Tải bản đầy đủ (.doc) (100 trang)

GIÁO TRÌNH THÔNG TIN DI ĐỘNG THẾ HỆ BA 3g

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.99 MB, 100 trang )

LỜI NÓI ĐẦU
Ngày này thông tin di động là ngành công nghiệp viễn thông phát triển nhanh
nhất với con số thuê bao đã đạt đến 3,6 tỷ tính đến cuối năm 2008. Khởi nguồn từ dịch
vụ thoại đắt tiền cho một số ít người đi xe, đến nay với sự ứng dụng ngày càng rộng rãi
các thiết bị thông tin di động thể hệ ba, thông tin di động có thể cung cấp nhiều hình
loại dịch vụ đòi hỏi tốc độ số liệu cao cho người sử dụng kể cả các chức năng camera,
MP3 và PDA. Với các dịch vụ đòi hỏi tốc độ cao ngày các trở nên phổ biến này, nhu
cầu 3G cũng như phát triển nó lên 4G ngày càng trở nên cấp thiết.
ITU đã đưa ra đề án tiêu chuẩn hoá hệ thống thông tin di động thế hệ ba với tên
gọi IMT-2000 để đạt được các mục tiêu chính sau đây:
√ Tốc độ truy nhập cao để đảm bảo các dịch vụ băng rộng như truy nhập internet
nhanh hoặc các ứng dụng đa phương tiện, do yêu cầu ngày càng tăng về các
dịch vụ này.
√ Linh hoạt để đảm bảo các dịch vụ mới như đánh số cá nhân toàn cầu và điện
thoại vệ tinh. Các tính năng này sẽ cho phép mở rộng đáng kể tầm phủ của các
hệ thống thông tin di động.
√ Tương thích với các hệ thống thông tin di động hiện có để đảm bảo sự phát
triển liên tục của thông tin di động .
Nhiều tiêu chuẩn cho hệ thống thông tin di động thế hệ ba IMT-2000 đã được
đề xuất, trong đó hai hệ thống WCDMA UMTS và cdma-2000 đã được ITU chấp
thuận và đã được đưa vào hoạt động. Các hệ thống này đều sử dụng công nghệ CDMA
điều này cho phép thực hiện tiêu chuẩn toàn thế giới cho giao diện vô tuyến của hệ
thống thông tin động thế hệ ba.
HSDPA (High Speech Downlink Packet Access: truy nhập gói đường xuống
tốc độ cao) là một mở rộng của các hệ thống 3G WCDMA UMTS đã có thể cung cấp
tốc độ lên đến 10 Mbps trên đường xuống. HSDPA là một chuẩn tăng cường của
3GPP-3G nhằm tăng dung lượng đường xuống bằng cách thay thế điều chế QPSK
trong 3G UMTS bằng 16QAM trong HSDPA. HSDPA hoạt động trên cơ sở kết hợp
ghép kênh theo thời gian (TDM) với ghép kênh theo mã và sử dụng thích ứng đường
truyền. Nó cũng đưa ra một kênh điều khiển riêng để đảm bảo tốc độ truyền dẫn số
liệu. Các kỹ thuật tương tự cũng được áp dụng cho đường lên trong chuẩn HSUPA


(High Speech Uplink Packet Access). Hai công nghệ truy nhập HSDPA và HSUPA
được gọi chung là HSPA (High Speed Packet Data). Để làm cho công nghệ 3GPP
UTRA/UTRAN mang tính cạnh tranh hơn nữa (chủ yếu là để cạnh tranh với các công
nghệ mới của 3GPP2 và WiMAX), 3GPP quyết định phát triển E-UTRA và E-
UTRAN (E: Elvolved ký hiệu cho phát triển) còn được gọi là siêu 3G (Super-3G) hay
LTE (Long Term Evolution) mà thực chất là giai đoạn đầu 4G. Công việc phát triển sẽ
tiến hành trong 10 năm và sau đó như là sự phát triển dài hạn (LTE: Long Term
Evolution) của công nghệ truy nhập vô tuyến 3GPP. Trong giai đoạn này tốc độ số liệu
đạt được 30-100Mbps với băng thông 20MHz. Tiếp sau LTE, IMT-Adv (IMT tiên
tiến) sẽ được phát triển, đây sẽ là thời kỳ phát triển của 4G với tốc độ từ 100 đến 1000
Mbps và băng thông 100MHz. Hình L.1 cho thấy viễn cảnh của thông tin di động 4G
về khả năng đáp ứng tốc độ chuyển động và và tốc độ truyền số liệu.
TS. Nguyễn Phạm Anh Dũng
1
B3G: Broad Band 3G: 3G băng rộng
WLAN: Wirless Local Area Network: Mạng nội vùng không dây
BWA: Broad Band Wirless Access: truy nhập không dây băng rộng
Hình L.1. Viễn cảnh thông tin di động 4G theo khả năng hỗ trợ tốc độ chuyển
động và tốc độ truyền số liệu
Hiện nay tai Việt Nam băng tần I dành cho WCDMA đã được chia là bốn khe
và được cấp phát cho bốn nhà khai thác: Viettel, VMS, GPC, EVN+HT. Trong các
năm tới 3GWCDMA UMTS sẽ được triển khai trên băng tần này.
Bài giảng “Giới thiệu công nghệ 3G WCDMA UMTS” nhằm cung cấp các khái
niệm cơ bản về công nghệ 3G WCDMA UMTS cho các cán bộ Tổng Công ty Viễn
Thông Quân Đội (Viettel).
Bài giảng bao gồm bốn chương. Chương đầu trình bày khái quát chung về sự
phát triển của các hệ thống thông tin di động lên 4G, kiến trúc chung của một mạng
3G; các kiến trúc R3, R4, R5 và R6 của mạng thông tin di động 3G WCDMA UMTS.
Chương hai trình bầy đa truy nhập CDMA và các kỹ thuật liên quan được áp dụng cho
WCDMA. Chương ba giới thiệu giao diện vô tuyến cả WCDMA. Chương bốn giới

thiêu công nghệ đa truy nhập tốc độ cao HSPA
Các chương của tài liệu này đều được kết cấu theo modul để học viên dễ học
học. Mỗi chương đều có phần giới thiệu chung, nội dung và tổng kết.

Hà Đông ngày 12 tháng 6 năm 2009
Tác giả
TS. Nguyễn Phạm Anh Dũng
2
MỤC LỤC
Ch ng 1ươ 5
T NG QUAN M NG 3G WCDMA UMTSỔ Ạ 5
1.1. GI I THI U CHUNGỚ Ệ 5
1.2. L TRÌNH PHÁT TRI N THÔNG TIN DI NG LÊN 4GỘ Ể ĐỘ 5
1.3. KI N TRÚC CHUNG C A M T H TH NG THÔNG TIN DI NG 3GẾ Ủ Ộ Ệ Ố ĐỘ
7
1.4. CHUY N M CH KÊNH (CS), CHUY N M CH GÓI (PS), D CH V Ể Ạ Ể Ạ Ị Ụ
CHUY N M CH KÊNH VÀ D CH V CHUY N M CH GÓI.Ể Ạ Ị Ụ Ể Ạ 8
1.5. CÁC LO I L U L NG VÀ D CH V C 3GWCDMA UMTS H Ạ Ư ƯỢ Ị ỤĐƯỢ Ỗ
TR Ợ 11
1.6. KI N TRÚC 3G WCDMA UMTS R3 Ế 12
1.7. KI N TRÚC 3G WCDMA UMTS R4Ế 19
1.8. KI N TRÚC 3G WCDMA UMTS R5 v R6Ế à 21
1.9. CHI N L C D CH CHUY N T GSM SANG UMTSẾ ƯỢ Ị Ể Ừ 23
1.10. C U HÌNH A LÝ C A H TH NG THÔNG TIN DI NG 3GẤ ĐỊ Ủ Ệ Ố ĐỘ 26
1.11. T NG K TỔ Ế 29
Ch ng 2ươ 29
CÔNG NGH A TRUY NH P C A WCDMAỆ Đ Ậ Ủ 29
2.1. GI I THI U CHUNGỚ Ệ 30
2.2. TR I PH VÀ A TRUY NH P PHÂN CHIA THEO MÃẢ Ổ Đ Ậ 30
2.3. I U KHI N CÔNG SU TĐ Ề Ể Ấ 34

