Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (486)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.87 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1


Câu 1. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
36
18


6
6
x+1
Câu 2. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
3
2
6
Câu 3. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 4. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. Cả ba mệnh đề.


C. (I) và (II).

Câu 5. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
1
A.
.
B.
.
C. .
n
n
n
Z 1
Câu 6. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B.

1
.
4


C. 1.

D. (II) và (III).
1
D. √ .
n

D. 0.

x2 − 9
Câu 7. Tính lim
x→3 x − 3
A. −3.
B. 3.
C. +∞.
D. 6.
Z 3
x
a
a
Câu 8. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị

d
d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
C. P = 16.

D. P = 28.
1
Câu 9. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
x2 − 5x + 6
x→2
x−2
B. −1.

Câu 10. Tính giới hạn lim
A. 0.

C. 5.

D. 1.
Trang 1/10 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. −8.

Câu 11. [1-c] Giá trị biểu thức

A. 3.

Câu 12. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vơ nghiệm.
C. 3 nghiệm.

D. 1.
D. 1 nghiệm.

Câu 13. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
C. 12.
D. 6.
!
5 − 12x
Câu 14. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 1.
C. 3.
D. 2.
Câu 15. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. −7, 2.
D. 0, 8.
x−1

có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 16. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 6.
D. 2.
Câu 17. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 12.
D. ln 10.
Câu 18. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.


C. Khối lập phương.


D. Khối 12 mặt đều.

Câu 19. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
B. 0 ≤ m ≤ .

C. m ≥ 0.
D. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
4
2
Câu 20. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = −21.
D. P = 21.
[ = 60◦ , S A ⊥ (ABCD).
Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a 2
a 2
a 3
A.
.
B.
.
C.
.

D. a3 3.
4
12
6
Câu 22. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 3, 55.
D. 20.
2

2

Câu 23. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 24. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 2.

C. a 3.
D.
.
3
2
Câu 25. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 2.

D. 3.
Trang 2/10 Mã đề 1


d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 26. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




a3 2
a3 3
a3 3

2
A. 2a 2.
B.
.
C.
.
D.
.
24
12
24

Câu 27. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. −3.
C. 3.
D. .
3
3
Câu 28. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
Câu 29. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.


x→1

B. 2.

C. 0.

D. 1.

Câu 30. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng ; 1 .
A. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 31. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Giảm đi n lần.
1
Câu 32. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch

3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 33. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
.
D. f 0 (0) = 1.
ln 10
Câu 34. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) =

Câu 35. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m < 0.

Câu 36. √

Thể tích của khối lập phương có cạnh bằng a 2

2a3 2
.
B. 2a3 2.
A.
C. V = 2a3 .
3

D. m = 0.

D. V = a3 2.

π
Câu 37. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 3 3 + 1.
C. T = 2.
D. T = 2 3.

Câu 38. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là

!
7
5
8
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 39. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 2400 m.
D. 1134 m.
Trang 3/10 Mã đề 1


Câu 40. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.

D. −3.


Câu 41. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e − 2; m = 1.
D. M = e−2 + 2; m = 1.
Câu 42. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim qn = 1 với |q| > 1.

1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).

B. lim

Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
a3 3
2a3 3
A.
.
B.

.
C.
.
D. a3 3.
6
3
3
Câu 44. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 45. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.
x−1 y z+1
= =

Câu 46. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ

nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.

Câu 47. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
Câu 48. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
1
Câu 49. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.
C. −2.
D. −1.
Câu 50. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 1.
C. 3.
D. 2.

Câu 51. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



c a2 + b2
b a2 + c2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3

A.
.
B.
.
C.
.
D.
.
6
3
3
3
Trang 4/10 Mã đề 1


Câu 53. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 10a .
B. 20a .
C. 40a .
D.
.
3
Câu 54. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.

B. Hình chóp.
C. Hình lăng trụ.
D. Hình tam giác.
Câu 55. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 56.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 27.
D. 8.
3

Câu 57. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e2 .

D. e5 .

Câu 58. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 5

a3 15
a3
.
B.
.
C.
.
D.
.
A.
3
25
25
5
Câu 59. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
1
Câu 60. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.

C. m = −3.
D. m = −3, m = 4.
Câu 61. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 62. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 1200 cm2 .

x2 + 3x + 5
Câu 63. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. 0.
D. .
4
4
Câu 64. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 65. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
Trang 5/10 Mã đề 1


tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.

D. 13 năm.
Câu 66. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 2, 4, 8.
B. 6, 12, 24.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
d = 300 .
Câu 67. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.
3

3a 3
a 3
A. V =
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
2
2
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 68. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y

Pmin của P = x√+ y.



9 11 + 19
18 11 − 29
2 11 − 3
9 11 − 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21
3
9
Câu 69. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Câu 70. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
C. lim

1
= 0.

nk

B. lim

1
= 0.
n

D. lim un = c (un = c là hằng số).

Câu 71. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 72. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z 0
u (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 73. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Ba mặt.


D. Bốn mặt.

Câu 74. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 20.
D. 12.
x
x+1
x−2 x−1
Câu 75. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3).
Trang 6/10 Mã đề 1


Câu 76. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó

A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
Câu 77. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.

