Tải bản đầy đủ (.pdf) (12 trang)

Đê ôn thptqg 6 (535)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.46 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 2.√Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 8.
D. 27.
Câu 3. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. 13.
B. log2 2020.
C. 2020.
D. log2 13.


Câu 4.
− i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z √
A. 3.
B. 1.
C. 5.
D. 2.
Câu 5. Tính lim
x→1

A. −∞.

x3 − 1
x−1

B. 3.

C. 0.

D. +∞.

Câu 6. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (−1; 0).
x+2
đồng biến trên khoảng
Câu 7. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.

B. Vô số.
C. 3.
D. 2.
Câu 8. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.

n+1
.
n

D.

sin n
.
n

Câu 9. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 10. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có

thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 24.
D. 23.
Câu 11. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 12. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. Năm mặt.
Trang 1/10 Mã đề 1


Câu 13. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B.
D. a 3.
A. a 6.

.
C. 2a 6.
2
Câu 14. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3
a3 3
3
A.
.
B.
.
C. a .
D.
.
2
3
6
Câu 15. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 16. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.

B. Hình lập phương.
C. Hình chóp.
x+2
Câu 17. Tính lim
bằng?
x→2
x
A. 0.
B. 1.
C. 3.

D. Hình lăng trụ.

D. 2.

x
Câu 18.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. .
D. 1.
2
2
2
Câu 19. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không

rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 20. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 2.
C. 1.
D. 4.

Câu 21. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x + .
2x + 1
x
Câu 22. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. y = x4 − 2x + 1.


D. y = x3 − 3x.

C. 20.

D. 30.

Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 64cm3 .
D. 27cm3 .
Câu 24. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (III).

D. (I) và (II).

Câu 25. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3

A.
.
B. 10a3 .
C. 20a3 .
D. 40a3 .
3
Trang 2/10 Mã đề 1


Câu 26. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.
C. 8.
D. 10.
x+1
bằng
Câu 27. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
6
2
3
0 0
0 0 0

Câu 28. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
3
2
Câu 29. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. −3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.


D. 3 − 4 2.

0
Câu 30. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √


2 3
.
D. 2.
B. 1.
C.
A. 3.
3
Câu 31. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 2.
D. 3.
1
Câu 32. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 33. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > −1.

x2 − 3x + 3
đạt cực đại tại
Câu 34. Hàm số y =
x−2
A. x = 3.
B. x = 1.
C. x = 0.

D. m > 0.
D. x = 2.

Câu 35. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
120.(1, 12)3
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.

D. m =
triệu.
3
(1, 01)3 − 1
Câu 36. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 8 3.
B. 6 3.
C.
.
D.
.
3
3
x2 − 12x + 35
Câu 37. Tính lim
x→5
25 − 5x
2
2
A. − .
B. .
C. −∞.

D. +∞.
5
5
Trang 3/10 Mã đề 1


Câu 38.
Z Các khẳng định
Z nào sau đây là sai?
A.
Z
C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Z
B.
Z
D.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒


Z

f (u)dx = F(u) +C.

Câu 39. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 9.

D. 13.

Câu 40. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C.
;3 .
D. 2; .
2
2
Câu 41. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.


C. 12.


ab.

D. 10.

Câu 42. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 43. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 8.

Câu 44. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
A.

c+1
c+3
c+2

D. 12.

D.

3b + 2ac
.
c+2

Câu 45. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 8 mặt.

D. 6 mặt.

Câu 46. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.

D. m > 0.

Câu 47. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.

B. 12.
C. 18.
D.
.
2
Câu 48. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
.
B. − .
C.
.
D.
.
A. −
100
16
100
25
Câu 49. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.

[ = 60◦ , S O
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
19
17
19
Câu 51. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (2; 4; 3).
D. (1; 3; 2).
Trang 4/10 Mã đề 1


2n + 1

Câu 52. Tìm giới hạn lim
n+1
A. 2.
B. 3.
x2 − 9
Câu 53. Tính lim
x→3 x − 3
A. 6.
B. +∞.