2.4. CHUY N GIAO TRONG H TH NG CDMAỂ Ệ Ố 34
2.5. MÁY THU PHÂN T P A NG HAY MÁY THU RAKEẬ Đ ĐƯỜ 36
2.6. CÁC MÃ TR I PH S D NG TRONG WCDMAẢ Ổ Ử Ụ 37
2.7. TR I PH VÀ I U CH NG LÊNẢ Ổ Đ Ề ẾĐƯỜ 39
2.8. TR I PH VÀ I U CH NG XU NGẢ Ổ Đ Ề ẾĐƯỜ Ố 41
2.9. T NG K TỔ Ế 44
Ch ng 3ươ 45
GIAO DI N VÔ TUY N C A WCDMA UMTSỆ Ế Ủ 45
3.1. GI I THI U CHUNGỚ Ệ 45
3.2. M UỞĐẦ 45
3.3. KI N TRÚC NG N X P GIAO TH C C A GIAO DI N VÔ TUY N Ế Ă Ế Ứ Ủ Ệ Ế
WCDMA/FDD 46
3.4. CÁC THÔNG S L P V T LÝ VÀ QUY HO CH T N SỐ Ớ Ậ Ạ Ầ Ố 48
3.5. CÁC KÊNH C A WCDMAỦ 51
3.6. C U TRÚC KÊNH V T LÝ RIÊNGẤ Ậ 59
3.7. S T NG QUÁT MÁY PHÁT VÀ MÁY THU WCDMAƠĐỒ Ổ 60
3.8. PHÂN T P PHÁTẬ 61
3.9. I U KHI N CÔNG SU T TRONG WCDMAĐ Ề Ể Ấ 63
3.10. CÁC KI U CHUY N GIAO VÀ CÁC S KI N BÁO CÁO TRONG Ể Ể Ự Ệ
WCDMA 66
3.11. CÁC THÔNG S MÁY THU VÀ MÁY PHÁT VÔ TUY N C A UEỐ Ế Ủ 68
3.12. AMR CODEC CHO W-CDMA 68
3.13. T NG K TỔ Ế 69
Ch ng 4ươ 70
TS. Nguyễn Phạm Anh Dũng
3
TRUY NH P GÓI T C CAO (HSPA)Ậ Ố ĐỘ 70
4.1. GI I THI U CHUNGỚ Ệ 70
4.2. T NG QUAN TRUY NH P GÓI T C CAO (HSPA)Ổ Ậ Ố ĐỘ 70
4.3. KI N TRÚC NG N X P GIAO TH C GIAO DI N VÔ TUY N HSPA Ế Ă Ế Ứ Ệ Ế

CHO S LI U NG I S D NGỐ Ệ ƯỜ Ử Ụ 71
4.4. TRUY NH P GÓI T C CAO NG XU NG (HSDPA)Ậ Ố ĐỘ ĐƯỜ Ố 73
4.5. TRUY NH P GÓI T C CAO NG LÊN (HSUPA)Ậ Ố ĐỘ ĐƯỜ 84
4.6. CHUY N GIAO TRONG HSDPA Ể 90
4.7. T NG K TỔ Ế 93
Thu t ng v vi t t tậ ữ à ế ắ 95
Tài liệu tham khảo………………………………………………………………… 100
TS. Nguyễn Phạm Anh Dũng
4
Chương 1
TỔNG QUAN MẠNG 3G WCDMA UMTS
1.1. GIỚI THIỆU CHUNG
1.1.1. Mục đích chương
• Hiểu lộ trình phát triển thông tin di động lên 4G
• Hiểu được kiến trúc tổng quát của một mạng thông tin di động 3G.
• Hiểu các kiến trúc mạng 3G WCDMA UMTS: R3, R4 và R5 và chiến lược
chuyển dịch GSM lên 3G UMTS
1.1.2. Các chủ đề được trình bầy trong chương
• Lộ trình phát triển các công nghệ thông tin di động lên 4G
• Kiến trúc chung của một mạng thông tin di động 3G
• Các khái niệm về các dịch vụ chuyển mạch kênh và các dịch vụ chuyển mạch
gói
• Các loại lưu lượng và các loại dịch vù mà 3G WCDMA UMTS có thể hỗ trợ
• Kiến trúc 3G WCDMA UMTS qua các phát hành khác nhau: R3, R4, R5 và R6
• Chiến lược chuyển dịch GSM lên 3G UMTS
1.1.3. Hướng dẫn
• Học kỹ các tư liệu được trình bầy trong chương
• Tham khảo thêm các tái liệu tham khảo cuối tài liệu
1.2. LỘ TRÌNH PHÁT TRIỂN THÔNG TIN DI ĐỘNG LÊN 4G
Lộ trình phát triển các công nghệ thông tin di động lên 4G được cho trên hình

1.1 và lộ trình nghiên cứu phát triển trong 3GPP được cho trên hình 1.2
TS. Nguyễn Phạm Anh Dũng
5
AMPS: Advanced Mobile Phone System
TACS: Total Access Communication System
GSM: Global System for Mobile Telecommucations
WCDMA: Wideband Code Division Multiple Access
EVDO: Evolution Data Only
IMT: International Mobile Telecommnications
IEEE: Institute of Electrical and Electtronics Engineers
WiFi: Wireless Fidelitity
WiMAX: Worldwide Interoperability for Microwave Access
LTE: Long Term Evolution
UMB: Untra Mobile Broadband
Hình 1.1. Lộ trình phát triển các công nghệ thông tin di động lên 4G
Hình 1.2. Lịch trình nghiên cứu phát triển trong 3GPP
Hình 1.3. cho thấy lộ trình tăng tốc độ truyền số liệu trong các phát hành của 3GPP
TS. Nguyễn Phạm Anh Dũng
6
Hình 1.3. Lộ trình tăng tốc độ truyền số liệu trong các phát hành của 3GPP
1.3. KIẾN TRÚC CHUNG CỦA MỘT HỆ THỐNG THÔNG TIN DI
ĐỘNG 3G
Mạng thông tin di động (TTDĐ) 3G lúc đầu sẽ là mạng kết hợp giữa các vùng
chuyển mạch gói (PS) và chuyển mạch kênh (CS) để truyền số liệu gói và tiếng. Các
trung tâm chuyển mạch gói sẽ là các chuyển mạch sử dụng công nghệ ATM. Trên
đường phát triển đến mạng toàn IP, chuyển mạch kênh sẽ dần được thay thế bằng
chuyển mạch gói. Các dịch vụ kể cả số liệu lẫn thời gian thực (như tiếng và video)
cuối cùng sẽ được truyền trên cùng một môi trường IP bằng các chuyển mạch gói.
Hình 1.4 dưới đây cho thấy thí dụ về một kiến trúc tổng quát của TTDĐ 3G kết hợp cả
CS và PS trong mạng lõi.

