TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
Câu 2. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 3. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 4. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim f (x) = f (a).
x→a
Câu 5. Cho hàm số y = x − 2x + x + 1. Mệnh đề nào dưới đây đúng?
3
2
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
B. Hàm số nghịch biến trên khoảng −∞; .
!3
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Câu 6. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 7. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23
9
13
A. − .
B. −
.
C.
.
D.
.
16
100
25
100
!
3n + 2
2
Câu 8. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 3.
B. 4.
C. 5.
D. 2.
Câu 9. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 2, 4, 8.
B. 6, 12, 24.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
Câu 10. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + .
C. T = 4 + .
D. T = e + 3.
e
e
Câu 11. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Trang 1/10 Mã đề 1
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 12. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 13.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 1.
C. 10.
D. 2.
A. 2.
2n + 1
Câu 14. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. 0.
C. .
D. .
2
3
2
Câu 15. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.
C. 12.
D. 10.
Câu 16. [1] Đạo hàm của làm số y = log x là
1
1
B.
.
A. y0 = .
x
10 ln x
!
1
1
1
Câu 17. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
2
Câu 18. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
n−1
Câu 19. Tính lim 2
n +2
A. 3.
B. 0.
C. y0 =
1
.
x ln 10
D. y0 =
ln 10
.
x
C. 0.
D. 1.
C. 12 cạnh.
D. 11 cạnh.
C. 2.
D. 1.
Câu 20. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 21. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 0.
D. 22016 .
Câu 22. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 4 mặt.
D. 10 mặt.
Câu 23. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
10
40
20
20
C50
.(3)40
C50
.(3)10
C50
.(3)30
C50
.(3)20
.
B.
.
C.
.
D.
.
A.
450
450
450
450
mx − 4
Câu 24. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 26.
D. 34.
Câu 25. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 2/10 Mã đề 1
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
C. Cả hai đều sai.
Câu 26. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. Chỉ có (II) đúng.
D. {5; 3}.
Câu 27. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
Câu 28. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = (−2; 1).
log2 240 log2 15
−
+ log2 1 bằng
Câu 29. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.
2
D. D = R \ {1; 2}.
D. 1.
Câu 30. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3 3
a3
3
A.
.
B.
.
C. a .
D.
.
6
2
3
Câu 31. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
Câu 32. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 5.
C. −5.
2
D. 6.
Câu 33. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
= aβ .
β
a
[ = 60◦ , S O
Câu 34. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
.
D.
19
17
19
Câu 35. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
A. aα+β = aα .aβ .
B. aαβ = (aα )β .
C. aα bα = (ab)α .
Câu 36. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 2.
D.
D. 6.
Câu 37. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng M + m
√
A. 8 3.
B. 16.
C. 8 2.
D. 7 3.
√
x2 + 3x + 5
Câu 38. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. − .
C. .
D. 0.
4
4
Trang 3/10 Mã đề 1
√
Câu 39. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
3a 38
a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
x2
Câu 40. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Câu 41. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
A. f 0 (0) = 1.
B. f 0 (0) = 10.
C. f 0 (0) = ln 10.
D. f 0 (0) =
ln 10
log7 16
Câu 42. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.
C. −2.
D. 4.
Câu 43. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 2.
C. 3.
D. 1.
Câu 44. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 45. [1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m ≤ 0.
Câu 46. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 47. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 48. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2
C. y0 =
1
2 x . ln
x
.
D. y0 = 2 x . ln x.
Trang 4/10 Mã đề 1
Z
Câu 49. Cho
A. 3.
1
2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 0.
C. 1.
D. −3.
x2
Câu 50. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
D. 3 − log2 3.
Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
1
Câu 52. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. 2.
D. −1.
Câu 53. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.
C. 7.
D. 5.
Câu 54. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
a3 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 55. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 5}.
d = 300 .
Câu 56. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho.
√
√
a3 3
3a3 3
3
3
A. V = 3a 3.
B. V =
.
C. V = 6a .
D. V =
.
2
2
Câu 57. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
2
3
Câu 58. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 6
a3 6
a3 3
a3 6
.
B.
.
C.
.
D.
.
A.
8
24
48
24
Câu 59. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Ba mặt.
C. Hai mặt.
D. Một mặt.
Câu 60. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
Câu 61. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (II) sai.
C. Khơng có câu nào D. Câu (III) sai.
sai.
Trang 5/10 Mã đề 1
Câu 62. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 12 m.
D. 24 m.
2
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 63. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 24.
D. S = 22.
Câu 64. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
A. √
.
B. √
.
C. √
.
D. 2
2
2
2
2
2
2
a + b2
a +b
2 a +b
a +b
Câu 65. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
3
2
log 2x
Câu 66. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
0
0
0
.
B.
y
=
.
C.
y
=
.
D.
y
=
A. y0 =
.
2x3 ln 10
2x3 ln 10
x3 ln 10
x3
Câu 67. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B. 68.
C. 5.
D.
.
A. 34.
17
Câu 68. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Bốn cạnh.
D. Năm cạnh.
Câu 69. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B.
.
C. −2.
D. −4.
27
Câu 70. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+1
c+3
c+2
c+2
Câu 71. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4
4
4
Câu 72. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. Vơ nghiệm.
Câu 73. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.
x−3
Câu 74. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 1.
D. m < 0.
D. 0.
Câu 75. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
Câu 76. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 4.
