TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
√
Câu 1. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
6
36
Câu 2. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
1
Câu 3. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (1; 3).
D. (−∞; 1) và (3; +∞).
Câu 4. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối tứ diện đều.
Câu 5. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 0, 8.
D. Khối 12 mặt đều.
D. 7, 2.
Câu 6. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.
B. −4.
C. −2.
D.
67
.
27
Câu 7. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
!
! đề nào dưới đây đúng?
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
!3
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 8. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Một mặt.
C. Bốn mặt.
D. Hai mặt.
Câu 9. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 3).
D. (2; 4; 4).
x+1
Câu 10. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
3
2
6
0 0 0
Câu 11. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 3.
B. 2.
C. 1.
D.
.
3
Câu 12. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
1
Câu 13. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Trang 1/10 Mã đề 1
Câu 14. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. 1.
C. +∞.
D. 0.
Câu 15. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 24.
D. 15, 36.
Câu 16. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
4
6
12
12
Câu 18. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.
D. 6.
2
3
7n − 2n + 1
Câu 19. Tính lim 3
3n + 2n2 + 1
2
7
B. 0.
C. 1.
D. - .
A. .
3
3
2
x − 5x + 6
Câu 20. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 1.
D. 0.
Câu 21. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 22. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 23. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
1728
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 24. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 5
a 7
11a
a2 2
A.
.
B.
.
C.
.
D.
.
16
8
32
4
Câu 25. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
8
4
Câu 26. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Trang 2/10 Mã đề 1
Câu 27. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 210 triệu.
C. 220 triệu.
D. 216 triệu.
Câu 28. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 29. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. 4.
C. .
D. .
A. .
2
4
8
Câu 30. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3
a3 15
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
25
3
5
25
Câu 31.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
f (x)g(x)dx =
B.
Z
D.
f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 32. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
3
6
!
x+1
Câu 33. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
.
B.
.
C.
.
D. 2017.
A.
2018
2017
2018
Câu 34. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
A.
.
B. − .
C.
.
D. −
.
25
16
100
100
1
bằng
Câu 35. [1] Giá trị của biểu thức log √3
10
1
1
A. 3.
B. .
C. − .
D. −3.
3
3
√
√
Câu 36. Phần thực và √
phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
a
2a
A.
.
B. .
C. .
D.
.
3
3
4
3
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Trang 3/10 Mã đề 1
Câu 38. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 39. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
A.
.
B.
.
C. a 3.
.
D.
3
2
2
mx − 4
Câu 40. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 34.
D. 67.
Câu 41. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Z 0
u (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 42. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 43. Cho
x2
1
A. 1.
B. 0.
C. −3.
D. 3.
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
4a 3
a3
a3
2a 3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 45. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .
C. − .
2e
e
e
D. −e.
Câu 46. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
24
8
Câu 47. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 48. Biểu thức nào sau đây √
không có nghĩa
−3
−1
A. (−1) .
B.
−1.
√
C. (− 2)0 .
D. 0−1 .
Trang 4/10 Mã đề 1
Câu 49. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
D. 48cm3 .
Câu 50. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
8
7
5
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
A.
3
3
3
Câu 51. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 52. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Câu 53. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.
C. 3.
D. 2.
Câu 54. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.
C. 8.
D. 12.
Câu 55. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = 4 + .
D. T = e + .
e
e
Câu 56. Tính lim
x→5
A. −∞.
x2 − 12x + 35
25 − 5x
2
B. − .
5
C. +∞.
D.
2
.
5
0 0 0 0
0
Câu 57.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
3
2
2
Câu 58. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. [3; 4).
B. 2; .
C.
;3 .
D. (1; 2).
2
2
√
ab.
Câu 59. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 60. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 12.
D. 11.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 61. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 10a3 .
B. 20a3 .
C.
.
D. 40a3 .
3
Trang 5/10 Mã đề 1
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. (−∞; 2].
D. [2; +∞).
Câu 63. [4-1213d] Cho hai hàm số y =
2n2 − 1
Câu 64. Tính lim 6
3n + n4
2
A. 2.
B. .
C. 1.
3
√
Câu 65. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. − .
C. 3.
A. .
3
3
Câu 66. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.
D. 0.
D. −3.
D. Khơng tồn tại.
Câu 67. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
2
3
Câu 68. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
A. Nếu
f 0 (x)dx =
Câu 69. [1] Biết log6
A. 108.
√
a = 2 thì log6 a bằng
B. 4.
Câu 70. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 36.
D. 6.
C. 30.
D. 20.
!
3n + 2
2
Câu 71. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 4.
C. 2.
D. 5.
Câu 72. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 10.
D. 27.
Câu 73. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 74. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.
Câu 75. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).
D. (4; 6, 5].
Câu 76. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
D. e.
Câu 77. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
Trang 6/10 Mã đề 1
x y−2 z−3
=
=
.
2
3
−1
x−2 y+2 z−3
C.
=
=
.