RAN: Radio Access Network: mạng truy nhập vô tuyến
BTS: Base Transceiver Station: trạm thu phát gốc
BSC: Base Station Controller: bộ điều khiển trạm gốc
RNC: Rado Network Controller: bộ điều khiển trạm gốc
CS: Circuit Switch: chuyển mạch kênh
PS: Packet Switch: chuyển mạch gói
SMS: Short Message Servive: dịch vụ nhắn tin
Server: máy chủ
PSTN: Public Switched Telephone Network: mạng điện thoại chuyển mạch công cộng
PLMN: Public Land Mobile Network: mang di động công cộng mặt đất
Hình 1.4. Kiến trúc tổng quát của một mạng di động kết hợp cả CS và PS
TS. Nguyễn Phạm Anh Dũng
7
Các miền chuyển mạch kênh (CS) và chuyển mạch gói (PS) được thể hiện bằng
một nhóm các đơn vị chức năng lôgic: trong thực hiện thực tế các miền chức năng
này được đặt vào các thiết bị và các nút vật lý. Chẳng hạn có thể thực hiện chức năng
chuyển mạch kênh CS (MSC/GMSC) và chức năng chuyển mạch gói (SGSN/GGSN)
trong một nút duy nhất để được một hệ thống tích hợp cho phép chuyển mạch và
truyền dẫn các kiểu phương tiện khác nhau: từ lưu lượng tiếng đến lưu lượng số liệu
dung lượng lớn.
3G UMTS (Universal Mobile Telecommunications System: Hệ thống thông tin
di động toàn cầu) có thể sử dụng hai kiểu RAN. Kiểu thứ nhất sử dụng công nghệ đa
truy nhập WCDMA (Wide Band Code Devision Multiple Acces: đa truy nhập phân
chia theo mã băng rộng) được gọi là UTRAN (UMTS Terrestrial Radio Network:
mạng truy nhập vô tuyến mặt đất của UMTS). Kiểu thứ hai sử dụng công nghệ đa truy
nhập TDMA được gọi là GERAN (GSM EDGE Radio Access Network: mạng truy
nhập vô tuyến dưa trên công nghệ EDGE của GSM). Tài liệu chỉ xét đề cập đến công
nghệ duy nhất trong đó UMTS được gọi là 3G WCDMA UMTS
1.4. CHUYỂN MẠCH KÊNH (CS), CHUYỂN MẠCH GÓI (PS), DỊCH VỤ
CHUYỂN MẠCH KÊNH VÀ DỊCH VỤ CHUYỂN MẠCH GÓI.

3G cung cấp các dịch vụ chuyển mạch kênh như tiếng, video và các dịch vụ
chuyển mạch gói chủ yếu để truy nhập internet.
Chuyển mạch kênh (CS: Circuit Switch) là sơ đồ chuyển mạch trong đó thiết
bị chuyển mạch thực hiện các cuộc truyền tin bằng cách thiết lập kết nối chiếm một tài
nguyên mạng nhất định trong toàn bộ cuộc truyền tin. Kết nối này là tạm thời, liên tục
và dành riêng. Tạm thời vì nó chỉ được duy trì trong thời gian cuộc gọi. Liên tục vì nó
được cung cấp liên tục một tài nguyên nhất định (băng thông hay dung lượng và công
suất) trong suốt thời gian cuộc gọi. Dành riêng vì kết nối này và tài nguyên chỉ dành
riêng cho cuộc gọi này. Thiết bị chuyển mạch sử dụng cho CS trong các tổng đài của
TTDĐ 2G thực hiện chuyển mạch kênh trên trên cơ sở ghép kênh theo thời gian trong
đó mỗi kênh có tốc độ 64 kbps và vì thế phù hợp cho việc truyền các ứng dụng làm
việc tại tốc độ cố định 64 kbps (chẳng hạn tiếng được mã hoá PCM).
Chuyển mạch gói (PS: Packet Switch) là sơ đồ chuyển mạch thực hiện phân
chia số liệu của một kết nối thành các gói có độ dài nhất định và chuyển mạch các gói
này theo thông tin về nơi nhận được gắn với từng gói và ở PS tài nguyên mạng chỉ bị
chiếm dụng khi có gói cần truyền. Chuyển mạch gói cho phép nhóm tất cả các số liệu
của nhiều kết nối khác nhau phụ thuộc vào nội dung, kiểu hay cấu trúc số liệu thành
các gói có kích thước phù hợp và truyền chúng trên một kênh chia sẻ. Việc nhóm các
số liệu cần truyền được thực hiện bằng ghép kênh thống kê với ấn định tài nguyên
động. Các công nghệ sử dụng cho chuyển mạch gói có thể là Frame Relay, ATM hoặc
IP.
Hình 1.5. cho thấy cấu trúc của CS và PS.
TS. Nguyễn Phạm Anh Dũng
8
Hình 1.5. Chuyển mạch kênh (CS) và chuyển mạch gói (PS).
Dịch vụ chuyển mạch kênh (CS Service) là dịch vụ trong đó mỗi đầu cuối
được cấp phát một kênh riêng và nó toàn quyển sử dụng tài nguyên của kênh này trong
thời gian cuộc gọi tuy nhiên phải trả tiền cho toàn bộ thời gian này dù có truyền tin
hay không. Dịch vụ chuyển mạch kênh có thể được thực hiện trên chuyển mạch kênh
(CS) hoặc chuyển mạch gói (PS). Thông thường dịch vụ này được áp dụng cho các

dịch vụ thời gian thực (thoại).
Dịch vụ chuyển mạch gói (PS Service) là dịch vụ trong đó nhiều đầu cuối cùng
chia sẻ một kênh và mỗi đầu cuối chỉ chiếm dụng tài nguyên của kênh này khi có
thông tin cần truyền và nó chỉ phải trả tiền theo lượng tin được truyền trên kênh. Dịch
vụ chuyển mạch gói chỉ có thể được thực hiện trên chuyển mạch gói (PS). Dịch vụ này
rất rất phù hợp cho các dịch vụ phi thời gian thực (truyền số liệu), tuy nhiên nhờ sự
phát triển của công nghệ dịch vụ này cũng được áp dụng cho các dịch vụ thời gian
thực (VoIP).
Chuyển mạch gói có thể thực hiện trên cơ sở ATM hoặc IP.
ATM (Asynchronous Transfer Mode: chế độ truyền dị bộ) là công nghệ thực
hiện phân chia thông tin cần phát thành các tế bào 53 byte để truyền dẫn và chuyển
mạch. Một tế bào ATM gồm 5 byte tiêu đề (có chứa thông tin định tuyến) và 48 byte
tải tin (chứa số liệu của người sử dụng). Thiết bị chuyển mạch ATM cho phép chuyển
mạch nhanh trên cơ sở chuyển mạch phần cứng tham chuẩn theo thông tin định tuyến
tiêu đề mà không thực hiện phát hiện lỗi trong từng tế bào. Thông tin định tuyến trong
tiêu đề gồm: đường dẫn ảo (VP) và kênh ảo (VC). Điều khiển kết nối bằng VC (tương
ứng với kênh của người sử dụng) và VP (là một bó các VC) cho phép khai thác và
quản lý có khả năng mở rộng và có độ linh hoạt cao. Thông thường VP được thiết lập
trên cơ sở số liệu của hệ thống tại thời điểm xây dựng mạng. Việc sử dụng ATM trong
mạng lõi cho ta nhiều cái lợi: có thể quản lý lưu lượng kết hợp với RAN, cho phép
thực hiện các chức năng CS và PS trong cùng một kiến trúc và thực hiện khai thác
cũng như điều khiển chất lượng liên kết.
TS. Nguyễn Phạm Anh Dũng
9
Chuyển mạch hay Router IP (Internet Protocol) cũng là một công nghệ thực
hiện phân chia thông tin phát thành các gói được gọi là tải tin (Payload). Sau đó mỗi
gói được gán một tiêu đề chứa các thông tin địa chỉ cần thiết cho chuyển mạch. Trong
thông tin di động do vị trí của đầu cuối di động thay đổi nên cần phải có thêm tiêu đề
bổ sung để định tuyến theo vị trí hiện thời của máy di động. Quá trình định tuyến này
được gọi là truyền đường hầm (Tunnel). Có hai cơ chế để thực hiện điều này: MIP

