Tải bản đầy đủ (.pdf) (13 trang)

Đê ôn thptqg 6 (51)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.97 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d ⊥ P.
Câu 2. Cho
− 2i|. Tính |z|.
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 √
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
x+2
Câu 3. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 3.
D. 2.
2x + 1


Câu 4. Tính giới hạn lim
x→+∞ x + 1
1
D. 2.
A. −1.
B. 1.
C. .
2
Câu 5. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 6. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 1.
C. .
2
2
Z 3
x
a
Câu 7. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và

d

0 4+2 x+1
P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.

D. 2.
a
là phân số tối giản. Giá trị
d
D. P = 28.

Câu 8. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+3
c+2
c+1
c+2
1

Câu 9. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 10. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.
C. −1.

D. 2.
un
Câu 11. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 12. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. .
C. − .

D. 2.
2
2
Câu 13. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. −e.
D. − .
e
e
2e
Câu 14. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.
3
2
Trang 1/10 Mã đề 1



Câu 15. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
12
24
6
Câu 16. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 17. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 =
.
C. y0 = 2 x . ln x.

D. y0 = 2 x . ln 2.
A. y0 = x
2 . ln x
ln 2
x−2 x−1
x
x+1
Câu 18. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).
log 2x

Câu 19. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 =

.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
x
x ln 10
2x ln 10
2x3 ln 10
Câu 20. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
C. 2.
D. 2.
A. 1.
B. 10.
Câu 21. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 5
a3
a3 15
a3 15
A.
.
B.
.

C.
.
D.
.
25
3
25
5
Câu 22. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 22.
D. 23.
2

Câu 23. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B. √ .
C. 3 .
e
2e
2 e

D.


1
.
e2

Câu 24. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 25. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.

C. 5.

Câu 26. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e + 1.
C. 2e.
e
Câu 27. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.

D. 0.
D. 3.
D. m , 0.

Trang 2/10 Mã đề 1


Câu 28.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 29. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−∞; 1).


D. (−1; 1).

2
Câu 30. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ±1.
C. m = ± 2.
D. m = ± 3.

Câu 31. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 4 mặt.
D. 10 mặt.
1 − xy
Câu 32. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
18 11 − 29
9 11 − 19
9 11 + 19
. B. Pmin =
.

C. Pmin =
. D. Pmin =
.
A. Pmin =
9
3
21
9
x+1
Câu 33. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
2
3
6
Câu 34. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
a 3
a3 3

a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
6
12
4
12
Câu 35. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.
B.
.
C. 2.
D. 2 13.
13
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối


√ chóp S .ABCD là 3 √
3
3

a
a
2a
3
3
3
A. a3 3.
B.
.
C.
.
D.
.
3
6
3
1
Câu 37. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).

Câu 38. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √

khối chóp S .ABCD là

3

a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
12
4
3
Câu 39.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.

D. .
4
12
2
4
Câu 40. Phát biểu nào sau đây là sai?
1
A. lim qn = 1 với |q| > 1.
B. lim k = 0 với k > 1.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim √ = 0.
n
Trang 3/10 Mã đề 1


Câu 41. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).

D. (−∞; +∞).

x2
Câu 42. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.

B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = .
e
e
Câu 43. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 1.

D. 3.

Câu 44. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.
D. −2.
!
!
!
4x
1
2
2016
Câu 45. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017

2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
n−1
Câu 46. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
D. 0.
Câu 47. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Câu 48. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 2.

D. 1.

Câu 49. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?

A. Có vơ số.
B. Khơng có.
C. Có hai.
D. Có một.
Câu 50. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 51. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 52.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =

f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

Trang 4/10 Mã đề 1


Câu 53. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Tăng lên n lần.
D. Khơng thay đổi.
Câu 54. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 2
a3 6
A.
.

B.
.
C.
.
D.
.
48
24
16
48

Câu 55. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. −3.
C. − .
D. 3.
A. .
3
3
Câu 56. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. −7, 2.

D. 7, 2.

Câu 57. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.

x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 58. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 59. Tính lim
A. 0.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 1.

C.

7
.

3
4

Câu 60. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
2
5
5
A. a 3 .
B. a 8 .
C. a 3 .

√3

2
D. - .
3
a2 bằng
7

D. a 3 .

Câu 61. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
x−2
Câu 62. Tính lim
x→+∞ x + 3

2
A. −3.
B. 1.
C. 2.
D. − .
3
x−3
Câu 63. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.
C. 0.
D. +∞.
1
Câu 64. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 65. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2

A. 1.
B. 3.
C. −8.
2
x − 3x + 3
Câu 67. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 0.
C. x = 2.

Câu 66. [1-c] Giá trị biểu thức

D. 4.
D. x = 3.
Trang 5/10 Mã đề 1


Câu 68. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 5.
C. 25.
D. 5.
5
Câu 69.
các khẳng định sau, khẳng định nào sai?
Z Trong

u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.


Câu 70. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 71. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
a3 3
5a3 3
4a3 3
2a 3

.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 72. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3
3

a 6
a 15
a
5
.
B.
.
C. a3 6.
.
A.

D.
3
3
3
Câu 73. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 10.
D. ln 14.
Câu 74. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 75. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

C. (I) và (II).

D. (I) và (III).


Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 77. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.
C. 3.
D. 2.
Câu 78. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.

C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
Trang 6/10 Mã đề 1


d = 120◦ .
Câu 79. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.
C. 2a.
D. 4a.
A.
2
Câu 80. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
8
4
12
4
Câu 81. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 82. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 46cm3 .
D. 27cm3 .
Câu 83. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
9t
Câu 84. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. 1.

