Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (755)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.97 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.
Câu 2. Tính lim
x→2

A. 1.

x+2
bằng?
x
B. 3.

C. 0.

D. 2.

Câu 3. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7


5
A. 9.
B. .
C. 6.
D. .
2
2
0
Câu 4. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
Câu 5. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. (−∞; 2).

Câu 6. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 7. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.
C. 12.
D. 6.

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 8. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 0.
C. 1.
D. −5.
Câu 9. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1637
1079
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 10. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.

A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 11. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (1; +∞).

D. (−∞; −1).

Câu 12. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. −7, 2.

D. 7, 2.

Câu 13. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .

D. 0−1 .

C.


−1.


−3

2

Câu 14. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 5.
D. 3.
log(mx)
Câu 15. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 16. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 10 mặt.

D. 6 mặt.
Trang 1/10 Mã đề 1


Câu 17. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu

f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 18. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 19. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
Câu 20.

B. f (x) liên tục trên K.
D. f (x) xác định trên K.


[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].

C. m ∈ [0; 4].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 1].

Câu 21. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
a 3
a3 3
a3 6
2a 6
.
B.

.
C.
.
D.
.
A.
9
4
2
12
2

Câu 22. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 3 .
B. √ .
C. 3 .
2e
e
2 e
Câu 23. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.

C. 8.

D.


1
.
e2

D. 12.

0 0 0 0
0
Câu 24.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
.
B.
.
C.
.
D.
.
A.
3
7
2
2

Câu 25. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. 63.
B. 62.
C. 64.
D. Vô số.
x−3 x−2 x−1
x
Câu 26. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].
C. [2; +∞).
D. (2; +∞).

Câu 27. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. −1.

D. 6.

Câu 28.
đề nào sau đây

Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z
B.

[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 2/10 Mã đề 1


Z
C.
Z
D.

k f (x)dx = k

Z

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 29. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.

D. 12.

Câu 30. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 31. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên sai.


C. Chỉ có (I) đúng.

Câu 32. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.

D. Cả hai câu trên đúng.
D. 3.

Câu 33. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 34. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 35. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 36. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac

3b + 2ac
A.
.
B.
.
C.
.
c+2
c+1
c+3
√3
4
Câu 37. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
5
A. a 3 .
B. a 3 .
C. a 8 .
!2x−1
!2−x
3
3
Câu 38. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [1; +∞).

C. (+∞; −∞).
Câu 39. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.



C. {5; 3}.

2
Câu 40. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.

D.

3b + 3ac
.
c+2
7

D. a 3 .

D. [3; +∞).
D. {3; 3}.
D. −7.

Câu 41. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Trang 3/10 Mã đề 1


Câu 42. [1] Biết log6
A. 6.



a = 2 thì log6 a bằng
B. 36.

C. 108.

D. 4.

Câu 43. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 58
a 38
3a 38
A.

.
B.
.
C.
.
D.
.
29
29
29
29
Câu 44. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
8
12
4

4
!4x
!2−x
2
3
Câu 45. Tập các số x thỏa mãn


3 # 2
"
!
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5
Câu 46. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.

B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 47. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
Câu 48. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



5a3 3
2a3 3
a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3

2

Câu 49. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. 3.
B. − .
C. .
D. −3.
3
3
Câu 50. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 51. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.

C. 8.

D. 20.

8
Câu 52. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.

C. 81.
D. 64.
Câu 53. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. 0.
D. −3.
Câu 54. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 55. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
Trang 4/10 Mã đề 1


Câu 56. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

q
2
Câu 57. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
3
x −1
Câu 58. Tính lim
x→1 x − 1
A. 3.
B. −∞.
C. +∞.
D. 0.
Câu 59. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 60. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
.
B. a 2.
.
C. 2a 2.
D.
A.
4
2
Câu 61. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
x−2
Câu 62. Tính lim
x→+∞ x + 3
2
B. 1.
C. 2.
D. −3.
A. − .
3
Câu 63. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. m ≤ 0.
D. − < m < 0.
4

4
Câu 64. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 8π.
D. 32π.
Câu 65. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 1.
B. f 0 (0) =
.
C. f 0 (0) = 10.
D. f 0 (0) = ln 10.
ln 10
a
1
Câu 66. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 7.
D. 4.
Câu 67. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.
1
Câu 68. [1] Giá trị của biểu thức log √3

bằng
10
1
1
A. − .
B. −3.
C. .
3
3
Câu 69. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
C. 6.
Câu 70. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.

C. y0 = x + ln x.

D. 1 + 2 sin 2x.

D. 3.
D. 4.
D. y0 = 1 − ln x.
Trang 5/10 Mã đề 1



Câu 71. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. Vơ số.
B. 64.
C. 63.
D. 62.
Câu 72. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 3.
D. 4.

1 3
Câu 74. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Câu 73. [1-c] Giá trị biểu thức

Câu 75. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.



x=t




Câu 76. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 77. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
B. −∞; .

C.
; +∞ .
D. −∞; − .
A. − ; +∞ .
2
2
2
2
Câu 78. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −4.
C.
.
D. −2.
27
Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là

√ phẳng vng góc với 3(ABCD).
3
3

a 3
a 3
a 2
A.
.
B.