(Mobile IP: IP di động) và GTP (GPRS Tunnel Protocol: giao thức đường hầm
GPRS). Tunnel là một đường truyền mà tại đầu vào của nó gói IP được đóng bao vào
một tiêu đề mang địa chỉ nơi nhận (trong trường hợp này là địa chỉ hiện thời của máy
di động) và tại đầu ra gói IP được tháo bao bằng cách loại bỏ tiêu đề bọc ngoài (hình
1.6).
Hình 1.6. Đóng bao và tháo bao cho gói IP trong quá trình truyền tunnel
Hình 1.7 cho thấy quá trình định tuyến tunnel (chuyển mạch tunnel) trong hệ
thống 3G UMTS từ tổng đài gói cổng (GGSN) cho một máy di động (UE) khi nó
chuyển từ vùng phục vụ của một tổng đài gói nội hạt (SGSN1) này sang một vùng
phục vụ của một tổng đài gói nội hạt khác (SGSN2) thông qua giao thức GTP.
Hình 1.7. Thiết lập kết nối tunnel trong chuyển mạch tunnel
Vì 3G WCDMA UMTS được phát triển từ những năm 1999 khi mà ATM là
công nghệ chuyển mạch gói còn ngự trị nên các tiêu chuẩn cũng được xây dựng trên
công nghệ này. Tuy nhiên hiện nay và tương lai mạng viễn thông sẽ được xây dựng
trên cơ sở internet vì thế các chuyển mạch gói sẽ là chuyển mạch hoặc router IP.
TS. Nguyễn Phạm Anh Dũng
10
1.5. CÁC LOẠI LƯU LƯỢNG VÀ DỊCH VỤ ĐƯỢC 3GWCDMA UMTS
HỖ TRỢ
Vì TTDĐ 3G cho phép truyền dẫn nhanh hơn, nên truy nhập Internet và lưu
lượng thông tin số liệu khác sẽ phát triển nhanh. Ngoài ra TTDĐ 3G cũng được sử
dụng cho các dịch vụ tiếng. Nói chung TTDĐ 3G hỗ trợ các dịch vụ tryền thông đa
phương tiện. Vì thế mỗi kiểu lưu lượng cần đảm bảo một mức QoS nhất định tuỳ theo
ứng dụng của dịch vụ. QoS ở W-CDMA được phân loại như sau:
Loại hội thoại (Conversational, rt): Thông tin tương tác yêu cầu trễ nhỏ (thoại chẳng
hạn).
Loại luồng (Streaming, rt): Thông tin một chiều đòi hỏi dịch vụ luồng với trễ nhỏ
(phân phối truyền hình thời gian thực chẳng hạn: Video Streaming)
Loại tương tác (Interactive, nrt): Đòi hỏi trả lời trong một thời gian nhất định và tỷ lệ
lỗi thấp (trình duyệt Web, truy nhập server chẳng hạn).

Loại nền (Background, nrt): Đòi hỏi các dịch vụ nỗ lực nhất được thực hiện trên nền
cơ sở (e-mail, tải xuống file: Video Download)
Môi trường hoạt động của 3WCDMA UMTS được chia thành bốn vùng với các
tốc độ bit R
b
phục vụ như sau:
• Vùng 1: trong nhà, ô pico, R
b
≤ 2Mbps
• Vùng 2: thành phố, ô micro, R
b
≤ 384 kbps
• Vùng 2: ngoại ô, ô macro, R
b
≤ 144 kbps
• Vùng 4: Toàn cầu, R
b
= 12,2 kbps
Có thể tổng kết các dịch vụ do 3GWCDMA UMTS cung cấp ở bảng 1.1.
Bảng 1.1. Phân loại các dịch vụ ở 3GWDCMA UMTS
Kiểu Phân loại Dịch vụ chi tiết
Dịch vụ di
động
Dịch vụ di động Di động đầu cuối/di động cá nhân/di động dịch
vụ
Dịch vụ thông tin
định vị
- Theo dõi di động/ theo dõi di động thông
minh
Dịch vụ âm thanh - Dịch vụ âm thanh chất lượng cao (16-64 kbps)

- Dịch vụ truyền thanh AM (32-64 kbps)
- Dịch vụ truyền thanh FM (64-384 kbps)
Dịch vụ
viễn thông
Dịch vụ số liệu - Dịch vụ số liệu tốc độ trung bình (64-144
kbps)
- Dịch vụ số liệu tốc độ tương đối cao (144
kbps- 2Mbps)
- Dịch vụ số liệu tốc độ cao (≥ 2Mbps)
Dịch vụ đa - Dịch vụ Video (384 kbps)
TS. Nguyễn Phạm Anh Dũng
11
Kiểu Phân loại Dịch vụ chi tiết
phương tiện - Dịch vụ hình chuyển động (384kbps- 2 Mbps)
- Dịch vụ hình chuyển động thời gian thực
(≥ 2 Mbps)
Dịch vụ
Internet
Dịch vụ Internet
đơn giản
Dịch vụ truy nhập Web (384 kbps-2Mbps)
Dịch vụ Internet
thời gian thực
Dịch vụ Internet (384 kbps-2Mbps)
Dịch vụ internet
đa phương tiện
Dịch vụ Website đa phương tiện thời gian thực
(≥ 2Mbps)
3G WCDMA UMTS được xây dựng theo ba phát hành chính được gọi là R3,
R4, R5. Trong đó mạng lõi R3 và R4 bao gồm hai miền: miền CS (Circuit Switch:

chuyển mạch kênh) và miền PS (Packet Switch: chuyển mạch gói). Việc kết hợp này
phù hợp cho giai đoạn đầu khi PS chưa đáp ứng tốt các dịch vụ thời gian thực như
thoại và hình ảnh. Khi này miền CS sẽ đảm nhiệm các dịch vụ thoại còn số liệu được
truyền trên miền PS. R4 phát triển hơn R3 ở chỗ miền CS chuyển sang chuyển mạch
mềm vì thế toàn bộ mạng truyền tải giữa các nút chuyển mạch đều trên IP. Dưới đây
ta xét ba kiến trúc 3G WCDMA UMTS nói trên.
1.6. KIẾN TRÚC 3G WCDMA UMTS R3
WCDMA UMTS R3 hỗ trợ cả kết nối chuyển mạch kênh lẫn chuyển mạch gói:
đến 384 Mbps trong miền CS và 2Mbps trong miền PS. Các kết nối tốc độ cao này
đảm bảo cung cấp một tập các dich vụ mới cho người sử dụng di động giống như trong
các mạng điện thoại cố định và Internet. Các dịch vụ này gồm: điện thoại có hình (Hội
nghị video), âm thanh chất lượng cao (CD) và tốc độ truyền cao tại đầu cuối. Một tính
năng khác cũng được đưa ra cùng với GPRS là "luôn luôn kết nối" đến Internet.
UMTS cũng cung cấp thông tin vị trí tốt hơn và vì thế hỗ trợ tốt hơn các dịch vụ dựa
trên vị trí.
Một mạng UMTS bao gồm ba phần: thiết bị di động (UE: User Equipment),
mạng truy nhập vô tuyến mặt đất UMTS (UTRAN: UMTS Terrestrial Radio
Network), mạng lõi (CN: Core Network) (xem hình 1.8). UE bao gồm ba thiết bị: thiết
bị đầu cuối (TE), thiết bị di động (ME) và module nhận dạng thuê bao UMTS (USIM:
UMTS Subscriber Identity Module). UTRAN gồm các hệ thống mạng vô tuyến (RNS:
Radio Network System) và mỗi RNS bao gồm RNC (Radio Network Controller: bộ
điều khiển mạng vô tuyến) và các nút B nối với nó. Mạng lõi CN bao gồm miền
chuyển mạch kênh, chuyển mạch gói và HE (Home Environment: Môi trường nhà).
HE bao gồm các cơ sở dữ liệu: AuC (Authentication Center: Trung tâm nhận thực),
HLR (Home Location Register: Bộ ghi định vị thường trú) và EIR (Equipment Identity
Register: Bộ ghi nhận dạng thiết bị).
TS. Nguyễn Phạm Anh Dũng
12
Hình 1.8. Kiến trúc 3G WCDMA UMTS R3
1.6.1. Thiết bị người sử dụng (UE)

