Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
1
Câu 1. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 3.
B. 2.
C. 1.
D. 4.
Câu 2. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
Câu 3. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 4. Tìm m để hàm số y =
x+m
A. 45.
B. 26.
C. 67.
D. 34.
1
a
Câu 5. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 2.
C. 7.
D. 1.
Câu 6. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
.
C.
.
D. a 2.
B.
A. a 3.
3
2
Câu 7. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
π
Câu 8. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 2 3.
C. T = 2.
D. T = 3 3 + 1.
Câu 9. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
3
6
2
Câu 10. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = 10.
D. P = −10.
Câu 11. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
x+2
Câu 12. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 13. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Trang 1/10 Mã đề 1
Câu 14. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 15. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 16. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 0.
C. 2.
D. 3.
Câu 17. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
x2
Câu 18. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Câu 19. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 6
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
24
48
48
16
x+1
Câu 21. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
2
3
6
x
Câu 22. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 =
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
D. y0 = x
.
ln 2
2 . ln x
Câu 23. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 24. [4-1213d] Cho hai hàm số y =
Câu 25. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Hai mặt.
D. Bốn mặt.
Trang 2/10 Mã đề 1
Câu 26. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3 3
a3
3
A. a .
B.
.
C.
.
D.
.
2
6
3
Câu 27. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
Câu 28. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −7.
D. −2.
27
Câu 29. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 30. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 4.
D. V = 6.
Câu 31. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
12
24
6
Câu 32. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B.
.
C. 7.
D. .
2
2
Câu 33. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
C. − .
B. − .
e
2e
e
Câu 34.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.
Z
D. −e.
!0
f (x)dx = f (x).
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Câu 35. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
√
3
4
Câu 36. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 38. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
6
36
12
Trang 3/10 Mã đề 1
Câu 39. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
√
Câu 40. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
√
2 − 1 − 3i lần lượt √l
√
B. Phần thực là √2 − 1, phần ảo là √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
C. Khối bát diện đều.
D. Khối 12 mặt đều.
2
Câu 41. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 27cm3 .
D. 72cm3 .
Câu 42. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
.
B. a 6.
C. a 3.
D. 2a 6.
A.
2
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
2a3 3
a3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 44. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
C. 2.
D. 144.
Câu 45. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 2.
C. 3.
D.
x+1
bằng
Câu 46. Tính lim
x→+∞ 4x + 3
1
A. 1.
B. .
C. 3.
D.
3
Câu 47. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D.
1.
1
.
4
3 đỉnh, 3 cạnh, 3 mặt.
Câu 48. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 5 mặt.
1 − n2
bằng?
Câu 49. [1] Tính lim 2
2n + 1
1
1
1
B. .
C. .
D. 0.
A. − .
2
3
2
Câu 50. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
5a3 3
4a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 51. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
c a2 + b2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
2
2
Câu 52. [3-c]
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
!
1
1
1
Câu 53. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. .
D. 1.
2
Trang 4/10 Mã đề 1
Câu 54. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 55. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
4a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
d = 120◦ .
Câu 57. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C.
.
D. 3a.
2
2x + 1
Câu 58. Tính giới hạn lim
x→+∞ x + 1
1
C. −1.
D. 1.
A. 2.
B. .
2
3
Câu 59. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e5 .
D. e.
Câu 60.
có nghĩa
√ Biểu thức nào sau đây không
−3
−1
A.
−1.
B. (−1) .
√
D. (− 2)0 .
C. 0−1 .
Câu 61. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.
C. Cả hai đều sai.
D. Chỉ có (II) đúng.
Câu 62. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. .
B. 25.
C. 5.
D. 5.
5
Câu 63. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
C. m = ± 2.
D. m = ±1.
A. m = ±3.
B. m = ± 3.
√
Câu 64. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 65. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
A. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
Trang 5/10 Mã đề 1
Câu 66. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc
√
√ với đáy và S C = a 3.3 √
a3 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
2
4
9
12
Câu 67. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (III) sai.
C. Câu (II) sai.
Câu 68. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
√
Câu 69. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. − .
C. 3.
3
3
D. Khơng có câu nào
sai.
D. {5; 3}.
D. −3.
tan x + m
Câu 70. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
√
Câu 71. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. (1; 2).
B.
;3 .
C. [3; 4).
D. 2; .
2
2
Câu 72. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 73. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
x+2
Câu 74. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 1.
D. 3.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a
2a
a 2
A. .
B. .
C.
.
D.
.
4
3
3
3
Câu 76. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
!
!
!
x
4
1
2
2016
Câu 77. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T =
.
D. T = 1008.
2017
Câu 75. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Trang 6/10 Mã đề 1
[ = 60◦ , S A ⊥ (ABCD).
Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
3
√
a 3
a 2
a 2
.
B.
.
C.
.
D. a3 3.
A.