.
C.
.
D. a3 3.
4
2
2
2
1−n
Câu 80. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. .
C. 0.
D. .
2
2
3
3
2
Câu 81. Cho hàm số y = x − 2x + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
!3

!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 82. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Trang 6/10 Mã đề 1


Câu 83. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 8, 16, 32.
B. 2, 4, 8.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3

a 3
a 6
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
24
48
48
16
Câu 85. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.

C. 8.

D. 6.

Câu 86. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


3

3
3
a 3
a 3
a
.
B.
.
C.
.
D. a3 .
A.
3
9
3
Câu 87. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.

C. 12.

D. 8.

Câu 88. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 89. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
2a
8a
a
5a
A.
.
B.
.
C. .
D.
.
9
9
9
9
1

Câu 90. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.

D. D = (−∞; 1).

Câu 91.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 2.

C. 1.
D. 10.
Câu 92. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

f (x) a
A. lim
= .
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.

B. lim [ f (x)g(x)] = ab.
x→+∞

D. lim [ f (x) − g(x)] = a − b.

x→+∞

x→+∞

Câu 93. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x3 − 3x.
x

C. y = x4 − 2x + 1.


Câu 94. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {3; 4}.

D. y =

x−2
.
2x + 1

D. {5; 3}.

t

9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
+ m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.

Câu 95. [4] Xét hàm số f (t) =

9t

d = 120◦ .

Câu 96. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C.
.
D. 2a.
2
Trang 7/10 Mã đề 1


Câu 97. Giá trị của giới hạn lim
A. 2.

B. 1.

2−n
bằng
n+1

C. −1.

D. 0.

Câu 98. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.

Câu 99. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 100. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 101. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (2; 2).

D. (0; −2).

Câu 102. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .

15
18
6
9
Câu 103. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 1.
C. 2.

D. 5.

Câu 104. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.

D. Ba cạnh.

Câu 105. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 8.
C. 9.
D. 3 3.
Z 3
x
a
a
Câu 106. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá


d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 4.
D. P = 28.
log 2x
Câu 107. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
x
2x3 ln 10
x

x+1
x−2 x−1
Câu 108. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).
Câu 109. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n
Câu 110.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.

B.
.
4
2

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim


a3 2
C.
.
12


a3 2
D.
.
6
Trang 8/10 Mã đề 1


Câu 111. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
9
23

13
A. − .
B.
.
C. −
.
D.
.
16
25
100
100
Câu 112. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
C. 1.
D.
.
A. 2.
B. .
2
2
Câu 113. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.



5 13
A.

C. 2.
D. 26.
.
B. 2 13.
13
Câu 114. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
2x + 1
Câu 115. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. −1.
C. 1.
D. 2.
2


Câu 116. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
4
4
n−1

Câu 117. Tính lim 2
n +2
A. 1.
B. 0.

1−x2



− 4.2 x+

1−x2

− 3m + 4 = 0 có nghiệm

3
D. 0 ≤ m ≤ .
4

C. m ≥ 0.

C. 2.

D. 3.
x+3
Câu 118. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.

B. 1.
C. 3.
D. Vô số.
log(mx)
Câu 119. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
Câu 120. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 121.
định nào sau đây là sai?
!0
Z Các khẳng
Z
Z
A.
f (x)dx = f (x).
B.
k f (x)dx = k
f (x)dx, k là hằng số.
Z

Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 122. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.

D. Một mặt.

Câu 123. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
0

Câu 124. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 12.
A. 27.

B.
2
Trang 9/10 Mã đề 1


Câu 125. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

Câu 126. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
Câu 127. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.
1
Câu 128. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. 1.

D. Khối 20 mặt đều.
D. 1 nghiệm.

C. 8.

D. 10.


C. −1.

D. −2.

Câu 129. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
.
C. 8 3.
.
A. 6 3.
B.
D.
3
3
x2 − 5x + 6
Câu 130. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 1.
D. 0.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

D

3.

B

4.

D

5.

B

6. A


7. A

8.
D

9.

D

10.

11. A

C

12.

13.

D

14.

B

16.

15. A
C


17.
19.

B

B

21.

D

D

18.

B

20.

B

22.

D

23.

B

24. A


25.

B

26.

C

28.

C

27.

D

29.

C

31.

30. A
D

33. A

32.


B

34.

B

35.

B

36.

37.

B

38.

B

40.

B

39. A
D

41.
43.


D

D

42.

B

44. A

45. A

46.

C

47.

C

48.

D

49.

C

50.


D

51.

D

52.

C

53.

D

54.

C

55. A

56.

57.

D

58. A

59.


D

60.

61. A
63.
66.

62.

B
D
B

65.

B

67.

C

68. A

69. A
1

D
C



70.

71.

B

72.
74.

D

73. A
77. A

78.

D

79.

80. A
B

84.

B

81.


C

83.

C

85.

C

D

87.

86. A
88.

B

89.

90.

B

91.

92. A

93.


94. A

95. A

96.

C
B
C
D

97.

C

98.

D

100. A

101.

D

103.

104.


D

105.

106.

C

107.

108.

C

109.

110.

C

111.

112. A

C
C
D
B
D
C


113. A
115.

C

114.
116.

D

118.

C

D

117.

B

119.

B

121.

120. A
122.


C

123.

124.

C

125.

126. A

127.

128.
130.

D

75.

B

76. A

82.

D

D


129. A

B

2

D
C
D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×