UE (User Equipment: thiết bị người sử dụng) là đầu cuối mạng UMTS của
người sử dụng. Có thể nói đây là phần hệ thống có nhiều thiết bị nhất và sự phát triển
của nó sẽ ảnh hưởng lớn lên các ứng dụng và các dịch vụ khả dụng. Giá thành giảm
nhanh chóng sẽ tạo điều kiện cho người sử dụng mua thiết bị của UMTS. Điều này đạt
được nhờ tiêu chuẩn hóa giao diện vô tuyến và cài đặt mọi trí tuệ tại các card thông
minh.
1.6.1.1. Các đầu cuối (TE)
Vì máy đầu cuối bây giờ không chỉ đơn thuần dành cho điện thoại mà còn cung
cấp các dịch vụ số liệu mới, nên tên của nó được chuyển thành đầu cuối. Các nhà sản
xuất chính đã đưa ra rất nhiều đầu cuối dựa trên các khái niệm mới, nhưng trong thực
tế chỉ một số ít là được đưa vào sản xuất. Mặc dù các đầu cuối dự kiến khác nhau về
kích thước và thiết kế, tất cả chúng đều có màn hình lớn và ít phím hơn so với 2G. Lý
do chính là để tăng cường sử dụng đầu cuối cho nhiều dịch vụ số liệu hơn và vì thế
đầu cuối trở thành tổ hợp của máy thoại di động, modem và máy tính bàn tay.
Đầu cuối hỗ trợ hai giao diện. Giao diện Uu định nghĩa liên kết vô tuyến (giao
diện WCDMA). Nó đảm nhiệm toàn bộ kết nối vật lý với mạng UMTS. Giao diện thứ
hai là giao diện Cu giữa UMTS IC card (UICC) và đầu cuối. Giao diện này tuân theo
tiêu chuẩn cho các card thông minh.
Mặc dù các nhà sản xuất đầu cuối có rất nhiều ý tưởng về thiết bị, họ phải tuân
theo một tập tối thiểu các định nghĩa tiêu chuẩn để các người sử dụng bằng các đầu
cuối khác nhau có thể truy nhập đến một số các chức năng cơ sở theo cùng một cách.
Các tiêu chuẩn này gồm:
• Bàn phím (các phím vật lý hay các phím ảo trên màn hình)
• Đăng ký mật khẩu mới
• Thay đổi mã PIN
• Giải chặn PIN/PIN2 (PUK)
TS. Nguyễn Phạm Anh Dũng
13
• Trình bầy IMEI
• Điều khiển cuộc gọi

Các phần còn lại của giao diện sẽ dành riêng cho nhà thiết kế và người sử dụng sẽ
chọn cho mình đầu cuối dựa trên hai tiêu chuẩn (nếu xu thế 2G còn kéo dài) là thiết kế
và giao diện. Giao diện là kết hợp của kích cỡ và thông tin do màn hình cung cấp (màn
hình nút chạm), các phím và menu.
1.6.1.2. UICC
UMTS IC card là một card thông minh. Điều mà ta quan tâm đến nó là dung
lượng nhớ và tốc độ bộ xử lý do nó cung cấp. Ứng dụng USIM chạy trên UICC.
1.6.1.3. USIM
Trong hệ thống GSM, SIM card lưu giữ thông tin cá nhân (đăng ký thuê bao)
cài cứng trên card. Điều này đã thay đổi trong UMTS, Modul nhận dạng thuê bao
UMTS được cài như một ứng dụng trên UICC. Điều này cho phép lưu nhiều ứng dụng
hơn và nhiều chữ ký (khóa) điện tử hơn cùng với USIM cho các mục đích khác (các
mã truy nhập giao dịch ngân hàng an ninh). Ngoài ra có thể có nhiều USIM trên cùng
một UICC để hỗ trợ truy nhập đến nhiều mạng.
USIM chứa các hàm và số liệu cần để nhận dạng và nhận thực thuê bao trong
mạng UMTS. Nó có thể lưu cả bản sao hồ sơ của thuê bao.
Người sử dụng phải tự mình nhận thực đối với USIM bằng cách nhập mã PIN.
Điểu này đảm bảo rằng chỉ người sử dụng đích thực mới được truy nhập mạng UMTS.
Mạng sẽ chỉ cung cấp các dịch vụ cho người nào sử dụng đầu cuối dựa trên nhận dạng
USIM được đăng ký.
1.6.2. Mạng truy nhập vô tuyến UMTS
UTRAN (UMTS Terrestrial Radio Access Network: Mạng truy nhập vô tuyến
mặt đất UMTS) là liên kết giữa người sử dụng và CN. Nó gồm các phần tử đảm bảo
các cuộc truyền thông UMTS trên vô tuyến và điều khiển chúng.
UTRAN được định nghĩa giữa hai giao diện. Giao diện Iu giữa UTRAN và CN,
gồm hai phần: IuPS cho miền chuyển mạch gói và IuCS cho miền chuyển mạch kênh;
giao diện Uu giữa UTRAN và thiết bị người sử dụng. Giữa hai giao diện này là hai
nút, RNC và nút B.
1.6.2.1. RNC
RNC (Radio Network Controller) chịu trách nhiệm cho một hay nhiều trạm gốc

và điều khiển các tài nguyên của chúng. Đây cũng chính là điểm truy nhập dịch vụ mà
UTRAN cung cấp cho CN. Nó được nối đến CN bằng hai kết nối, một cho miền
chuyển mạch gói (đến GPRS) và một đến miền chuyển mạch kênh (MSC).
TS. Nguyễn Phạm Anh Dũng
14
Một nhiệm vụ quan trọng nữa của RNC là bảo vệ sự bí mật và toàn vẹn. Sau
thủ tục nhận thực và thỏa thuận khóa, các khoá bảo mật và toàn vẹn được đặt vào
RNC. Sau đó các khóa này được sử dụng bởi các hàm an ninh f8 và f9.
RNC có nhiều chức năng logic tùy thuộc vào việc nó phục vụ nút nào. Người
sử dụng được kết nối vào một RNC phục vụ (SRNC: Serving RNC). Khi người sử
dụng chuyển vùng đến một RNC khác nhưng vẫn kết nối với RNC cũ, một RNC trôi
(DRNC: Drift RNC) sẽ cung cấp tài nguyên vô tuyến cho người sử dụng, nhưng RNC
phục vụ vẫn quản lý kết nối của người sử dụng đến CN. Vai trò logic của SRNC và
DRNC được mô tả trên hình 1.9. Khi UE trong chuyển giao mềm giữa các RNC, tồn
tại nhiều kết nối qua Iub và có ít nhất một kết nối qua Iur. Chỉ một trong số các RNC
này (SRNC) là đảm bảo giao diện Iu kết nối với mạng lõi còn các RNC khác (DRNC)
chỉ làm nhiệm vụ định tuyến thông tin giữa các Iub và Iur.
Chức năng cuối cùng của RNC là RNC điều khiển (CRNC: Control RNC). Mỗi
nút B có một RNC điều khiển chịu trách nhiệm cho các tài nguyên vô tuyến của nó.
Hình 1.9. Vai trò logic của SRNC và DRNC
1.6.2.2. Nút B
Trong UMTS trạm gốc được gọi là nút B và nhiệm vụ của nó là thực hiện kết
nối vô tuyến vật lý giữa đầu cuối với nó. Nó nhận tín hiệu trên giao diện Iub từ RNC
và chuyển nó vào tín hiệu vô tuyến trên giao diện Uu. Nó cũng thực hiện một số thao
tác quản lý tài nguyên vô tuyến cơ sở như "điều khiển công suất vòng trong". Tính
năng này để phòng ngừa vấn đề gần xa; nghĩa là nếu tất cả các đầu cuối đều phát cùng
một công suất, thì các đầu cuối gần nút B nhất sẽ che lấp tín hiệu từ các đầu cuối ở xa.
Nút B kiểm tra công suất thu từ các đầu cuối khác nhau và thông báo cho chúng giảm
công suất hoặc tăng công suất sao cho nút B luôn thu được công suất như nhau từ tất
cả các đầu cuối.