12
6
4
Câu 79. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 1.
D. 3.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 80. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
Câu 81. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 82. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
1
Câu 83. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 84. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 85. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 5
11a
a2 2
a 7
.
B.
.
C.
.
D.
.
A.
8
16
32
4
Câu 86. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
A. un =
.
B. un =
.
3
5
C. un = n2 − 4n.
Câu 87. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.
D. un =
n3 − 3n
.
n+1
D. Một mặt.
Câu 88. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.
√
Câu 89. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
3a 58
a 38
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Trang 7/10 Mã đề 1
Câu 90. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim f (x) = f (a).
x→a
x→a
x→a
Câu 91. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
6
12
12
log 2x
Câu 92. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
x
2x3 ln 10
Câu 93. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 3}.
Câu 94. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
8a
2a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 95. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
log 2x
Câu 96. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
.
D. y0 = 3
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 97. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. β = a β .
a
2
2n − 1
Câu 98. Tính lim 6
3n + n4
2
A. 2.
B. .
C. 0.
D. 1.
3
Câu 99. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 100. Trong các khẳng định sau, khẳng định nào sai?
√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 101. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3
A. 1.
B. .
C. .
D.
.
2
2
2
Câu 102. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều. D. Bát diện đều.
Câu 103. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 0, 8.
D. 72.
Câu 104. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.
D. 12.
C. 30.
Trang 8/10 Mã đề 1
5
Câu 105. Tính lim
n+3
A. 3.
B. 0.
C. 2.
D. 1.
−2x2
Câu 106. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. √ .
B.
.
2e3
2 e
trên đoạn [1; 2] là
2
C. 3 .
e
D.
Câu 107. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.
C. 4.
D. 3.
1
.
e2
Câu 108. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 109. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
A. 8 2.
B. 16.
C. 8 3.
D. 7 3.
2n − 3
bằng
Câu 110. Tính lim 2
2n + 3n + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
[ = 60◦ , S O
Câu 111. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng
√
2a 57
a 57
a 57
.
B. a 57.
.
D.
.
A.
C.
17
19
19
Câu 112. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
6
18
9
Câu 113. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 6.
D. 5.
log2 240 log2 15
Câu 114. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
Câu 115. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
x−1
Câu 116. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 2 3.
C. 2 2.
D. 6.
Câu 117. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(4; 8).
D. A(−4; −8)(.
4x + 1
Câu 118. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.
C. −4.
D. −1.
Câu 119. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (0; 1).
Câu 120. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
Trang 9/10 Mã đề 1
√
√
14 3
A.
.
B. 8 3.
3
Câu 121. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2
√
20 3
C.
.
3
C. un =
√
D. 6 3.
1 − 2n
.
5n + n2
D. un =
n2 − 3n
.
n2
Câu 122.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
7n2 − 2n3 + 1
Câu 123. Tính lim 3
3n + 2n2 + 1
2
B. 0.
A. - .
3
Câu 124. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.
C.
7
.
3
D. 1.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
un
Câu 125. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 126. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 127. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
2a 3
a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
2
3
x2 − 9
Câu 128. Tính lim
x→3 x − 3
A. 3.
B. −3.
C. 6.
D. +∞.
Câu 129. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
23
13
A.
.
B.
.
C. − .
D. −
.
100
25
16
100
Câu 130. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).
D. (2; 2).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2. A
3.
C
4.
5.
C
6.
7.
C
8. A
9.
C
10. A
11. A
13.
D
C
12.
C
14. A
B
15.
C
16.
17.
C
18.
19. A
C
D
20.
C
21.
D
22.
B
23.
D
24.
B
B
25.
B
26.
27.
B
28.
29.
B
30.
C
32.
31. A
33.
D
B
D
34. A
35. A
36.
37. A
38.
39.
D
C
D
40.
B
B
41.
C
42.
43.
C
44.
D
46.
D
45.
D
47.
C
48.
C
50.
49. A
D
51.
D
52.
53.
D
54.
D
56.
D
55.
B
57.
C
58. A
59.
C
60.
61.
D
63.
65.
67.
62.
C
C
B
64. A
C
66.
B
D
68.
1
D
C
69. A
71.
70.
B
72.
73. A
B
74. A
75.
76. A
C
77.
D
B
83.
C
78.
79. A
81.
C
D
80.
D
82.
D
84. A
85. A
86. A
87.
B
88.
89.
B
90.
C
D
91.
D
92.
93.
D
94.
D
96.
D
95.
C
97.
D
99.
D
98.
102. A
103. A
104.
109.
C
D
108. A
B
110.
111.
D
114. A
116.
C
106.
B
107.
C
100. A
101. A
105.
B
B
118. A
B
113.
C
115.
C
117.
C
119.
C
C
120.
D
121.
122.
D
123. A
124.
C
125. A
127.
C
128.
C
130.
C
129.
D
2