Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn tập toán thptqg 4 (357)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.02 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

C. +∞.

B. −∞.




un
bằng
vn

D. 0.

Câu 2. [12215d] Tìm m để phương trình 4 x+
− 4.2 x+
− 3m + 4 = 0 có nghiệm
9
3
3


A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
4
Câu 3. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 4. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. −2.
C. 0.
D. 1.
1−x2

1−x2

Câu 5. Giá trị của lim(2x2 − 3x + 1) là
x→1

D. +∞.


Câu 6. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng √


3a
3a 38
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
1
Câu 7. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y

A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
A. 2.

B. 0.

C. 1.

Câu 8. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
!2x−1
!2−x
3
3


Câu 9. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. [1; +∞).
C. (−∞; 1].
Câu 10. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 6 mặt.


D. e.

D. [3; +∞).
D. 3 mặt.

[ = 60◦ , S O
Câu 11. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


2a 57
a 57
a 57
A.
D.
.
B.
.
C. a 57.
.
17
19
19
Câu 12. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −12.
C. −9.

D. −5.
d = 120◦ .
Câu 13. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 2a.
D. 4a.
2
Câu 14. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Có một hoặc hai.
D. Khơng có.
Trang 1/10 Mã đề 1


!
!
!
4x
1
2
2016
Câu 15. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f

+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2017.
A. T = 1008.
B. T = 2016.
C. T =
2017
Câu 16. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 17. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
x
Câu 18. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
.
C. .

D. .
A. 1.
B.
2
2
2
Câu 19. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 2
a3 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
16

24
48
48
Câu 21. Phát biểu nào sau đây là sai?
1
1
A. lim k = 0 với k > 1.
B. lim √ = 0.
n
n
n
C. lim un = c (Với un = c là hằng số).
D. lim q = 1 với |q| > 1.
Câu 22. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 1134 m.
D. 6510 m.
x+2
Câu 23. Tính lim
bằng?
x→2
x
A. 3.
B. 2.
C. 1.
D. 0.
Câu 24. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].

B. (−∞; 6, 5).
C. (4; +∞).

D. [6, 5; +∞).
 π π
3
Câu 25. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
Câu 26. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Bốn mặt.
5
Câu 27. Tính lim
n+3
A. 3.
B. 0.
C. 2.

D. Ba mặt.

D. 1.

Câu 28. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
1

A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
Trang 2/10 Mã đề 1


!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3

!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 29. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD

3
a 3
a
a 3
A.
.
B.
.

C.
.
D. a3 .
3
3
9
Câu 30. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 15, 36.
D. 24.
Câu 31. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.

D.
.
A.
12
4
6
12
Câu 33. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; .
; +∞ .
B. −∞; − .
C. − ; +∞ .
D.
2
2
2
2
Câu 34. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3
a3 5

.
B.
.
C.
.
D.
.
A.
25
25
5
3
x−2 x−1
x
x+1
Câu 35. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3].
mx − 4

đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 36. Tìm m để hàm số y =
x+m
A. 34.
B. 67.
C. 45.
D. 26.
Câu 37. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 38. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 10.

Câu 39. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 14.
D. ln 4.
Câu 40. Tứ diện đều thuộc loại
A. {4; 3}.

B. {5; 3}.

C. {3; 3}.

D. {3; 4}.

1
5

Câu 41. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = (−∞; 1).

D. D = R.

Câu 42. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.

D. 8.

C. 10.

Trang 3/10 Mã đề 1


Câu 43. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un

C. Nếu lim un
D. Nếu lim un

!
un
= −∞.
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= 0.
= a , 0 và lim vn = ±∞ thì lim
vn

Câu 44. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
3a
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a

a 2
2a
A. .
B. .
C.
.
D.
.
4
3
3
3
2

2

sin x
Câu 46. [3-c]
+ 2cos x lần
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.

Câu 47.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. 0−1 .


C.


−1.