1.6.3. Mạng lõi
Mạng lõi (CN) được chia thành ba phần, miền PS, miền CS và HE. Miền PS
đảm bảo các dịch vụ số liệu cho người sử dụng bằng các kết nối đến Internet và các
mạng số liệu khác và miền CS đảm bảo các dịch vụ điện thoại đến các mạng khác
bằng các kết nối TDM. Các nút B trong CN được kết nối với nhau bằng đường trục
của nhà khai thác, thường sử dụng các công nghệ mạng tốc độ cao như ATM và IP.
Mạng đường trục trong miền CS sử dụng TDM còn trong miền PS sử dụng IP.
TS. Nguyễn Phạm Anh Dũng
15
1.6.3.1. SGSN
SGSN (SGSN: Serving GPRS Support Node: nút hỗ trợ GPRS phục vụ) là nút
chính của miền chuyển mạch gói. Nó nối đến UTRAN thông qua giao diện IuPS và
đến GGSN thông quan giao diện Gn. SGSN chịu trách nhiệm cho tất cả kết nối PS của
tất cả các thuê bao. Nó lưu hai kiểu dữ liệu thuê bao: thông tin đăng ký thuê bao và
thông tin vị trí thuê bao.
Số liệu thuê bao lưu trong SGSN gồm:
• IMSI (International Mobile Subsscriber Identity: số nhận dạng thuê bao di động
quốc tế)
• Các nhận dạng tạm thời gói (P-TMSI: Packet- Temporary Mobile Subscriber
Identity: số nhận dạng thuê bao di động tạm thời gói)
• Các địa chỉ PDP (Packet Data Protocol: Giao thức số liệu gói)
Số liệu vị trí lưu trên SGSN:
• Vùng định tuyến thuê bao (RA: Routing Area)
• Số VLR
• Các địa chỉ GGSN của từng GGSN có kết nối tích cực
1.6.3.2. GGSN
GGSN (Gateway GPRS Support Node: Nút hỗ trợ GPRS cổng) là một SGSN
kết nối với các mạng số liệu khác. Tất cả các cuộc truyền thông số liệu từ thuê bao đến
các mạng ngoài đều qua GGSN. Cũng như SGSN, nó lưu cả hai kiểu số liệu: thông tin
thuê bao và thông tin vị trí.

Số liệu thuê bao lưu trong GGSN:
• IMSI
• Các địa chỉ PDP
Số liệu vị trí lưu trong GGSN:
• Địa chỉ SGSN hiện thuê bao đang nối đến
GGSN nối đến Internet thông qua giao diện Gi và đến BG thông qua Gp.
1.6.3.3. BG
BG (Border Gatway: Cổng biên giới) là một cổng giữa miền PS của PLMN với
các mạng khác. Chức năng của nút này giống như tường lửa của Internet: để đảm bảo
mạng an ninh chống lại các tấn công bên ngoài.
TS. Nguyễn Phạm Anh Dũng
16
1.6.3.4. VLR
VLR (Visitor Location Register: bộ ghi định vị tạm trú) là bản sao của HLR
cho mạng phục vụ (SN: Serving Network). Dữ liệu thuê bao cần thiết để cung cấp các
dịch vụ thuê bao được copy từ HLR và lưu ở đây. Cả MSC và SGSN đều có VLR nối
với chúng.
Số liệu sau đây được lưu trong VLR:
• IMSI
• MSISDN
• TMSI (nếu có)
• LA hiện thời của thuê bao
• MSC/SGSN hiện thời mà thuê bao nối đến
Ngoài ra VLR có thể lưu giữ thông tin về các dịch vụ mà thuê bao được cung cấp.
Cả SGSN và MSC đều được thực hiện trên cùng một nút vật lý với VLR vì thế
được gọi là VLR/SGSN và VLR/MSC.
1.6.3.5. MSC
MSC thực hiện các kết nối CS giữa đầu cuối và mạng. Nó thực hiện các chức
năng báo hiệu và chuyển mạch cho các thuê bao trong vùng quản lý của mình. Chức
năng của MSC trong UMTS giống chức năng MSC trong GSM, nhưng nó có nhiều

khả năng hơn. Các kết nối CS được thực hiện trên giao diện CS giữa UTRAN và
MSC. Các MSC được nối đến các mạng ngoài qua GMSC.
1.6.3.6. GMSC
GMSC có thể là một trong số các MSC. GMSC chịu trách nhiệm thực hiện các
chức năng định tuyến đến vùng có MS. Khi mạng ngoài tìm cách kết nối đến PLMN
của một nhà khai thác, GMSC nhận yêu cầu thiết lập kết nối và hỏi HLR về MSC hiện
thời quản lý MS.
1.6.3.7. Môi trường nhà
Môi trường nhà (HE: Home Environment) lưu các hồ sơ thuê bao của hãng khai
thác. Nó cũng cung cấp cho các mạng phục vụ (SN: Serving Network) các thông tin về
thuê bao và về cước cần thiết để nhận thực người sử dụng và tính cước cho các dịch vụ
cung cấp. Tất cả các dịch vụ được cung cấp và các dịch vụ bị cấm đều được liệt kê ở
đây.
TS. Nguyễn Phạm Anh Dũng
17
Bộ ghi định vị thường trú (HLR)
HLR là một cơ sở dữ liệu có nhiệm vụ quản lý các thuê bao di động. Một mạng
di động có thể chứa nhiều HLR tùy thuộc vào số lượng thuê bao, dung lượng của từng
HLR và tổ chức bên trong mạng.
Cơ sở dữ liệu này chứa IMSI (International Mobile Subsscriber Identity: số
nhận dạng thuê bao di động quốc tế), ít nhất một MSISDN (Mobile Station ISDN: số
thuê bao có trong danh bạ điện thoại) và ít nhất một địa chỉ PDP (Packet Data
Protocol: Giao thức số liệu gói). Cả IMSI và MSISDN có thể sử dụng làm khoá để
truy nhập đến các thông tin được lưu khác. Để định tuyến và tính cước các cuộc gọi,
HLR còn lưu giữ thông tin về SGSN và VLR nào hiện đang chịu trách nhiệm thuê bao.
Các dịch vụ khác như chuyển hướng cuộc gọi, tốc độ số liệu và thư thoại cũng có
trong danh sách cùng với các hạn chế dịch vụ như các hạn chế chuyển mạng.
HLR và AuC là hai nút mạng logic, nhưng thường được thực hiện trong cùng
một nút vật lý. HLR lưu giữ mọi thông tin về người sử dụng và đăng ký thuê bao.
Như: thông tin tính cước, các dịch vụ nào được cung cấp và các dịch vụ nào bị từ chối

và thông tin chuyển hướng cuộc gọi. Nhưng thông tin quan trọng nhất là hiện VLR và
SGSN nào đang phụ trách người sử dụng.
Trung tâm nhận thực (AuC)
AUC (Authentication Center) lưu giữ toàn bộ số liệu cần thiết để nhận thực,
mật mã hóa và bảo vệ sự toàn vẹn thông tin cho người sử dụng. Nó liên kết với HLR
và được thực hiện cùng với HLR trong cùng một nút vật lý. Tuy nhiên cần đảm bảo
rằng AuC chỉ cung cấp thông tin về các vectơ nhận thực (AV: Authetication Vector)
cho HLR.
AuC lưu giữ khóa bí mật chia sẻ K cho từng thuê bao cùng với tất cả các hàm
tạo khóa từ f0 đến f5. Nó tạo ra các AV, cả trong thời gian thực khi SGSN/VLR yêu
cầu hay khi tải xử lý thấp, lẫn các AV dự trữ.
Bộ ghi nhận dạng thiết bị (EIR)
EIR (Equipment Identity Register) chịu trách nhiệm lưu các số nhận dạng thiết
bị di động quốc tế (IMEI: International Mobile Equipment Identity). Đây là số nhận
dạng duy nhất cho thiết bị đầu cuối. Cơ sở dữ liệu này được chia thành ba danh mục:
danh mục trắng, xám và đen. Danh mục trắng chứa các số IMEI được phép truy nhập
mạng. Danh mục xám chứa IMEI của các đầu cuối đang bị theo dõi còn danh mục đen
chứa các số IMEI của các đầu cuối bị cấm truy nhập mạng. Khi một đầu cuối được
thông báo là bị mất cắp, IMEI của nó sẽ bị đặt vào danh mục đen vì thế nó bị cấm truy
nhập mạng. Danh mục này cũng có thể được sử dụng để cấm các seri máy đặc biệt
không được truy nhập mạng khi chúng không hoạt động theo tiêu chuẩn.
1.6.4. Các mạng ngoài
Các mạng ngoài không phải là bộ phận của hệ thống UMTS, nhưng chúng cần
thiết để đảm bảo truyền thông giữa các nhà khai thác. Các mạng ngoài có thể là các
TS. Nguyễn Phạm Anh Dũng
18
mạng điện thoại như: PLMN (Public Land Mobile Network: mạng di động mặt đất
công cộng), PSTN (Public Switched Telephone Network: Mạng điện thoại chuyển
mạch công cộng), ISDN hay các mạng số liệu như Internet. Miền PS kết nối đến các
mạng số liệu còn miền CS nối đến các mạng điện thoại.

