Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (75)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.97 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = x
.
D. y0 = 2 x . ln 2.
A. y0 = 2 x . ln x.
B. y0 =
ln 2
2 . ln x
Câu 2. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4


4
4
Câu 3. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.
C. 30.
D. 12.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 4. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 4.
B. 2.
C. 3.
D. 5.
Câu 5. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng√(BCD) bằng



a 2
a 2
.
C. 2a 2.
.
A. a 2.

B.
D.
2
4
Câu 6. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
A. 3.
B. 8.
C. 4.
D. 6.
Câu 7. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
Câu 8. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
2−n
Câu 9. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.

C. Khối 20 mặt đều.

D. Khối 12 mặt đều.

C. {5; 3}.

D. {3; 3}.

C. −1.


D. 0.

Câu 10. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 12.
D. ln 10.

Câu 11. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a3 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
18
36
6

6
2

Câu 12. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = (−2; 1).
C. D = R \ {1; 2}.
2

D. D = R.

Câu 13. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
A.
.
B. 2.
C. 26.
D. 2 13.
13
Câu 14. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 7 mặt.
D. 8 mặt.
Câu 15. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng

A. 2.
B. 1.
C. 7.
D. 3.
Trang 1/11 Mã đề 1


9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 2.
B. 1.
C. −1.
D. .
2
1
Câu 17. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 2.
D. 1.
Câu 16. [2-c] Cho hàm số f (x) =

Câu 18. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.

D. x = −5.
x+1
bằng
Câu 19. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
2
6
3
Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 2
a 3
a3 3
a3 6
A.
.
B.
.

C.
.
D.
.
16
24
48
48
Câu 21. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn

Câu 22. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là



a3 3
a3 3
a3
3
.
B. a 3.
.
D.
.
A.
C.
12
4
3
Câu 23. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
3a
Câu 24. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a

a 2
A. .
B.
.
C. .
D.
.
3
3
4
3
Câu 25. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Tứ diện đều.
D. Bát diện đều.
Câu 26. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C.
.
D. 2a 6.
2
x−1 y z+1
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =


2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
Trang 2/11 Mã đề 1


A. −x + 6y + 4z + 5 = 0.
C. 2x + y − z = 0.

B. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 28. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 6 mặt.
Câu 29. [1] Đạo hàm của làm số y = log x là
1
1
1
B. y0 =
.
C.
.
A. y0 = .
x
x ln 10

10 ln x
Câu 30. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

D. 3 mặt.
D. y0 =

ln 10
.
x

2
.
e
Câu 31. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = −21.
D. P = 21.
A. 2e.

B. 2e + 1.

C. 3.

D.

Câu 32. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối 12 mặt đều.


D. Khối tứ diện đều.

Câu 33. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {3; 3}.

D. {4; 3}.

Câu 34. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 15
a3 5
a3
.
B.
.
C.
.
D.
.
A.
3
5
25

25
log 2x
Câu 35. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
A. y0 =
3
3
2x ln 10
x
x ln 10
2x ln 10
x2 − 12x + 35
Câu 36. Tính lim
x→5
25 − 5x
2
2
A. − .

B. −∞.
C. +∞.
D. .
5
5
Câu 37.
có nghĩa
√ Biểu thức nào sau đây khơng

−3
−1
A.
−1.
B. 0 .
C. (− 2)0 .
D. (−1)−1 .
Câu 38. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 39. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
2

4
8
Câu 40. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối lập phương.
Câu 41. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 42. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Trang 3/11 Mã đề 1


Câu 43. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. (−∞; −3].
D. [1; +∞).
Câu 44. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.

Câu 45. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
.
A. √ .
n
n

C. 8.
C.

1
.
n

D. 6.
D.

sin n
.
n

Câu 46. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 24.
D. 15, 36.

Câu 47. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. +∞.

C. 0.

D. 2.

Câu 48. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim k = 0 với k > 1.
n
Câu 49. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = log 14 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
!
x+1
Câu 50. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035

2017
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
Câu 51. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
A. lim qn = 1 với |q| > 1.

Câu 52. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 0.

D. 3.

d = 120◦ .
Câu 53. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC

Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 3a.
B. 4a.
C. 2a.
D.
2
1 − 2n
Câu 54. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. 1.
D. .
3
3
3
Câu 55.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 8.
D. 9.
Câu 56. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
3
6
2
Trang 4/11 Mã đề 1


Câu 57. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 2.
B. 5.
C. 3.
D. 1.
1
Câu 58. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.

C. 3.
D. 2.
Câu 59. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 60. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
6
12
Câu 61. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).
C. (−∞; 0) và (2; +∞). D. (−∞; 2).
7n2 − 2n3 + 1
Câu 62. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
3

3
Câu 63. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 3.

C. 1.

D. 0.

C. 1.

D. 2.

Câu 64. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

Câu 65. Phần thực và √
phần ảo của số phức
√ z=
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
Câu 66. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.
B. 5.



C. 1.
D. 2.

2 − 1 − 3i lần lượt √l

B. Phần thực là √2 − 1, phần ảo là √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
C. 7.

D. 9.
tan x + m
Câu 67. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3

A. 10a3 .
B.
.
C. 20a3 .
D. 40a3 .
3
Trang 5/11 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m = 4.

Câu 69. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m ≤ 0.

Câu 70. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .
d = 60◦ . Đường chéo
Câu 71. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0


BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 72. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. .
C. 1.
D.
.