D. {5; 3}.
 π π
3
Câu 78. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 3.
D. 1.
tan x + m
Câu 79. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
Câu 80. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].

C. (−∞; 6, 5).

D. (4; +∞).

Câu 81. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
x

x

Câu 82. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
 π
Câu 83. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
3 π6
2 π4
A. e .
e .

e .
B.
C. 1.
D.
2
2
2
Câu 84. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 85. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

C. 2.

D. 4.

Câu 86.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 10.
C. 1.
D. 2.
A. 2.
2n + 1
Câu 87. Tính giới hạn lim
3n + 2

2
1
3
A. .
B. .
C. 0.
D. .
3
2
2
√3
4
Câu 88. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
Câu 89. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. 6.
C. −5.
2

D. −6.

Câu 90. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?

x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
Trang 7/10 Mã đề 1


Câu 91. Tính lim
A. 2.

5
n+3

B. 3.

C. 1.

D. 0.

Câu 92. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.

B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 0.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.

Câu 93. [3-1132d] Cho dãy số (un ) với un =

Câu 94. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4
4
4
4
Câu 95. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2


A. −3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.


D. 3 − 4 2.

Câu 96. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).

f (x)dx = F(x) + C.

B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
D.

Câu 97. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. −1.

B. 4.

C. 2.

3


Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 6.

Câu 98. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
Câu 99. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.

D. 6 mặt.

Câu 100. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.

B. x = 0.
C. x = −8.

D. x = −5.

Câu 101. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. .
e

D. 3.

[ = 60◦ , S O
Câu 102. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.

D. a 57.
19
19
17
x+2
Câu 103. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Trang 8/10 Mã đề 1





x = 1 + 3t




Câu 104. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi





z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t
x
=
−1
+
2t
x
=
−1
+
2t

x = 1 + 7t
















A. 
B. 
.
y = 1 + 4t .
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y=1+t

















z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
2

Câu 105. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.

D. 2 − log2 3.

Câu 106. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

D. {3; 4}.

C. {4; 3}.


Câu 107. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 108. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 3.
D. 8 2.
A. 7 3.
Câu 109. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {3}.
D. {5}.
Câu 110. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
C. √
A. √
.
B. 2
.
D. √

.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 111. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Năm mặt.
D. Ba mặt.
Câu 112. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.

C. 2.

D. 1.

Câu 113. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(4; −8).
Câu 114. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = 0.


D. m = −1.

Câu 115. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = x
.
A. y0 = 2 x . ln x.
B. y0 =
ln 2
2 . ln x
Câu 116. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (1; 2).

D. (−∞; +∞).

Câu 117. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.

D. 20.

C. 30.

Câu 118. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.

C. 3.

D. y0 = 2 x . ln 2.

D. 2.

Câu 119. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a
3. Thể tích khối chóp S .ABCD là


3
a 3
a3
a3 3
3
A.
.
B. a .
C.
.
D.

.
3
3
9
Trang 9/10 Mã đề 1


Câu 120. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 121.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.

A.
Z
C.

B.

xα+1
+ C, C là hằng số.
x dx =
α+1

Z


α

D.

dx = x + C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x

Câu 122. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
Câu 123. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
B. y = log 14 x.
A. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log π4 x.
Câu 124. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. 3n3 lần.
D. n3 lần.
2

Câu 125. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 3.

C. 4.

D. 5.

Câu 126. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. 5.
D. 5.
A. 25.
B. .
5
!
!
!
4x
1
2
2016
Câu 127. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =

.
C. T = 1008.
D. T = 2017.
2017
ln2 x
m
Câu 128. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.
C. S = 32.
D. S = 22.


Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
4a 3
a 3

8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 130. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.
C. 6.
D. 8.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.


B

3.

D

D

4.

5. A

C

6. A
D

7.

8. A

9.

C

10.

11.


C

12. A
D

13.
15.

14.

C

B
B

16. A

17. A

18.

C

19. A

20.

C

21. A


22.

23.

D

25.

24.

C

27.

26.
D

29.

30.
D

B
D
B

32.

33. A

35.

D

28.

C

31.

B

C

34. A
B

36.

B

37. A

38.

39. A

40.

C


42.

C

41.

C

43.

B

44.

45.

B

46.

47.

D

49.

C

51.

53.

D
B

55.
59.
61.

D

C

48.

B

50.

B

52.

D

54.

D

58.


B

60.

B

D

62. A

C

64.

63. A
65.

B

56. A

C

57.

D

66.


C

67. A

68.
1

D
B
C


69.

B

70. A

71.

B

72.

73.

B

74.


D

75. A

D

76. A

77.

D

78.

79.

D

80.

B

82.

B

81.

B


D

83.

D

84.

C

85.

D

86.

C

87. A

88. A

89.

C
D

91.
93.


B

95.
97.

B

C
B

98.
C

B

106. A
108.

92.
96. A

102. A
104.

C

94.
C

100.


90.

C

101.

D

103.

D

105.

D
C

107.
B

110.

D
C

112.

109.


D

111.

D

113.

B

115.

114. A
116.

D

117.

D
B

118.

B

119.

C


120.

B

121.

C

123.

C

125.

C

127.

C

129.

C

122.

C

124.


D

126. A
128.

C

130.

C

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×