−3

D. (−1)−1 .


Câu 48. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
3

2
6
Câu 49. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim un = c (un = c là hằng số).
n
1
D. lim qn = 0 (|q| > 1).
C. lim = 0.
n
Câu 50. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

Câu 51. Nhị thập diện đều (20 mặt đều) thuộc loại

A. {3; 4}.
B. {3; 5}.
C. {5; 3}.

D. {4; 3}.
 π
Câu 52. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. e .
e .
e .
B. 1.
C.
D.
2
2
2
Câu 53. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 54. [1] Đạo hàm của làm số y = log x là
ln 10

1
A. y0 =
.
B.
.
x
10 ln x
Câu 55. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.

C. y0 =
C. 6.

1
.
x ln 10

1
D. y0 = .
x
D. 12.
Trang 4/10 Mã đề 1


Câu 56. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.

C. 20.


D. 8.

Câu 57. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.

C. y0 = ln x − 1.

D. y0 = 1 + ln x.

Câu 58. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
D.
.
A. √

a + b2
2 a2 + b2
a2 + b2
a2 + b2

Câu 59. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 60. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
2
Câu 61. Tính
√ (1 + 2i)z = 3 + 4i. √
√4 mô đun của số phức z biết
B. |z| = 2 5.
C. |z| = 5.
A. |z| = 5.

Câu 62.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z

C.

B.
Z

1
dx = ln |x| + C, C là hằng số.
x

D.

xα dx =

D. |z| = 5.
xα+1
+ C, C là hằng số.
α+1

dx = x + C, C là hằng số.

Câu 63. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 7 mặt.

D. 6 mặt.

Câu 64. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.

B. 9.

D. 0.

C. 7.

Câu 65. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
A. f 0 (0) =
ln 10
Câu 66. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = R.

D. f 0 (0) = ln 10.

2

12 + 22 + · · · + n2
n3
1
A. +∞.
B. .
3
Câu 68.
đề nào sau đây

Z [1233d-2] Mệnh Z
Z sai?

D. D = [2; 1].

Câu 67. [3-1133d] Tính lim

A.
Z
B.

C.

2
.
3

D. 0.

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z

Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Trang 5/10 Mã đề 1


Câu 69. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.

D. {5; 3}.

Câu 70. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
12
4
8
4
Câu 71. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 6
a3 15
a3 5
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Z 1
6
2
3

Câu 72. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.

B. −1.

C. 2.

Câu 73. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. 4.

D. 6.
D. −4.

Câu 74. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.
B. .
C. .
D.
.

2
3
2
Câu 75. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 76. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.


D. Vô nghiệm.

Câu 77. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 78. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
1
Câu 79. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 80. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Bốn mặt.

D. Hai mặt.


Câu 81. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1

!n
−2
D. un =
.
3

!n
6
C. un =
.
5

Trang 6/10 Mã đề 1


Câu 82. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. .
C. 2.
D. − .

2
2
!
x+1
Câu 83. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
Câu 84. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu

f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 85. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có vơ số.
D. Có hai.
log 2x
Câu 86. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.

C. y0 =
.
2x ln 10
x ln 10
x3
Câu 87. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).
4x + 1
Câu 88. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

C. (0; +∞).

D. (−∞; 0) và (2; +∞).

C. 2.

D. −1.

d = 30◦ , biết S BC là tam giác đều

Câu 89. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
26
16
9
Câu 90. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 6
a3 6
a3 3

A.
.
B.
.
C.
.
D.
.
24
48
8
24
Câu 91. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.

D. m > −1.

Câu 92. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [1; +∞).
D. [−3; 1].
Câu 93. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.

1
Câu 94. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Trang 7/10 Mã đề 1


x+3
Câu 95. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vơ số.
q
2
Câu 96. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 97. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1

1 + 2e
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4e + 2
4e + 2
4 − 2e
Câu 98. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B. 2a 6.
C. a 3.
D.
.
2
Câu 99. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
.
B.
.
C. 8 3.
D. 6 3.
A.
3
3
Câu 100. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
2

Câu 101. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B. √ .