D. Vơ số.
Câu 85. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.

D. Bốn mặt.

Câu 86. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Câu 87. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {5; 3}.
D. {3; 4}.
Câu 88. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞


A. lim [ f (x)g(x)] = ab.
x→+∞

C. lim [ f (x) + g(x)] = a + b.
x→+∞

B. lim [ f (x) − g(x)] = a − b.
x→+∞
f (x) a
D. lim
= .
x→+∞ g(x)
b

Câu 89. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
Câu 90. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).

(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

Câu 91. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
C. 30.

D. 12.
Trang 7/10 Mã đề 1


Câu 92. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. 2
.
B. √
.
C. √
.
D. √

.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 93. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

Câu 94. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 2.

C. 3.

D. Khối tứ diện đều.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 95. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.

B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
π
Câu 96. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 4.
D. T = 3 3 + 1.
A. T = 2.
B. T = 2 3.
Câu 97. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.

C. 20.

Câu 99. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

C. 2.

D. 8.
q
2
Câu 98. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0

√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].

Câu 100. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.

D. 4.
D. 5 mặt.

d = 30◦ , biết S BC là tam giác đều
Câu 101. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.

C.
.
D.
.
16
13
9
26
Câu 102. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
1
Câu 103. [1] Giá trị của biểu thức log √3
bằng
10
1
A. − .
B. −3.
3
Câu 104. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
x+2
Câu 105. Tính lim
bằng?
x→2
x
A. 2.

B. 3.

C.

1
.
3

D. 3.

C. 10.

D. 6.

C. 1.

D. 0.

3

Câu 106. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e2 .
D. e5 .
Câu 107. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.

B. f (x) xác định trên K.

D. f (x) có giá trị lớn nhất trên K.
Trang 8/10 Mã đề 1


 π
Câu 108. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π3
B.
C. 1.
D.
e .
e .
A. e .
2
2
2
Câu 109. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 110. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.

B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Câu 111. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 68.
C. 5.
D. 34.
A.
17
Câu 112. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
.
B.
.
C.
.
D.

.
A.
48
8
24
24
Câu 113. Cho hàm số y = x3 − 2x2 + x +!1. Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
3
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 114.
có nghĩa
√ Biểu thức nào sau đây không
−3
A.
−1.
B. (−1)−1 .


C. (− 2)0 .


D. 0−1 .

Câu 115. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 2.
cos n + sin n
Câu 116. Tính lim
n2 + 1
A. 0.
B. −∞.

C. 1.

D. 3.

C. +∞.

D. 1.

1
5

Câu 117. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R \ {1}.
B. D = R.

C. D = (−∞; 1).

D. D = (1; +∞).

Câu 118. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.

D. D = R \ {0}.

C. D = R.

Trang 9/10 Mã đề 1


Câu 119. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

α α
α
αβ
α β
D. aα+β = aα .aβ .
A. a b = (ab) .
B. a = (a ) .
C. β = a β .
a
Câu 120. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.

C. −2 + 2 ln 2.
D. e.

Câu 121.√Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. V = 2a3 .
C. V = a3 2.
D. 2a3 2.
3
Câu 122. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
3
2
Câu 123. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
B. −3 + 4 2.
C. 3 − 4 2.
A. −3 − 4 2.


D. 3 + 4 2.

Câu 124. Cho z √

là nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P =
.
B. P = 2i.
C. P = 2.
D. P =
.
2
2
Câu 125. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 126. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
8a3 3
8a3 3
4a3 3
a3 3
A.
.
B.
.

C.
.
D.
.
3
9
9
9
Câu 127. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (II) sai.
sai.

D. Câu (I) sai.

Câu 128. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C. 7.
D.
.
2
2

Câu 129. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
B.
.
C.
.
D.
.
A. a 3.
3
2
2
Câu 130. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 10/10 Mã đề 1


(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 2.


C. 0.

D. 1.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A
D

3.

4.

D
D

5.

C

6.


7.

C

8.

B

10.

B

9. A
11.

12. A

C
D

13.

14.

15. A

16.

17.
19.


D

B
C

18.
20. A

B
C

21.

C

23.

C

22.
D

25. A

24.

D

26.


D

27.

D

28. A

29.

D

30.

B

32.

B

34.

B

31.

B

33.


D

35.

B

36.

37.

B

38.

39. A
D

42.

43. A
45.

C

47.

D

49.


C

B

44.

D

46.

D

48.

D

50.

51.

B

52.

53.

B

54. A


55. A

56.

57. A

58. A

59.

D

60. A

61.

D

62.

65.

C

40. A

41.

63.


D

C
D

67. A
1

C
B
C

B

64.

C

66.

C

68.

C


69. A
71.


70.
B

73.

D

75.

74.

B
D

80. A

81.

82.

C

83. A

D

84. A
D


85.

86.

D

91.

B

88.

B

89.
C

D

90.

C

92.

C
D

94.


93. A
D

95.
97.

96.

C

98. A

C

99.
101.

B

78.

D

79. A

87.

72.
76. A


C

77.

C

D

100.

C

102.

B

D

103. A

104.

105. A

106.

D

108.


D

107.

C

109.

D

110. A

111. A
113.

C

112.

D

114.

D

115.

D

116. A


117.

D

118.

119.

C

120.

C

121.

B

D

D

122.

C
C

123.


B

124.

125.

B

126.

B

127.

B

128.

B

129.

B

130.

B

2




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×