Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (63)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.08 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

[ = 60◦ , S O
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng

√ Khoảng cách từ O đến (S

a 57
2a 57
a 57
.
C.
.
D.
.
A. a 57.
B.
17
19
19

Câu 2. [1] Biết log6 a = 2 thì log6 a bằng


A. 36.
B. 4.
C. 108.
D. 6.
x−1
y
z+1
Câu 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 4. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.

C. 7.

D. 0.

Câu 5. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.

B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 6. Dãy số
!n nào có giới hạn bằng 0? !n
−2
6
.
B. un =
.
A. un =
5
3

C. un =

n3 − 3n
.
n+1

D. un = n2 − 4n.

Câu 7. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2

A. 4.


B. −1.

3

C. 2.

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 6.
2

x
Câu 8. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
A. M = , m = 0.

e
e
Câu 9. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 10. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 11. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.
4x + 1
Câu 12. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
Câu 13. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y0 = 2 x . ln 2.
B. y0 = x
2 . ln x


C. +∞.

D. 2.

C. −1.

D. 4.

C. y0 = 2 x . ln x.

D. y0 =

1
.
ln 2
Trang 1/10 Mã đề 1





x=t




Câu 14. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x + 3) + (y + 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z + 3) = .
4
4
3
2
x
Câu 15. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 3.
C. m = ± 2.

D. m = ±3.


Câu 16. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

B. Phần thực là 2 −√1, phần ảo là − √3.
A. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 17. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 15
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
3
25
25
5

x−3
bằng?
Câu 18. [1] Tính lim
x→3 x + 3
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 19. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).

D. (1; −3).

2

Câu 20. Tính lim
x→3

A. −3.

x −9
x−3

B. 6.



C. 3.


2
Câu 21.
√ Xác định phần ảo của số phức z = ( 2 + 3i)
A. 6 2.
B. 7.
C. −7.

D. +∞.

D. −6 2.

Câu 22. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≤ 0.
D. m ≥ 0.
A. m > − .
4
4
2−n
Câu 23. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 2.
D. 1.

Câu 24. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e
Câu 25. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.

D. m =

1 + 2e
.
4e + 2

D. 1 + 2 sin 2x.

x3 −3x+3

Câu 26. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là

3
5
A. e .
B. e.
C. e .

D. e2 .

Câu 27. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.

C. 1.

D. +∞.

Câu 28. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.

C. y0 = 1 + ln x.

D. y0 = 1 − ln x.
Trang 2/10 Mã đề 1


ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2

1
A. 1.
B. −3.
C. 0.
cos n + sin n
Câu 30. Tính lim
n2 + 1
A. 0.
B. +∞.
C. −∞.
Z

2

Câu 29. Cho

Câu 31. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.

D. 3.

D. 1.
D. 72.

Câu 32. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.

C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
Câu 33. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
8
Câu 34. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 81.
D. 64.
Câu 35. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.

C. 12.

D. 8.

Câu 36. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.

C. 30.

D. 10.


Câu 37. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có một hoặc hai.
Câu 38.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 39. Cho I =

Z

3

x


dx =

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = −2.
D. P = 28.
Z 1
Câu 40. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1

.
C. 0.
D. .
2
4
Câu 41. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. n3 lần.
D. 3n3 lần.
A. 1.

B.

[ = 60◦ , S A ⊥ (ABCD).
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 3
a3 2
a3 2
3
A.
.
B. a 3.
C.
.
D.
.

6
12
4
Trang 3/10 Mã đề 1


Câu 43. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
 π
x
Câu 44. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


3 π6
2 π4
1 π
A.
e .
B. 1.
C.
e .
D. e 3 .
2
2
2
Câu 45. Phát biểu nào sau đây là sai?

1
B. lim qn = 0 (|q| > 1).
A. lim = 0.
n
1
C. lim k = 0.
D. lim un = c (un = c là hằng số).
n
Câu 46. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
x
9
Câu 47. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. 2.
D. −1.
2
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
.

B.
.
C.
.
D.
.
A.
12
12
6
4
Câu 49. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 50. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.

D. 4 mặt.
!
3n + 2
2
Câu 51. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.

B. 4.
C. 2.
D. 3.
1
Câu 52. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
! x3 −3mx2 +m
1
Câu 53. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
1 − 2n
Câu 54. [1] Tính lim
bằng?
3n + 1
2
2
1

A. − .
B. .
C. .
D. 1.
3
3
3
Câu 55. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
Trang 4/10 Mã đề 1




2 3
A.
.
B. 2.
C. 3.
D. 1.
3
Câu 56. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



3
3

a3 15
a
5
a
6
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
Câu 57. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
x
x+1
x−2 x−1
+
+

+
và y = |x + 1| − x − m (m là tham
Câu 58. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. [−3; +∞).
D. (−∞; −3).
!
1
1
1
Câu 59. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. 1.
C. .
D. 2.
2
Câu 60. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n

1 − 2n
n2 − 2
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n
(n + 1)2
n2
5n + n2
5n − 3n2
Câu 61. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
C.
.
D. 1.
A. 2.

B. .
2
2
Câu 62. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
log7 16
Câu 63. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −4.
C. −2.
D. 2.
Câu 64. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
9
2
A. .
B. .
C.
.
D.
.
5

5
10
10
Câu 65. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 66. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 67. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
Câu 68. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

C. 2.

D. {3; 3}.
1
3|x−1|

= 3m − 2 có nghiệm duy


D. 1.

Câu 69. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a
4a 3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Trang 5/10 Mã đề 1


Câu 70. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
C. 5.

D. 1.
A. 2.
B. 3.
Câu 71. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
C. √
.
B. 2
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 3.