1.6.5. Các giao diện
Vai trò các các nút khác nhau của mạng chỉ được định nghĩa thông qua các giao
diện khác nhau. Các giao diện này được định nghĩa chặt chẽ để các nhà sản xuất có thể
kết nối các phần cứng khác nhau của họ.
√ Giao diện Cu. Giao diện Cu là giao diện chuẩn cho các card thông minh. Trong
UE đây là nơi kết nối giữa USIM và UE
√ Giao diện Uu. Giao diện Uu là giao diện vô tuyến của WCDMA trong UMTS.
Đây là giao diện mà qua đó UE truy nhập vào phần cố định của mạng. Giao
diện này nằm giữa nút B và đầu cuối.
√ Giao diện Iu. Giao diện Iu kết nối UTRAN và CN. Nó gồm hai phần, IuPS cho
miền chuyển mạch gói, IuCS cho miền chuyển mạch kênh. CN có thể kết nối
đến nhiều UTRAN cho cả giao diện IuCS và IuPS. Nhưng một UTRAN chỉ có
thể kết nối đến một điểm truy nhập CN.
√ Giao diện Iur. Đây là giao diện RNC-RNC. Ban đầu được thiết kế để đảm bảo
chuyển giao mềm giữa các RNC, nhưng trong quá trình phát triển nhiều tính
năng mới được bổ sung. Giao diện này đảm bảo bốn tính năng nổi bật sau:
1. Di động giữa các RNC
2. Lưu thông kênh riêng
3. Lưu thông kênh chung
4. Quản lý tài nguyên toàn cục
√ Giao diện Iub. Giao diện Iub nối nút B và RNC. Khác với GSM đây là giao
diện mở.
1.7. KIẾN TRÚC 3G WCDMA UMTS R4
Hình 1.10 cho thấy kiến trúc cơ sở của 3G UMTS R4. Sự khác nhau cơ bản giữa
R3 và R4 là ở chỗ khi này mạng lõi là mạng phân bố và chuyển mạch mềm. Thay cho
việc có các MSC chuyển mạch kênh truyền thống như ở kiến trúc trước, kiến trúc
chuyển mạch phân bố và chuyển mạch mềm được đưa vào.
Về căn bản, MSC được chia thành MSC server và cổng các phương tiện (MGW:
Media Gateway). MSC chứa tất cả các phần mềm điều khiển cuộc gọi, quản lý di động
có ở một MSC tiêu chuẩn. Tuy nhiên nó không chứa ma trận chuyển mạch. Ma trận

chuyển mạch nằm trong MGW được MSC Server điều khiển và có thể đặt xa MSC
Server.
TS. Nguyễn Phạm Anh Dũng
19
Hình 1.10. Kiến trúc mạng phân bố của phát hành 3GPP R4
Báo hiệu điều khiển các cuộc gọi chuyển mạch kênh được thực hiện giữa RNC
và MSC Server. Đường truyền cho các cuộc gọi chuyển mạch kênh được thực hiện
giữa RNC và MGW. Thông thường MGW nhận các cuộc gọi từ RNC và định tuyến
các cuộc gọi này đến nơi nhận trên các đường trục gói. Trong nhiều trường hợp đường
trục gói sử dụng Giao thức truyền tải thời gian thực (RTP: Real Time Transport
Protocol) trên Giao thức Internet (IP). Từ hình 1.10 ta thấy lưu lượng số liệu gói từ
RNC đi qua SGSN và từ SGSN đến GGSN trên mạng đường trục IP. Cả số liệu và
tiếng đều có thể sử dụng truyền tải IP bên trong mạng lõi. Đây là mạng truyền tải hoàn
toàn IP.
Tại nơi mà một cuộc gọi cần chuyển đến một mạng khác, PSTN chẳng hạn, sẽ có
một cổng các phương tiện khác (MGW) được điều khiển bởi MSC Server cổng
(GMSC server). MGW này sẽ chuyển tiếng thoại được đóng gói thành PCM tiêu
chuẩn để đưa đến PSTN. Như vậy chuyển đổi mã chỉ cần thực hiện tại điểm này. Để
thí dụ, ta giả thiết rằng nếu tiếng ở giao diện vô tuyến được truyền tại tốc độ 12,2 kbps,
thì tốc độ này chỉ phải chuyển vào 64 kbps ở MGW giao tiếp với PSTN. Truyền tải
kiểu này cho phép tiết kiệm đáng kể độ rộng băng tần nhất là khi các MGW cách xa
nhau.
Giao thức điều khiển giữa MSC Server hoặc GMSC Server với MGW là giao
thức ITU H.248. Giao thức này được ITU và IETF cộng tác phát triển. Nó có tên là
điều khiển cổng các phương tiện (MEGACO: Media Gateway Control). Giao thức
điều khiển cuộc gọi giữa MSC Server và GMSC Server có thể là một giao thức điều
khiển cuộc gọi bất kỳ. 3GPP đề nghị sử dụng (không bắt buộc) giao thức Điều khiển
cuộc gọi độc lập vật mang (BICC: Bearer Independent Call Control) được xây dựng
trên cơ sở khuyến nghị Q.1902 của ITU.
TS. Nguyễn Phạm Anh Dũng

20
Trong nhiều trường hợp MSC Server hỗ trợ cả các chức năng của GMSC Server.
Ngoài ra MGW có khả năng giao diện với cả RAN và PSTN. Khi này cuộc gọi đến
hoặc từ PSTN có thể chuyển nội hạt, nhờ vậy có thể tiết kiệm đáng kể đầu tư.
Để làm thí dụ ta xét trường hợp khi một RNC được đặt tại thành phố A và được
điều khiển bởi một MSC đặt tại thành phố B. Giả sử thuê bao thành phố A thực hiện
cuộc gọi nội hạt. Nếu không có cấu trúc phân bố, cuộc gọi cần chuyển từ thành phố A
đến thành phố B (nơi có MSC) để đấu nối với thuê bao PSTN tại chính thành phố A.
Với cấu trúc phân bố, cuộc gọi có thể được điều khiển tại MSC Server ở thành phố B
nhưng đường truyền các phương tiện thực tế có thể vẫn ở thành phố A, nhờ vậy giảm
đáng kể yêu cầu truyền dẫn và giá thành khai thác mạng.
Từ hình 1.10 ta cũng thấy rằng HLR cũng có thể được gọi là Server thuê bao tại
nhà (HSS: Home Subscriber Server). HSS và HLR có chức năng tương đương, ngoại
trừ giao diện với HSS là giao diện trên cơ sở truyền tải gói (IP chẳng hạn) trong khi
HLR sử dụng giao diện trên cơ sở báo hiệu số 7. Ngoài ra còn có các giao diện (không
có trên hình vẽ) giữa SGSN với HLR/HSS và giữa GGSN với HLR/HSS.
Rất nhiều giao thức được sử dụng bên trong mạng lõi là các giao thức trên cơ sở
gói sử dụng hoặc IP hoặc ATM. Tuy nhiên mạng phải giao diện với các mạng truyền
thống qua việc sử dụng các cổng các phương tiện. Ngoài ra mạng cũng phải giao diện
với các mạng SS7 tiêu chuẩn. Giao diện này được thực hiện thông qua cổng SS7 (SS7
GW). Đây là cổng mà ở một phía nó hỗ trợ truyền tải bản tin SS7 trên đường truyền tải
SS7 tiêu chuẩn, ở phía kia nó truyền tải các bản tin ứng dụng SS7 trên mạng gói (IP
chẳng hạn). Các thực thể như MSC Server, GMSC Server và HSS liên lạc với cổng
SS7 bằng cách sử dụng các giao thức truyền tải được thiết kế đặc biệt để mang các bản
tin SS7 ở mạng IP. Bộ giao thức này được gọi là Sigtran.
1.8. KIẾN TRÚC 3G WCDMA UMTS R5 và R6
Bước phát triển tiếp theo của UMTS là đưa ra kiến trúc mạng đa phương tiện IP
(hình 1.11). Bước phát triển này thể hiện sự thay đổi toàn bộ mô hình cuộc gọi. Ở đây
cả tiếng và số liệu được xử lý giống nhau trên toàn bộ đường truyền từ đầu cuối của
người sử dụng đến nơi nhận cuối cùng. Có thể coi kiến trúc này là sự hội tụ toàn diện

