Tải bản đầy đủ (.pdf) (12 trang)

Đê ôn thptqg 5 (582)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.55 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (−∞; 6, 5).

D. (4; +∞).

Câu 2. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.
C. 3.
D. 1.

2
x + 3x + 5
Câu 3. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.


B. .
C. − .
D. 1.
4
4
Câu 4. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 2.

C. 4.

D. 1.

Câu 5. Giá√trị cực đại của hàm số y =√x − 3x − 3x + 2


A. 3 − 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
D. −3 + 4 2.
2n2 − 1
Câu 6. Tính lim 6
3n + n4
2
A. 1.

B. 0.
C. .
D. 2.
3
Câu 7. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
3

2

(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).
2n + 1
Câu 8. Tìm giới hạn lim
n+1
A. 2.
B. 1.

C. (I) và (III).

D. Cả ba mệnh đề.

C. 3.

D. 0.


Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 2
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
16
48
24
48
Câu 10. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Trang 1/10 Mã đề 1



Câu 11. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
Câu 12. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 =
.
2 . ln x
ln 2

C. y0 = 2 x . ln x.

D. Một mặt.
D. y0 = 2 x . ln 2.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 + 19
18 11 − 29
C. Pmin =
. D. Pmin =

.
9
21

Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3

Pmin của P = x√+ y.

2 11 − 3
9 11 − 19
A. Pmin =
.
B. Pmin =
.
3
9
Câu 14. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.


C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 15.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
12
2
4


3
D.
.
4

2
Câu 16. Tính
√ mô đun của số phức z√biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.
C. |z| = 5.

A. |z| = 2 5.

D. |z| =

√4
5.

Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
a 3
8a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.

9
9
3
9


Câu 18. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
4
4

1−x2



− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

Câu 19. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.

B. n2 lần.
C. n3 lần.
D. 3n3 lần.
Câu 20. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Câu 21. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aαβ = (aα )β .

B. aα bα = (ab)α .

C. aα+β = aα .aβ .

D.

α

β.
=
a


x
Câu 22. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3

3
A. .
B. 1.
C.
.
D. .
2
2
2

Trang 2/10 Mã đề 1


Câu 23. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 24. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 25. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6

a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
3
6
2
Câu 26. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
D. −e.
2e
e
e
Câu 27. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
Câu 28. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.

B. 8.
C. 10.
D. 6.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 29. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
Câu 30. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −7.
Câu 31. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x4 − 2x + 1.
x


C. y = x3 − 3x.

D. −5.
D. y =

x−2
.
2x + 1

2

Câu 32. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. 2 .
A. 3 .
2e
e
e
Câu 33. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Bốn cạnh.

D.

1
√ .

2 e

D. Hai cạnh.

1
5

Câu 34. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R \ {1}.
B. D = R.
C. D = (−∞; 1).

D. D = (1; +∞).

Câu 35. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

C. 3.

D. 0.
Trang 3/10 Mã đề 1


Câu 36. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.

A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = 6.
Câu 37. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 38. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).

D. R.

Câu 39. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
Câu 40. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.

D. 102.016.000.
Câu 41. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình chóp.

D. Hình tam giác.

Câu 42. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 9.
C. 8.
D. 3 3.
Câu 43. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2

C. un =

n2 − 3n
.

n2

D. un =

1 − 2n
.
5n + n2

Câu 44. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Z 1
6
2
3
. Tính
Câu 45. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
f (x)dx.
0
3x + 1
A. −1.

B. 2.

C. 4.


D. 6.

Câu 46. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
Câu 47. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.

D. 1 + 2 sin 2x.

Câu 48. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
log2 240 log2 15
Câu 49. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. 1.
D. −8.

 π π
Câu 50. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 7.
D. 3.
Trang 4/10 Mã đề 1


d = 300 .
Câu 51. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
3
3
B. V = 6a .
C. V =
.
D. V =
.
A. V = 3a 3.
2
2
Câu 52. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.

B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 53. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z 0
u (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 54. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 55. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 56. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3

a3
a3
.
B.
.
C.
.
D. a3 .
A.
24
12
6
!
3n + 2
2
Câu 57. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
Câu 58. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3

a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
8
4
4
2x + 1
Câu 59. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. .
C. −1.
D. 1.
2
Câu 60. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 10.
D. P = 21.
Câu 61. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 3.


B. 2e.

C. 2e + 1.

D.

2
.
e

Câu 62. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
4a 3
4a
2a3
A.
.
B.
.
C.
.
D.
.

3
3
3
3
Trang 5/10 Mã đề 1


Câu 63. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 2.
D. 0, 3.
Câu 64. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
1
bằng
Câu 65. [1] Giá trị của biểu thức log √3
10
1
A. .
B. 3.
3

C. −3.

1

D. − .
3

Câu 66. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 2.

D. 3.

Câu 67. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.

D. D = R.

C. D = R \ {0}.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.

Câu 68. [1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m ≤ 0.

Câu 69. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
q
2
Câu 70. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 71. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = [2; 1].
2

D. D = (−2; 1).

Câu 72. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
C. .
D.

.
A. a.
B. .
2
3
2
un
Câu 73. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 74. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Câu 75. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. 0.

C. 2.

D. +∞.

[ = 60◦ , S O

Câu 76. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Câu 77. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 6.

D. 10.

Câu 78. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.