B. 2 2.
C. 6.
D. 2.

Câu 72. [3-1214d] Cho hàm số y =

Câu 73. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 8π.
D. 16π.
Câu 74. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.

C. D = R \ {0}.

D. D = (0; +∞).

Câu 75. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 216 triệu.
D. 210 triệu.
Câu 76. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết

rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
9
23
13
.
B. − .
C.
.
D. −
.
A.
100
16
25
100

Câu 77. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 64.
D. 63.
Câu 78. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim k = 0 với k > 1.
n

B. lim qn = 1 với |q| > 1.

1
D. lim √ = 0.
n

Câu 79. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
D. m = ± 2.
A. m = ±1.
B. m = ±3.
C. m = ± 3.
x+1
Câu 80. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
3
6
2
Câu 81. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.
C. 12.
D. 10.
Câu 82. Khối lập phương thuộc loại
A. {5; 3}.

B. {4; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 83. Cho

√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 84. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.
Trang 6/10 Mã đề 1


Câu 85. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 21.
D. 23.

Câu 86. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
6
36
12
Câu 87. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương

ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
18
6
2
−1
Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e ; e] là
1
1
1
A. − .
B. − 2 .
C. − .
D. −e.
2e
e
e
Câu 89. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.

C. m ≤ 3.
D. m > 3.
Câu 90. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
t
9
Câu 91. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 1.
D. 2.
Câu 92. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 93. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. −5.
C. 5.
2


D. 6.

Câu 94. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là

3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
2
4
1

Câu 95. [2] Tập xác định của hàm số y = (x − 1) 5 là

A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.

D. D = (−∞; 1).

Câu 96. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
5
Câu 97. Tính lim
n+3
A. 0.
B. 1.
C. 3.
D. 2.
Câu 98. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.

C. 20.


D. 30.
Trang 7/10 Mã đề 1


Câu 99. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

Câu 100. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3
4a 3

5a3 3
a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
1
bằng
Câu 101. [1] Giá trị của biểu thức log √3
10
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
Câu 102. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un

A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn

Câu 103.√Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
.
B. V = a3 2.
A.
C. V = 2a3 .
D. 2a3 2.
3
Câu 104. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.

Câu 105. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 4.
D. 8.
Câu 106. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 107. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 6 mặt.

√3
Câu 108. [1-c] Cho a là số thực dương .Giá trị của biểu thức a : a2 bằng
2
5
5
A. a 3 .
B. a 3 .
C. a 8 .

D. 7 mặt.

4
3

7

D. a 3 .


Câu 109.
[1233d-2] ZMệnh đề nào sau đây sai?
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
C.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 110. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 4}.

D. {3; 3}.
Trang 8/10 Mã đề 1



1 3
x − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (−∞; 3).
2x + 1
Câu 112. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. 2.
D. −1.
2
Câu 113. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 111. Tìm tất cả các khoảng đồng biến của hàm số y =

Câu 114. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
4

2
8

Câu 115. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
C. − .
D. −3.
A. 3.
B. .
3
3
x−3 x−2 x−1
x
Câu 116. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ

Câu 117. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√ = x + y.



9 11 − 19
18 11 − 29
2 11 − 3
9 11 + 19
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9
9
21
3
Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 2
a 3
a 3

A.
.
B.
.
C.
.
D. a3 3.
2
4
2
Câu 119. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m , 0.
C. m < 0.

D. m > 0.

Câu 120. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
C.
.
D. .
A. a.
B. .
2
2

3
!x
1
Câu 121. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. 1 − log2 3.
B. − log2 3.
C. log2 3.
D. − log3 2.
Câu 122. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 4.
C. 12.
D. 10.
2n + 1
Câu 123. Tìm giới hạn lim
n+1
A. 0.
B. 2.
C. 1.
D. 3.
p
1
ln x
Câu 124. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3

8
1
1
8
A. .
B. .
C. .
D. .
9
9
3
3
Trang 9/10 Mã đề 1


Câu 125. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4

2
12
4
Câu 126. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
24
6
12
Câu 127. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.
C. 8.
D. 30.
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
√ (S BC) và (S AD) cùng

3
3
3
a 3
8a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
9
3
9
Câu 129. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
sin n
1
A. √ .
B.
.
C.
.
D. .

n
n
n
n
Câu 130. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3.

2.
D

B

4. A

5. A


6.

B

7. A

8.

B

9.

C

10. A

11. A

12.

13. A

14.

B

15. A

16.


B

18.

B

20.

B

17.

B

19.

C

D

21. A

22. A

23. A

24.

25. A


26.

C
C

27.

B

28.

29.

B

30. A

31.

C

32. A

33.

C

34.


35.

C

36.

37.

D

C
B

38. A

39. A

40.

41.

B

B
D

42.

C


43.

B

44.

45.

B

46.

47.

B

48.

B

49.

B

51.

B

52.
54. A

58.

D
B

60.
62.

C

66.
68.

C

55.

B

57.

B

59.

B

61. A

B


64.

D

53.

C

56.

C

63.
D

B

65. A
67. A

B
D

69.
1

B



70. A

71.

72. A

74. A

75.

D

76.

B

77. A

78.

79.
81.

D

D

B
C


80.

B

82.

B

83. A

84.

85. A

86.

88. A

89. A

90. A

91.

92. A

93.

B


94. A

95.

B

C
D
D

96.

D

97. A

98.

D

99.

100.

D

101.

D


102.

D

103.

D

104. A
106.

B

108. A

105.

B

107.

B

109. A
D

110.
112.

111.

115.

116.

D

118.

D
B

117.

C

120. A
122.

B

113.

C

114. A

C

D


119.

B

121.

B

123.

B

125.

124. A
126.

C

128.
130.

B

D
B

2

D


127.

B

129.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×