C. 0.

D. 1.

C. 3.

D. −3.

Câu 54. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. .
D. 9.
2
2
Câu 55. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


A. aα+β = aα .aβ .
B. aαβ = (aα )β .
C. β = a β .
D. aα bα = (ab)α .
a
x2
Câu 56. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = 1.
e
e
Câu 57. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 8 3.
D. 16.
A. 7 3.
log 2x
Câu 58. [1229d] Đạo hàm của hàm số y =

x2

1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
.
C. y0 = 3
.
D. y0 =
.
A. y0 =
.
B. y0 = 3
3
x
2x ln 10
x ln 10
2x3 ln 10
!4x
!2−x
3
2


Câu 59. Tập các số x thỏa mãn
3 # 2
#
"
!
"
!

2
2
2
2
A. −∞; .
; +∞ .
B. −∞; .
C.
D. − ; +∞ .
3
5
5
3
Câu 60. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 10.
D. ln 12.
Câu 61. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 62. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim un = c (un = c là hằng số).

1

= 0.
nk
D. lim qn = 0 (|q| > 1).

B. lim

Câu 63. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.

B. +∞.

C. 2.

D. 1.

Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
2a3 3
a3
4a3 3
a3
A.
.
B.
.
C.
.
D.

.
3
3
3
6
d = 60◦ . Đường chéo
Câu 65. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3

3
Trang 5/10 Mã đề 1


Câu 66. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
= 0.
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
1 − n2
Câu 67. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .

B. − .
C. .
D. 0.
3
2
2
Câu 68. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Khơng có câu nào C. Câu (I) sai.
D. Câu (III) sai.
sai.
2
Câu 69. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.
Câu 70. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. 0.
D. e2016 .
Câu 71. [1] Đạo hàm của hàm số y = 2 x là

1
.
B. y0 = 2 x . ln x.
A. y0 = x
2 . ln x
Câu 72. Dãy số
!n nào có giới hạn bằng 0?
−2
A. un =
.
B. un = n2 − 4n.
3
5
Câu 73. Tính lim
n+3
A. 0.

B. 3.

1
.
ln 2

C. y0 = 2 x . ln 2.

D. y0 =

n3 − 3n
C. un =
.

n+1

!n
6
D. un =
.
5

C. 2.

D. 1.

0

Câu 74. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 75. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 76. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
Câu 77. Phần thực√và phần ảo của số √
phức z =

A. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.



C. 144.
D. 2.

2 − 1 − 3i lần lượt l √

B. Phần thực là 1√− 2, phần ảo là −√ 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Trang 6/10 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 78. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.

.
D.
.
A.
16
13
9
26

Câu 79. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
D. .
A. −3.
B. 3.
C. − .
3
3
Câu 80. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Câu 81. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 82. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC

thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 83. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

C. D = (0; +∞).

D. D = R \ {1}.

Câu 84. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.
3a
, hình chiếu vng
Câu 85. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a 2
a
2a
A. .

B.
.
C. .
D.
.
3
3
4
3
Câu 86. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 87. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
2x + 1
Câu 88. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.
D. 2.
2
Câu 89. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.
C. 4.
D. 5.

1 + 2 + ··· + n
Câu 90. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Trang 7/10 Mã đề 1


Câu 91. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.

Câu 92. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 4.

D. 6 mặt.
D. 36.

Câu 93. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. 2.

D. −1.
1
Câu 94. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
x+1
bằng
x→+∞ 4x + 3
1
A. 3.
B. .
3
Câu 96. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

Câu 95. Tính lim

1
.
4

C. 1.

D.

C. 30.


D. 12.

Câu 97.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
.
B.
.
C.
.
D. .
A.
12
2
4
4
Câu 98. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
Câu 99. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a

5a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 100. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
3

9
9
Câu 101. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 102. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
Câu 103. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2

.
2
2
2
2
2
2
a + b2
2 a +b
a +b
a +b
Câu 104. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.