2
2
2
A.
x y z−1
= =
.
1 1
1
x−2 y−2 z−3
D.
=
=
.
2
3
4
B.
d = 120◦ .
Câu 78. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 2a.
B. 3a.
C. 4a.
D.
2
Câu 79. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.
Câu 80. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. .
B. 25.
C. 5.
5
√
D. 5.
π
Câu 81. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π3
e .
B.
e .
C. e .
D. 1.
A.
2
2
2
1
Câu 82. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. m = 4.
D. −3 ≤ m ≤ 4.
Câu 83. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m , 0.
D. m = 0.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
3
A.
.
B.
.
C. a 3.
D.
.
6
3
3
Câu 85. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 7.
C. 2.
D. 3.
Câu 86. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 87. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).
D. (0; −2).
Câu 88. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
D. 6.
C. 5.
Câu 89. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.
Câu 90.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
A.
Trang 7/10 Mã đề 1
Z
D.
[ f (x) − g(x)]dx =
Z
Z
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 91. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.
C. 6.
D. 12.
Câu 92. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. 2.
D. −4.
Câu 93. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
3
3
a 3
a3 6
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
48
24
48
16
x2 − 3x + 3
Câu 95. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 1.
C. x = 3.
D. x = 0.
Câu 96. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Hai cạnh.
D. Ba cạnh.
Câu 97. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 3.
D. V = 5.
Câu 98. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 3.
1
Câu 99. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. −2.
!x
1
1−x
là
Câu 100. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. 1 − log2 3.
B. − log2 3.
C. − log3 2.
2−n
Câu 101. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
C. 0.
D. 2.
D. 2.
D. log2 3.
D. 1.
Câu 102. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
3
2
Câu 103. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 4.
D. 6.
Câu 104. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
[ = 60◦ , S A ⊥ (ABCD).
Câu 105. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√
√ S C là a. Thể tích khối chóp S .ABCD là
3
3
√
a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
4
6
12
Câu 106. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+1
c+2
c+3
Trang 8/10 Mã đề 1
1
Câu 107. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 108. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.
D. {2}.
Câu 109. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. 6.
C. −5.
2
D. −6.
√
Câu 110. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3
√
a3 3
a3
a 3
.
B.
.
C.
.
D. a3 3.
A.
12
3
4
2
x −9
Câu 111. Tính lim
x→3 x − 3
A. 6.
B. +∞.
C. 3.
D. −3.
x−2 x−1
x
x+1
Câu 112. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
Câu 113. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.
x−3
bằng?
Câu 114. [1] Tính lim
x→3 x + 3
A. +∞.
B. −∞.
C. 1.
D. Năm mặt.
D. 0.
Câu 115. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 116. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 117. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
15
6
x
x
Câu 118. [3-1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Câu 119. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
Câu 120. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
B. 5.
C.
.
D. 7.
A. .
2
2
√
Câu 121. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
Trang 9/10 Mã đề 1
Câu 122. [1-c] Giá trị của biểu thức
A. 4.
B. 2.
log7 16
log7 15 − log7
15
30
bằng
C. −2.
D. −4.
x=t
Câu 123. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
Câu 124. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 125.
Z Mệnh!đề nào sau đây sai?
0
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 126. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
!
5 − 12x
Câu 127. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 2.
C. Vơ nghiệm.
D. 1.
x+2
Câu 128. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 129. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vơ số.
D. 2.
√
2
Câu 130. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
D
3.
C
6.
C
8.
C
9.
B
10.
11.
B
12.
13.
B
14.
15.
D
21.
20.
23.
C
24.
25.
C
26. A
27. A
31.
D
D
B
22.
B
28.
29.
B
18.
D
19.
D
16. A
C
17.
D
4.
5. A
7.
B
D
B
B
D
30.
C
B
32.
33.
C
34.
35.
C
36.
37.
C
D
C
38.
D
39. A
D
40.
C
41.
C
42. A
43.
C
44.
B
45. A
46.
B
47. A
48.
49. A
50.
51.
52.
B
D
C
B
53. A
54.
D
55. A
56.
D
57.
B
59.
61.
D
D
65. A
67.
C
60.
C
62.
C
63.
58.
C
1
B
64.
D
66.
D
68.
D
69.
B
70.
71.
B
72. A
C
73.
D
74.
75.
D
76.
D
78.
D
77.
B
79. A
81.
B
C
80.
B
82.
B
B
83.
C
84.
85.
C
86.
D
88.
D
87.
D
89. A
90.
D
91.
92.
93. A
C
B
94. A
95.
B
96.
D
97.
B
98.
D
99.
C
100.
B
101.
B
102. A
103.
B
104.
C
106.
C
105. A
107.
D
109.
C
108.
B
110.
B
111. A
112. A
113. A
114.
115.
B
D
118.
120. A
D
116.
B
119.
B
121.
122.
D
123.
C
B
124. A
125.
126. A
127.
D
129.
D
128.
130.
B
C
2
C