Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (771)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.91 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Phần thực √
và phần ảo của số phức
√ z=
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
cos n + sin n
Câu 2. Tính lim
n2 + 1
A. −∞.
B. 1.



2 − 1 − 3i lần lượt l√

B. Phần thực là 2 −√1, phần ảo là √
3.
D. Phần thực là 1 − 2, phần ảo là − 3.

C. 0.

D. +∞.



Câu 3. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 4. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 5. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) xác định trên K.

D. f (x) có giá trị nhỏ nhất trên K.

Câu 6. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. .
C. .
D. 1.
2
2

Câu 7. Thể
tích
của
khối
lập
phương

cạnh
bằng
a
2



2a3 2
.
B. V = a3 2.

A.
C. 2a3 2.
D. V = 2a3 .
3
2

Câu 8. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
.
C. 2 .
B.
3
2e
e
2 e
Câu 9. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.

C. y0 = x + ln x.

D.

2
.
e3


D. y0 = ln x − 1.

Câu 10. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông

√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD

3
a 3
a3
a 3
A.
.
B. a3 .
C.
.
D.
.
9
3
3
2

Câu 11. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 6.

D. 7.


Câu 12. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 13. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
Trang 1/10 Mã đề 1




2 3
A.
.
B. 2.
C. 1.
D. 3.
3
Câu 14. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng





2a 3
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
3
2
4x + 1
Câu 15. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.
C. −4.
D. −1.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 16. Giá trị lớn nhất của hàm số y =
m−x

3
A. 0.
B. 1.
C. −5.
D. −2.
Câu 17. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 18. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Câu 19. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = R \ {1; 2}.
2

D. D = (−2; 1).

Câu 20. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23
9

13
A. − .
B. −
.
C.
.
D.
.
16
100
25
100
Câu 21. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
Câu 22. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
B.
.

C.
.
D.
.
6
3
2
Câu 23. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.

C.
.
D.
.
48
24
48
16
Câu 25. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.
C. 8.
D. 30.
Câu 26. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 22.
Trang 2/10 Mã đề 1


Câu 27. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=

=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
=
=
.
B.
=
=
.
A.
2
3
4
2
2
2
x y−2 z−3
x y z−1
C. =
=
.
D. = =
.

2
3
−1
1 1
1
1 − n2
Câu 28. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. .
D. − .
3
2
2
3
2
Câu 29. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 30. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 1.
B. 10.

C. 2.
D. 2.
Câu 31. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
2n + 1
Câu 32. Tìm giới hạn lim
n+1
A. 2.
B. 0.

C. 3.

D. 1.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0.

Câu 33. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0 ∨ m = 4.

Câu 34. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?

A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 35. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.

D. m > −1.

Câu 36. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
x
Câu 37. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là
A. 3.
B. 5.
C. 2.
D. 1.

1 − 2n
Câu 38. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 39. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
!
5 − 12x
Câu 40. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Trang 3/10 Mã đề 1



Câu 41. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.
C. lim un = 0.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
B. lim un = .
2
D. Dãy số un khơng có giới hạn khi n → +∞.

1
Câu 42. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.

C. −2.

D. 2.

Câu 43. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2

a 2
.
D.
.
A. a 3.
B. a 2.
C.
3
2

Câu 44. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
Câu 45. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Thập nhị diện đều.

D. Tứ diện đều.

Câu 46. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 7.
D. 3.
Câu 47. [1] Đạo hàm của làm số y = log x là
1
1

.
B. y0 =
.
A.
10 ln x
x ln 10
Câu 48. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. y0 =

ln 10
.
x

C. Khối bát diện đều.

1
D. y0 = .
x
D. Khối tứ diện đều.

Câu 49. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.


B. Câu (II) sai.

C. Khơng có câu nào D. Câu (III) sai.
sai.
2
Câu 50. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.
D. −7.
Câu 51. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.

C.
.
D.
.
12
36
6
24
Câu 52. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 8.
D. 30.
Câu 53. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
Trang 4/10 Mã đề 1


C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 54. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 5}.

D. {3; 4}.

Câu 55. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥

(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 6
a3 5
3
A.
.
B.
.
C. a 6.
.
D.
3
3
3
Câu 56. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Câu 57. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.

B. − 2 .
C. − .
e
e

D. −

1
.
2e

2
Câu 58. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
C. m = ± 3.
D. m = ±3.
A. m = ±1.
B. m = ± 2.

d = 60◦ . Đường chéo
Câu 59. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6

A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 60. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 61. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
3
10a
A. 20a3 .
B. 10a3 .
C.
.
D. 40a3 .
3
Câu 62. Tứ diện đều thuộc loại
A. {3; 4}.

B. {5; 3}.
C. {4; 3}.
D. {3; 3}.
Câu 63. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 0.

D. 9.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
A.
.
B. .
C. .
D.
.
3
4
3
3

Câu 64. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 65. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
Trang 5/10 Mã đề 1


(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.

C. 4.

D. 1.

Câu 66. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 67. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.

C. 8.

D. 5.


Câu 68. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 69. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
Câu 70.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.
Z
B.
Z
C.
Z
D.

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 71. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 3.
D. 8.
1
Câu 72. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 3.
D. 2.
Câu 73. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 12.
!2x−1
!2−x
3

3
Câu 74. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
Câu 75. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. 4.

D. 20.

D. (+∞; −∞).
D. −4.

Câu 76. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
12 + 22 + · · · + n2
Câu 77. [3-1133d] Tính lim
n3
1
2
A. .

B. .
3
3

C. 0.

D. +∞.
Trang 6/10 Mã đề 1


tan x + m
Câu 78. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 79. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vơ nghiệm.
C. 2.
D. 1.
2
Câu 80. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.