C. {3; 4}.

D. {4; 3}.
Trang 6/10 Mã đề 1


Câu 79. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
D.
.
2
3
2
Câu 80. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!

1
1
1
1
B.
; +∞ .
C. −∞; .
D. −∞; − .
A. − ; +∞ .
2
2
2
2
Câu 81. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. 2
.
C.
.
D.
.
.
B.




a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 82. [1] Tính lim
x→3

A. 1.

x−3
bằng?
x+3
B. +∞.

Câu 83. Dãy số nào có giới hạn bằng 0?
!n
6
n3 − 3n
.
B. un =
.
A. un =
n+1
5

C. 0.

D. −∞.

!n

−2
C. un =
.
3

D. un = n2 − 4n.

Câu 84. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.


Câu 85.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x



A. 2 3.
B. 3 2.
C. 3.

D. Khối 20 mặt đều.


3.
8
Câu 86. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 96.
D. 82.
D. 2 +

Câu 87. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
1
Câu 88. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 3.

D. 2.
Câu 89. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a 3
a3 3
4a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
Câu 90. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.

2

2

sin x
Câu 91.
+ 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ là
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.

Câu 92. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. −4.

D. 4.

Câu 93. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
B.

.
C.
.
D.
.



a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 7/10 Mã đề 1


Câu 94. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 8π.
D. 16π.

Câu 95. √Xác định phần ảo của số phức z = ( 2 + 3i)2

A. −6 2.
B. 7.
C. −7.
D. 6 2.
!2x−1
!2−x

3
3
Câu 96. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].
D. (+∞; −∞).
2n + 1
Câu 97. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. .
C. .
D. 0.
3
2
2
Câu 98. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1

1
A. k = .
B. k = .
C. k = .
D. k = .
9
15
6
18
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 99. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = −2.
D. P = 28.
Câu 100. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 24 m.
D. 8 m.

Câu 101. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m > .
D. m ≥ .
4
4
4
4
Câu 102. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

a3
a3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3

6
3
Câu 103. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B.
.
C. a 6.
D. 2a 6.
2
Câu 104. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.

B.
.
C. 3.
D. 2.
3
4x + 1
Câu 105. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. −1.
D. 2.
1 − 2n
Câu 106. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. .
C. 1.
D. − .
3
3
3
Trang 8/10 Mã đề 1



Câu 107. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
Câu 108. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 109. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" đây?
!

" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
5
5
B. [3; 4).
C.
;3 .
D. (1; 2).
A. 2; .
2
2
Câu 110. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 10 mặt.
C. 8 mặt.


ab.

D. 6 mặt.

Câu 111. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
ln x p 2
1
Câu 112. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x

3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
3
9
Câu 113.
√ Thể tích của tứ diện đều
√cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.

D.
.
12
6
2
4
Câu 114. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 115. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 2, 4, 8.
Câu 116. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 72.

D. 7, 2.

Câu 117. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

D. Khối 12 mặt đều.


C. Khối tứ diện đều.

Câu 118. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 119. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 1134 m.
D. 2400 m.
Câu 120. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
Trang 9/10 Mã đề 1


tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 13 năm.
Câu 121. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.

C. 30.


D. 12.

Câu 122. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
A. − < m < 0.
4
4
Câu 123. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
3

2

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
A. Nếu

f 0 (x)dx =

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 124. Cho hình chóp S .ABC có BAC
(ABC). Thể

√ tích khối chóp S .ABC
√là

a3 3
a3 3
a3 2
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24

24
Câu 125. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3
3

a
a
a
15
6
5
B.
.
C.
.
D.
.
A. a3 6.
3
3
3
Câu 126. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.

C. 4.
D. 6.
Câu 127. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. 12.

D. 8.

Câu 128. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

Câu 129. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vơ số.
D. 64.
Câu 130. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.

D. m = −2.

- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

4. A

C
D

5.

6.

7. A
9.

B

8. A
10. A


B

11.

C

13. A

12.

D

14.

D
D

15.

D

16.

17.

D

18.

21.


D

22.

B

25.

C

20. A

C

19.
23.

B

B

24. A
26. A

C

27.

D


28.

B

29.

D

30.

B

31.

D

32.

37.

D

34.

33. A
35.

C


B

36. A
C

38.

39. A

40.

C
B

41.

D

42.

D

43.

D

44.

D


45.

C

46.

B

47.

C

48.

B

49.

D

50. A

51.

D

52.

D


53.

D

54.

D

55.

D

56.

B

57. A

58.

B

59. A

60.

B

61. A


62.

63.

D

64.

65.

D

66.

67.

D

68.
1

C
D
B
D


69.

70.


D

71. A

D

72. A

73.

B

74.

75.

B

76.

C

77.

B

78.

C


79.

B

80. A

81.

B

82.

85.

86.

B

87.
89.

D
B

B

90. A
92. A


93.

95.

D

96.

B

99.

B

100.

101.

B

102. A

103.

C
B
D

109.


B

104.

D

106.

D

108.

B

110.

C

111. A

112.

113. A

114.
B
C

117.


D

97. A

107.

115.

D

88. A

91. A

105.

C

84.

C

83.

B

D
B
D


116.

B

118.

B

119.

B

120.

C

121.

B

122.

C

123.

D

124.


D

125.

C

126.

D

127.

C

128.

D

130.

D

129. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×