C. 3 .
e
2e
2 e

D.

1
.
e2

Câu 102. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 103. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m ≥ 0.
D. m > − .
4
4
2
x − 3x + 3
Câu 104. Hàm số y =

đạt cực đại tại
x−2
A. x = 0.
B. x = 2.
C. x = 1.
D. x = 3.
Câu 105. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3
a3 3
.
B.
.
C.
.
D. a3 .
A.
6
3
2
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD


3

10a 3
A. 10a3 .
B. 20a3 .
C.
.
D. 40a3 .
3
Trang 8/10 Mã đề 1


Câu 107.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 2.
C. 1.
D. 2.
Câu 108. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 109. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
x
x−3 x−2 x−1
+

+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (2; +∞).
D. (−∞; 2].

Câu 110. [4-1213d] Cho hai hàm số y =

Câu 111. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.

C. 3.

D. 2.

Câu 112. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.

D. 12 năm.
Câu 113. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.

C. 12.

D. 8.

Câu 114. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 3.

D. 2.

Câu 115. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .

D. k = .
A. k = .
9
15
6
18

Câu 116. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. [3; 4).
B.
;3 .
C. 2; .
D. (1; 2).
2
2
Câu 117.
Các khẳngZđịnh nào sau đây là sai?
Z
k f (x)dx = k

A.
Z
C.

Z


!0

f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Trang 9/10 Mã đề 1


Câu 118. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
loga 2
log2 a
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2

tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

C. 6.
D. 2 2.
A. 2.
B. 2 3.
Câu 119. [3-1214d] Cho hàm số y =

Câu 120. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m


C. 8 3.
D. 7 3.
A. 16.
B. 8 2.
Câu 121. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. 3.
D. −3.
Câu 122. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.

1
Câu 123. [1] Giá trị của biểu thức log √3
bằng
10
1
A. .
B. −3.
3

C. 3.

1
D. − .
3

Câu 124. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
2n2 − 1
Câu 125. Tính lim 6
3n + n4
A. 2.
B. 1.


C. 0.

D.

2
.
3

Câu 126. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
Câu 127. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là 4.
Câu 128. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 129. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Trang 10/10 Mã đề 1


Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
3
6
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.


C

3.

D

4.

C

5.

B

6. A

9.

B

11.
13.

D

8.

7. A
D

B

10.

B

12.

B
C

14.

15. A

16.

17.

C

18. A

19.

C

20.

21.


B
C

22.

D

D

23.

B

24. A

25.

B

26.

C

27.

B

28.


C

29.

B

30.

C

31.

D

33.

32.
34.

C

D
B

35.

D

36. A


37.

D

38.

C

40.

C

39.
41.

C

43.

D

51.

48.

B
D
B

54.


C

56.

C

58.

59.

D

60. A

61. A
B

67.

D

D
C

D

65.

B


52.

57.

63.

D

50.

D

53.
55.

46.

B

49.

D

44. A

C

45.
47.


42.

B

B

62.

B

64.

B

66.

B

68.
1

C
B


69.

D


72. A

71. A
73.

C

70.

B

74. A

75. A

76.

77. A

78.

79.

C
D

80. A

C


81.

D

82. A

83.

D

84.

85.

D

86.

87.

D

88. A

89. A

C
B

90. A


91.

D

92.

D

93.

D

94.

D

96.

D

95.

B

97.

C

98. A


99.

D

100. A

101.

D

102.

103.

D

104.

105.

C

106.

107.

C

108. A


109.

D

D
C
B

110. A

111. A

112.

D

113.

B

114.

D

116.

B

117.


D

118. A

119.

120. A

121.

D

122. A

123.

D

B

124.

C

125.

C

126.


C

127.

C

129.

C

128. A
130.

B

2



×