 1.

B. y = x3 − 3x.

Câu 89. Giá trị lớn nhất của hàm số y =
A. −2.

B. 1.

C. y =

x−2
.
2x + 1

1
D. y = x + .
x

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. −5.
D. 0.

Câu 90. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:

A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 + 19
18 11 − 29
C. Pmin =
. D. Pmin =
.
9
21

Câu 91. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 − 19
A. Pmin =
.
9

B. Pmin


2 11 − 3
=
.

3

Trang 7/10 Mã đề 1


Câu 92. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 1.
C. T = e + 3.
D. T = 4 + .
A. T = e + .
e
e
√3
Câu 93. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. .
C. −3.
D. − .
3
3
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 94. [3-12217d] Cho hàm số y = ln
x+1
0

y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 95. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4 − 2e
4e + 2
4e + 2
Câu 96. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 1.
D. 4 − 2 ln 2.
1

Câu 97. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 98. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 5.
D. 0, 2.
Câu 99. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
 π
x
Câu 100. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A.
e .

B. e .
C. 1.
D.
e .
2
2
2
8
Câu 101. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 64.
D. 82.
4x + 1
Câu 102. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.
C. −1.
D. −4.
Câu 103. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 104.

[1233d-2] MệnhZđề nào sau đây
Z
Z sai?

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

Z
Câu 105. Cho
A. 1.

1


2

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. −3.
C. 0.
D. 3.
Trang 8/10 Mã đề 1


Câu 106. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.

C. 2.

D. 144.

Câu 107. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối lập phương.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng


a
a
a 2
2a
.
B. .
C. .
D.
.
A.
3
4
3
3
Câu 109. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 = 2 x . ln x.
C. y0 = 2 x . ln 2.
D. y0 =
.
2 . ln x
ln 2
Câu 110.
√ 0 có nghĩa
√ Biểu thức nào sau đây không
−3
A.

−1.
B. (− 2) .
C. 0−1 .
D. (−1)−1 .
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 111. Trong các mệnh đề dưới đây, mệnh đề !nào sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 112. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

Câu 113. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.

B. −2.
C. 2.

D. Khối tứ diện đều.
D. −4.

Câu 114. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a bằng
1
1
C. −2.
D. .
A. 2.
B. − .
2
2


Câu 115. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
2

Câu 116. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 2.


D. 1.

Câu 117. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
Câu 118. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 119. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.

D. m ≥ 0.
Trang 9/10 Mã đề 1


2n − 3
Câu 120. Tính lim 2
bằng
2n + 3n + 1

A. +∞.
B. 1.

C. −∞.

D. 0.

Câu 121. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 122. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −2.
C. −4.
D. −7.
27
Câu 123. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.

C. Khơng có câu nào D. Câu (III) sai.

sai.



4n2 + 1 − n + 2
bằng
Câu 124. Tính lim
2n − 3
A. 1.
B. 2.

3
.
D. +∞.
2
Câu 125. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 6510 m.
D. 1202 m.
C.

Câu 126. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.
Câu 127. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = R.


x2 +x−2

C. 20.

D. 30.

C. D = [2; 1].

D. D = R \ {1; 2}.



Câu 128. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
6
12
36
24
Câu 129. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
D. {4; 3}.
Câu 130. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2.


B
D

4.

B

5.

D

6.

C

7.

D

8.

C

9.

D

11.


14.

C

17. A
21.

C
B

23. A
25.

B

B

20.

B

22.

D

24.

D

26.


D
D

D

28.

29.

D

30. A

31.

D

32.

C

D

18.

27.

33.


C

16.

B

19.

D

12.

B

13.
15.

10. A

B

34.

C

36.

35. A

D


37.

D

38.

B

39.

D

40.

B

41.

42.

C

43. A
45.

44.
B
C


48.

49.

C

50.

B

53. A

B
D

52.

B

54.

B
B

55.

B

56.


57.

B

58. A

59.

B

60. A

61.

C

46. A

47.
51.

D

62.

C

63. A

D


64. A

65.

C

66.

67.

C

68.
1

C
B


69.

70.

B

71. A
C

73.


72.

B

74.

B

75.

B

76.

77.

B

78.

79. A
81.
83.

D
B

D


D
B

80.

C

82.

C

84.

C
D

86.

85. A
87.

88.

C
D

89.

C


90. A

91.

B

92.

93.

B

94.

B

96.

B

98.

B

C

95.

D


97.
99.

B

100. A

101. A

102. A

103.
105.

104.

C

110.

C

111. A

114.

B
D

117.


C

C

116.

B

118.

B

120.

119. A
B

122.

123.

C

124. A

125.

C


126.

129.

C

112. A

115.

127.

D

108. A

109.

121.

B

106.

B

107. A

113.


C

128.

B

130.

C

2

D
B
C
B
D



×