D. |z| =

Câu 81. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. 72.

D. −7, 2.

√4
5.

Câu 82. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. −2e2 .
D. 2e2 .
2

2x

Câu 83. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. n2 lần.
D. 3n3 lần.
Câu 84. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban

đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 13 năm.
D. 10 năm.
Câu 85. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
d = 300 .
Câu 86. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3

a 3
3a3 3
3
3
A. V =
.
B. V = 6a .
C. V = 3a 3.
.
D. V =
2

2
d = 30◦ , biết S BC là tam giác đều
Câu 87. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
26
13
Câu 88. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 89. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.


C. 12.

D. 30.

Câu 90. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
x+2
Câu 91. Tính lim
bằng?
x→2
x
A. 0.
B. 3.
C. 2.
D. 1.
Câu 92. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 11.
D. 12.
Trang 7/10 Mã đề 1



Câu 93. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. − ; +∞ .
C.
; +∞ .
2
2
2

!
1
D. −∞; .
2

Câu 94. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 10 năm.
D. 7 năm.
Câu 95. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).

2n + 1
Câu 96. Tính giới hạn lim
3n + 2
1
2
A. .
B. .
2
3

C. 0.

D. (0; 2).

D.

3
.
2

Câu 97.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
Z x
Z
xα+1

C.
xα dx =
+ C, C là hằng số.
D.
dx = x + C, C là hằng số.
α+1
Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
a3
2a3 3
a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 99. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
A.
.

B.
.
C.
.
c+2
c+3
c+2

Câu 100. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 4.

D.

3b + 3ac
.
c+1

D. 108.

Câu 101. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
4

2
8
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
Câu 102. [4] Xét hàm số f (t) = t
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.
Câu 103. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 104. Tính lim

x→−∞

A.

1
.
2

x+1
bằng
6x − 2

B. 1.

Câu 105. Giá trị của giới hạn lim
A. 1.

B. 0.

C.
2−n
bằng
n+1

1
.
3

C. 2.

D.

1
.
6

D. −1.
Trang 8/10 Mã đề 1


Câu 106. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =


A. Nếu
Z
B. Nếu
Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

f (x)dx =

Z

f (x)dx =

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
C. Nếu

Câu 107. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.

C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 108. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
B. 2a 2.
C.
.
D.
.
A. a 2.
2
4
Câu 109. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng


√M + m
C. 8 2.
D. 7 3.
A. 16.
B. 8 3.
Câu 110. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.

B. 8.

C. 30.

D. 20.

Câu 111. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
Câu 112. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
π
Câu 113. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2 3.
C. T = 4.
D. T = 2.
A. T = 3 3 + 1.
Câu 114. Hàm số nào sau đây khơng có cực trị
1

x−2
A. y = x4 − 2x + 1.
B. y = x + .
C. y =
.
D. y = x3 − 3x.
x
2x + 1
Câu 115. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 7
a 2
11a
a2 5
.
B.
.
C.
.
D.
.
A.

8
4
32
16
Câu 116. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. 10.
D. 6.
Câu 117.
Các khẳng định nàoZsau đây là sai?
Z
A.

f (x)dx = F(x) +C ⇒

f (u)dx = F(u) +C. B.

Z

!0
f (x)dx = f (x).
Trang 9/10 Mã đề 1


Z
C.

k f (x)dx = k


Z

Z
f (x)dx, k là hằng số.

D.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

Câu 118. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 5.
D. V = 6.
Câu 119. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 120. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).

0 0 0 0
Câu 121.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
3
2
7
2
Câu 122. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.

Câu 123. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể

tích của khối chóp S .ABCD là √

3

a
a3
a3 3
3
D.
A.
.
B.
.
C. a3 3.
.
4
3
12
Câu 124. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−∞; 1).
D. (−1; 1).

x3 − 1
Câu 125. Tính lim
x→1 x − 1
A. 0.
B. +∞.


C. −∞.

D. 3.

Câu 126. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √


3
2a 3
a3 3
4a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 127. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.

C. 1.
D. 3.
Câu 128. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

Câu 129. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
√3
Câu 130. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
2


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

D

4. A

5. A
7.
9.

C
B

11.

D


6.

C

8.

C

10.

D

12.

D

13.

B

14.

15.

B

16. A

17.


B

18.

19. A
21.

B

22.

B

25. A

26.
C

30. A

31.

C

32. A

B

35.


B

28.

29.
33.

D
B

24. A
D

C

20.

23. A
27.

C

D

D

34.

B


36.

B

37.

C

38.

B

40.

C

41.

B

42.

C

43.

44.

C


45.

46.

B

47.

48.

D

D
C
B

49.

C

50. A

51. A

52. A

53.

B


55.

B

54.

C

56. A

57.

D

58. A

59.

D

60.
62.

61. A

C
D

63.


64. A

65.

B
B

66.

D

67.

68.

D

69.
1

C

D


70.

71.

C


C
D

73.

72. A
C

74.

75. A

76.

B

77. A

78.

B

79.

D

81.

D


80.

D

82. A

83. A

84. A

85.
D

86.

B
D

87.

88.

B

89.

C

90.


B

91.

C

D

92.
94. A
96.

B

98. A
100.

93.

B

95.

B

97.

C


99.

C

101. A

C

102. A

103. A

104.

105.

D

106.

C

107.

108.

C

109. A


110.

C

111.

112. A

B

D

117. A
119.

B

120.

D

123.
D

124.

D

121. A


122. A
126.

C

115. A

C

116.

B
D

125.

C

127.
129.

128. A
130.

C

113.

114.
118.


D

B

2

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×