C. 0, 2.
D. 0, 3.
Trang 6/10 Mã đề 1
Câu 77. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
1
Câu 78. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = 4.
2
2
sin x
Câu 79. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
Câu 80. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 81. Tính lim
2n2 − 1
3n6 + n4
2
.
C. 1.
D. 0.
3
Câu 82. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−∞; 1).
D. (−1; 1).
Z 1
Câu 83. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
A. 2.
B.
0
1
1
A. .
B. .
C. 1.
D. 0.
2
4
Câu 84.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 85. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
6
12
x2 − 9
Câu 86. Tính lim
x→3 x − 3
A. 3.
B. +∞.
C. −3.
D. 6.
Câu 87. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
48
24
48
16
Câu 88. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (0; 2).
D. (2; +∞).
Câu 89. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 90. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. √ .
B.
.
n
n
C.
1
.
n
D.
sin n
.
n
Trang 7/10 Mã đề 1
Câu 91. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√ hình chóp S .ABCD với
√
√mặt phẳng (AIC) có diện tích
2
2
2
2
a 2
a 7
11a
a 5
.
B.
.
C.
.
D.
.
A.
16
4
8
32
3
Câu 92. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .
D. e.
Câu 93. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Khơng tồn tại.
B. 0.
C. 13.
D. 9.
Câu 94. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.
log(mx)
Câu 95. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0.
Câu 96. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. 2.
C. .
D. −2.
A. − .
2
2
Câu 97. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2
2
2
x+3
Câu 98. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 2.
D. 3.
x−1
Câu 99. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 6.
C. 2 2.
D. 2 3.
√
Câu 100. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
3
√
a3 3
a
3
a3
.
B.
.
C. a3 3.
D.
.
A.
4
3
12
2x + 1
Câu 101. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 2.
C. −1.
D. 1.
2
Câu 102. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 12.
B. 4.
C. 10.
D. 11.
Câu 103. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 3.
D. 0.
Câu 104. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > 1.
D. m > −1.
Trang 8/10 Mã đề 1
ln x p 2
1
Câu 105. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
3
9
3
Câu 106. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 108. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 109. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 9 mặt.
Câu 110. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4e + 2
4 − 2e
D. 8 mặt.
D. m =
1 + 2e
.
4 − 2e
x=t
Câu 111. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x + 3) + (y + 1) + (z + 3) = .
C. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 112. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 25 m.
D. 27 m.
Câu 113. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
x−2 x−1
x
x+1
Câu 114. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
Câu 115. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 4.
D. ln 14.
Câu 116. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Trang 9/10 Mã đề 1
1
Câu 117. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = R.
Câu 118. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C.
d = 90◦ , ABC
d
Câu 119. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là
√
a3 3
A. 2a2 2.
B.
.
C.
24
2n − 3
bằng
Câu 120. Tính lim 2
2n + 3n + 1
A. +∞.
B. −∞.
C.
Khối 20 mặt đều.
D. D = (−∞; 1).
D. Khối bát diện đều.
= 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
√
a3 3
.
12
√
a3 2
D.
.
24
0.
D. 1.
Câu 121. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (1; 0; 2).
D. ~u = (2; 1; 6).
Câu 122. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.
Câu 123. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
.
B.
u
=
.
A. un =
n
5n + n2
(n + 1)2
C. 8.
D. 12.
n2 − 3n
D. un =
.
n2
π π
Câu 124. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 3.
D. 1.
C. un =
n2 − 2
.
5n − 3n2
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√
√ chóp S .ABCD là
3
3
√
a3 3
a 3
2a 3
3
D.
A.
.
B.
.
C. a 3.
.
3
3
6
Câu 126. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.
C. 2.
D. 1.
Câu 127. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3 √
√
2 3
A. 1.
B. 3.
C.
.
D. 2.
3
Câu 128. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
Câu 129. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
D. 1 − sin 2x.
Câu 130. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình chóp.
D. Hình lập phương.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
3.
C
4.
D
5.
C
D
6. A
7.
B
8.
9.
B
10.
D
12.
D
11.
D
B
13.
B
14.
C
15.
B
16.
C
17.
19.
D
18.
B
22. A
23. A
25.
D
24.
D
26.
D
27.
B
28. A
29.
B
30.
31.
C
33.
37.
B
32.
D
35.
C
20.
C
21.
B
C
34. A
36.
C
B
38.
D
B
D
40.
39. A
41.
C
42.
43.
C
44.
45.
C
46. A
47.
C
48. A
49.
D
B
D
50.
C
51.
B
52.
53.
B
54.
D
56.
D
55.
D
57.
C
58.
59. A
62.
C
63. A
67.
B
60. A
61.
65.
B
B
D
64.
C
66.
C
68. A
1
B
71.
70.
C
69.
B
72.
D
B
73. A
74.
D
75. A
76.
D
77.
B
78.
B
79.
B
80.
B
81.
D
83. A
85.
B
82.
D
84.
D
86.
D
87. A
88.
89. A
90.
91.
93.
B
B
D
C
107. A
98.
D
C
104.
D
106.
D
110. A
D
112.
B
113. A
C
114.
115.
D
117. A
119.
D
C
116.
B
118.
B
120.
C
122.
C
123. A
124.
125. A
126.
127.
B
108. A
109.
121.
D
102. A
103. A
111.
96.
100.
B
105.
C
94.
99.
101.
B
92. A
C
95. A
97.
C
128.
D
129. A
130. A
2
D
C
D