của tiếng và số liệu.
TS. Nguyễn Phạm Anh Dũng
21
Hình 1.11. Kiến trúc mạng 3GPP R5 và R6
Điểm mới của R5 và R6 là nó đưa ra một miền mới được gọi là phân hệ đa
phương tiện IP (IMS: IP Multimedia Subsystem). Đây là một miền mạng IP được thiết
kế để hỗ trợ các dịch vụ đa phương tiện thời gian thực IP. Từ hình 1.11 ta thấy tiếng và
số liệu không cần các giao diện cách biệt; chỉ có một giao diện Iu duy nhất mang tất cả
phương tiện. Trong mạng lõi giao diện này kết cuối tại SGSN và không có MGW
riêng.
Phân hệ đa phương tiện IP (IMS) chứa các phần tử sau: Chức năng điều khiển
trạng thái kết nối (CSCF: Connection State Control Function), Chức năng tài nguyên
đa phương tiện (MRF: Multimedia Resource Function), chức năng điều khiển cổng
các phương tiện (MGCF: Media Gateway Control Function), Cổng báo hiệu truyền
tải (T-SGW: Transport Signalling Gateway) và Cổng báo hiệu chuyển mạng (R-SGW:
Roaming Signalling Gateway).
Một nét quan trọng của kiến trúc toàn IP là thiết bị của người sử dụng được tăng
cường rất nhiều. Nhiều phần mềm được cài đặt ở UE. Trong thực tế, UE hỗ trợ giao
thức khởi đầu phiên (SIP: Session Initiation Protocol). UE trở thành một tác nhân của
người sử dụng SIP. Như vậy, UE có khả năng điều khiển các dịch vụ lớn hơn trước rất
nhiều.
CSCF quản lý việc thiết lập, duy trì và giải phóng các phiên đa phương tiện đến
và từ người sử dụng. Nó bao gồm các chức năng như: phiên dịch và định tuyến. CSCF
hoạt động như một đại diện Server /hộ tịch viên.
SGSN và GGSN là các phiên bản tăng cường của các nút được sử dụng ở GPRS
và UMTS R3 và R4. Điểm khác nhau duy nhất là ở chỗ các nút này không chỉ hỗ trợ
dịch vụ số liệu gói mà cả dịch vụ chuyển mạch kênh (tiếng chẳng hạn). Vì thế cần hỗ
trợ các khả năng chất lượng dịch vụ (QoS) hoặc bên trong SGSN và GGSN hoặc ít
nhất ở các Router kết nối trực tiếp với chúng.
TS. Nguyễn Phạm Anh Dũng

22
Chức năng tài nguyên đa phương tiện (MRF) là chức năng lập cầu hội nghi được
sử dụng để hỗ trợ các tính năng như tổ chức cuộc gọi nhiều phía và dịch vụ hội nghị .
Cổng báo hiệu truyền tải (T-SGW) là một cổng báo hiệu SS7 để đảm bảo tương
tác SS7 với các mạng tiêu chuẩn ngoài như PSTN. T-SGW hỗ trợ các giao thức
Sigtran. Cổng báo hiệu chuyển mạng (R-SGW) là một nút đảm bảo tương tác báo hiệu
với các mạng di động hiện có sử dụng SS7 tiêu chuẩn. Trong nhiều trường hợp T-
SGW và R-SGW cùng tồn tại trên cùng một nền tảng.
MGW thực hiện tương tác với các mạng ngoài ở mức đường truyền đa phương
tiện. MGW ở kiến trúc mạng của UMTS R5 có chức năng giống như ở R4. MGW
được điều khiển bởi Chức năng cổng điều khiển các phương tiện (MGCF). Giao thức
điều khiển giữa các thực thể này là ITU-T H.248.
MGCF cũng liên lạc với CSCF. Giao thức được chọn cho giao diện này là SIP.
Tuy nhiên có thể nhiều nhà khai thác vẫn sử dụng nó kết hợp với các miền
chuyển mạch kênh trong R3 và R4. Điều này cho phép chuyển đồi dần dần từ các
phiên bản R3 và R4 sang R5. Một số các cuộc gọi thoại có thể vẫn sử dụng miền CS
một số các dịch vụ khác chẳng hạn video có thể được thực hiện qua R5 IMS. Cấu hình
lai ghép được thể hiện trên hình 1.12.

Hình 1.12. Chuyển đổi dần từ R4 sang R5
1.9. CHIẾN LƯỢC DỊCH CHUYỂN TỪ GSM SANG UMTS
Trong phần này ta sẽ xét chiến lược dịch chuyển từ GSM sang UMTS của hãng
Alcatel. Alcatel dự kiến phát triển RAN từ GSM lên 3G UMTS theo ba phát hành:
3GR1, 3GR2 và 3GR3. Với mỗi phát hành, các sản phẩm mới và các tính năng mới
được đưa ra.
1.9.1. 3GR1 : Kiến trúc mạng UMTS chồng lấn
Phát hành 3GP1 dựa trên phát hành của 3GPP vào tháng 3 và các đặc tả kỹ
thuật vào tháng 6 năm 2000. Phát hành đầu của 3GR1 chỉ hỗ trợ UTRA-FDD và sẽ
TS. Nguyễn Phạm Anh Dũng
23

được triển khai chồng lấn lên GSM. Chiến lược dịch chuyển từ GSM sang UMTS phát
hành 3GR1 được chia thành ba giai đoạn được ký hiệu là R1.1, R1.2 và R1.3 (R:
Release: phát hành). Trong các phát hành này các phần cứng và các tính năng mới
được đưa ra. Các nút B được gọi là MBS (Multistandard Base Station: trạm gốc đa tiêu
chuẩn). Tuy nhiên MBS V1 chỉ đơn thuần là nút B, chỉ MBS V2 mới thực sự đa tiêu
chuẩn và chứa các chức năng của cả nút B và BTS trong cùng một hộp máy. Tương tự
RNC V2 và OMC-R V2 được đưa ra để phục vụ cho cả UMTS và GSM.
Hình 1.13 cho thấy kiến trúc đồng tồn tại GSM và UMTS được phát triển trong
giai đoạn triển khai UMTS ban đầu (3GR1.1).
Hình 1.13. Kiến trúc đồng tồn tại GSM và UMTS (phát hành 3GR1.1)
1.9.2. 3GR2 : Tích hợp các mạng UMTS và GSM
Trong giai đoạn triền khai UMTS thứ hai sự tích hợp đầu tiên giữa hai mạng sẽ
được thực hiện bằng cách đưa ra các thiết bị đa tiêu chuẩn như: Nút B kết hợp BTS
(MBS V2) và RNC kết hợp BSC (RNC V2). Các chức năng khai thác và bảo dưỡng
mạng vô tuyến cũng có thể được thực hiện chung bởi cùng một OMC-R (V2). Hình
1.14 mô tả kiến trúc mạng RAN tích hợp của giai đoạn hai.
TS. Nguyễn Phạm Anh Dũng
24
Hình 1.14. Kiến trúc mạng RAN tích hợp phát hành 3GR2 (R2.1).
1.9.3. 3GR3 : Kiến trúc RAN thống nhất
Trong kiến trúc RAN của phát hành này được xây dựng trên cơ sở phát hành
R5 vào tháng 9 năm 2000 của 3GPP. Trong phát hành này RAN chung cho cả hệ
thống UMTS và GSM. Cả UTRA-FDD và UTRA-TDD đều được hỗ trợ. Giao thức
truyền tải được thống nhất cho GSM, E-GPRS và UMTS, ngoài ra có thể ATM kết
hợp IP. GERAN (GSM/EDGE RAN) cũng sẽ được hỗ trợ bởi phát hành này của
mạng. Kiến trúc RAN của 3GR1.3 được thể hiện trên hình 1.15.
Hình 1.15. Kiến trúc RAN thống nhất của 3GR3.1
TS. Nguyễn Phạm Anh Dũng
25

×