2
2
2
Câu 73. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 5
a 7
11a
a2 2
A.
.
B.
.
C.
.
D.
.
16
8
32
4
Câu 74. Nhị thập diện đều (20 mặt đều) thuộc loại

A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 5}.
Câu 75. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.

C. 20.

Câu 76. [2] Tổng các nghiệm của phương trình 3
A. 5.
B. 8.

x2 −3x+8

=9
C. 7.

D. 8.
2x−1


D. 6.

Câu 77. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.

1
Câu 78. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
x−3

x−2

x−3

x−2

Câu 79. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B. a.
C.
.
D. .
3
2
2
Câu 80. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC

thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
2n − 3
Câu 81. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 82. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Trang 6/11 Mã đề 1


1
Câu 83. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
C. 3.

3
3
Câu 84.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
2
4
4
Câu 85. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. 10.

D. −3.

3
D.
.
12
D. 6.

Câu 86. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.

B. 3.
C. 2.
D. Vô nghiệm.
2mx + 1
1
Câu 87. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 0.
C. 1.
D. −5.
2
x − 3x + 3
đạt cực đại tại
Câu 88. Hàm số y =
x−2
A. x = 0.
B. x = 3.
C. x = 1.
D. x = 2.
[ = 60◦ , S O
Câu 89. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57

2a 57
a 57
.
B.
.
C. a 57.
.
D.
A.
19
17
19
x−3
Câu 90. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. 0.
D. −∞.
Câu 91. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
x+2
đồng biến trên khoảng
Câu 92. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?

A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 93. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. 2
.
D. √
.
2
2
2
2
2
a +b
2 a +b
a +b
a2 + b2
Câu 94. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.

C. 1.
D. 2.
Câu 95. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 387 m.
D. 25 m.
Câu 96. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
1
Câu 97. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Trang 7/11 Mã đề 1


Câu 98. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 1; m = 1.

D. M = e2 − 2; m = e−2 + 2.
Câu 99. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
log2 a
loga 2
Câu 100. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 24.

Câu 101. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.


D. S = 22.
D. 6 mặt.

Câu 102. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Câu 103. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.

B. 0, 3.
C. 0, 5.
D. 0, 4.
Câu 104. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.

C. 8.

D. 20.

Câu 105. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.

4
6
12
12
Câu 106. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 107. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 108. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Năm mặt.

D. Bốn mặt.

Câu 109. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
8a
2a

.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 110. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Trang 8/11 Mã đề 1


Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.

C.
.
D.
.
4
12
6
12
Câu 112.
√ Thể tích của tứ diện đều
√cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
2
6

12
Câu 113. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 114. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 115. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC

√ với đáy và S C = a 3. 3Thể
√là
a3 3
2a 6
a3 3
a3 6
A.
.
B.

.
C.
.
D.
.
4
9
2
12

Câu 116. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 1 nghiệm.
Câu 117. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.
0

0

0

D. 7, 2.

0

Câu 118. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng

(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
3
2
2
Câu 119. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3

−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
2
2
x y−2 z−3
x−2 y−2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
3
4

Câu 120. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα bα = (ab)α .
B. aα+β = aα .aβ .
C. aαβ = (aα )β .
D. β = a β .
a

x2 + 3x + 5
Câu 121. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. .
C. − .
D. 1.
4
4
Câu 122. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C. 18.
D.
.
2

Trang 9/11 Mã đề 1


x2 − 5x + 6
Câu 123. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.

C. 1.

D. 5.

Câu 124. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
Câu 125. [4-1245d] Trong tất cả
√ các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.

Câu 126. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả

bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vô số.
D. 63.

Câu 127. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
6
2
Câu 128. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng

1637
1079
23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 129. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 20.
D. 12.
2

Câu 130. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log2 3.

D. 1 − log3 2.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.
5.

2. A
4. A

C
B

6. A

7.

C

9.

C


8.

C

10. A
D

11. A

12.

13. A

14.

B

15. A

16.

B

D

17.
C

19.

23.

D
B

27.
29.

C

20.

C

22.

21. A
25.

18.

D

24.

B

26.

B


28.

B

30.

B

31.

C

32.

33.

C

34.

35.

C

36.

37.

B


38. A

39.

B

40.

41.

D

51.

B
C
D
C
D

44.

C

46.

B

47.

49.

C

42.

43. A
45.

D

D

48. A

C

50.

B
C

53.

D

52.
D

C


54.

B

55. A

56.

B

57. A

58. A

59.

C

60.

61.

C

62.

63.

D


64. A

65.

D

66.

67.

D

68.
1

D
B
D
C


69.

D

71.
73.

70.


B

72.

C

C
D

74.

B

75. A

76.

C

77. A

78.

C

79.

B


80.

B

81.

B

82.

B

83.

B

84.

B

85.
87.

D

86. A

B
D


89.
C

91.
93.

D

88.

C

90.

C

92.

D

94.

D

95.

B

96.


B

97.

B

98.

B

100.

B

103.

B

D

99.
102. A
104.

B

106.
108.

C

B

105.

D

107.

D

110.

D

111.

112.

D

113.

114.

B

115.

116.


B

117.

118. A

B
C
D
C

119. A

120.

D

122.

121.

C

123. A

C

124.

D


125.

126. A

127. A

128. A

129.

130.

C

109.

B

2

D
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×