D. m = −2.
Trang 8/10 Mã đề 1


d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 105. Cho hình chóp S .ABC có BAC
(ABC). Thể

√ tích khối chóp S .ABC là

3

a3 2

a 3
a3 3
2
C.
A.
.
B. 2a 2.
.
D.
.
24
24
12
4x + 1
Câu 106. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.
C. 4.
D. 2.
Câu 107. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối bát diện đều. D.
!
1
1
1

+ ··· +
Câu 108. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
A. .
B. +∞.
C. 2.
D.
2
1
Câu 109. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D.

Khối tứ diện đều.

5
.
2
(1; 3).

Câu 110. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 16 m.
D. 12 m.

Câu 111. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Bốn cạnh.

D. Hai cạnh.

Câu 112. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→a

x→b

0

0

0

x→b


0

Câu 113. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
18
6
9

2
Câu 114.√ Xác định phần ảo của số phức z = ( 2 + 3i) √
B. 7.
C. 6 2.
D. −7.
A. −6 2.
Câu 115. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √


a3 6
a3 6
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
48
24
8
24
Câu 116. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 117. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√


3
a 5
a 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
Trang 9/10 Mã đề 1


Câu 118. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 27 m.
D. 387 m.

0 0 0 0
Câu 119.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7
2mx + 1
1
Câu 120. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 0.

C. 1.
D. −5.

Câu 121. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e
x−2
Câu 122. Tính lim
x→+∞ x + 3
2
C. 1.
A. 2.
B. − .
3
Câu 123. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = [2; 1].

D. m =


1 + 2e
.
4 − 2e

D. −3.

2

D. D = R \ {1; 2}.

Câu 124. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2.
.
B. 2 13.
C. 26.
D.
13




Câu 125. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3

9
3
A. 0 < m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 126. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√tích là
√mặt phẳng (AIC) có diện
2
2
2
2
a 2
a 7
a 5
11a
.
B.
.
C.
.
D.
.

A.
32
4
8
16
Câu 127. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là

√ với đáy và S C = a 3.3 √
3
a 6
2a3 6
a3 3
a 3
A.
.
B.
.
C.
.
D.
.
2
12
9
4
Câu 128. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.

B. 4.
C. 6.
D. 8.
Câu 129. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

2

2

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 130. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 34.
C.
.
D. 5.
17
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.

D

4.

D

6.

D

5.

B
D

7.

9.

B

10.

11.

D

B

12.

13. A

C

14. A
C

15.
17.

16. A
18.

D
C


19.
23.

D
C

25.

D

20. A

21. A

27. A
29.

C

8.

22.

D

24.

D

26.


C

28.

C

30.

B

D

31.

C

32.

33.

C

34.

B

36.

B


35.

D

37.

B

38.

39.

B

40.

41.
43.

D
C

42.

C

D

44.


B

45. A

C

46. A

47.

C

49.

48. A
D

50.

51. A

52. A

53. A

54. A

55.


56.

C

57.

D

58.

59.

D

60.

61.

D

B
C
B

62.

C

63. A


64.

65. A

66. A

67.

C

B

68.
1

D
C
B


69.

D

71.

72. A

C


73. A

74.

75. A

76.

77.

78.

C

79.

D

82. A

83. A

84. A

87.

D

86.


B
D

95.

B
D

90.

C

92.

C
D

96.

C

97.
B

D

101.
103.

B


94.

93. A

99.

C

88.

B

89. A
91.

B

80. A

81. A
85.

C

70.

B
C


C

98.

D

100.

D

102.

D

104.

D

106.

C

107. A

108.

C

109. A


110.

C

112.

C

105.

111.

B

114.

C

116.

D

118.
120.
122.

C
B

115.


B

117.

B

119.

B

121. A
123.

C

124.

D

B

125.

126.

C

127.


128.

C

129.

130.

C

2

D
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×