TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
√
Câu 1.√Xác định phần ảo của số phức
z
=
(
2 + 3i)2
√
A. 6 2.
B. −6 2.
C. 7.
D. −7.
[ = 60◦ , S O
Câu 2. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S BC) bằng
√
√
2a 57
a 57
a 57
.
B.
.
C. a 57.
.
A.
D.
17
19
19
Câu 3. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 4. Trong các mệnh đề dưới đây, mệnh đề nào! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
1
Câu 5. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 6. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 7. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. log2 13.
B. 13.
C. log2 2020.
D. 2020.
2−n
bằng
Câu 8. Giá trị của giới hạn lim
n+1
A. −1.
B. 0.
C. 2.
D. 1.
Câu 9. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
x=t
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
Trang 1/10 Mã đề 1
9
9
C. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
D. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
Câu 11. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 12. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 13. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m = 0.
D. m , 0.
3
2
2
Câu 14. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. V = 4π.
D. 32π.
Câu 15. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. a.
C. .
D.
.
2
3
2
Câu 16. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
D. Hàm số đồng biến trên khoảng ; 1 .
C. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 17. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
Câu 18. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 10 mặt.
D. 8 mặt.
Câu 19. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
23
1728
.
B.
.
C.
.
D.
.
A.
4913
4913
4913
68
Câu 20. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; .
D. −∞; − .
2
2
2
2
Câu 21. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
log 2x
Câu 22. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
x+2
Câu 23. Tính lim
bằng?
x→2
x
A. 2.
B. 1.
C. 0.
D. 3.
Câu 24. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 26.
B. 2.
C. 2 13.
D.
.
13
Trang 2/10 Mã đề 1
Câu 25. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e + 1.
C. 3.
D. 2e.
e
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 2
a3 3
a 6
A.
.
B.
.
C.
.
D.
.
48
48
16
24
Câu 27. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√
√ của hàm số. Khi đó tổng
B. 8 2.
C. 8 3.
D. 16.
A. 7 3.
Câu 28. Hàm số nào sau đây không có cực trị
x−2
1
A. y =
.
B. y = x + .
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
2x + 1
x
Câu 29. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
6
24
12
Câu 30. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 68.
A.
C. 34.
D. 5.
17
Câu 31. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 21.
D. P = 10.
2
Câu 32. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 4.
D. 5.
2
ln x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 33. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
C. S = 135.
D. S = 24.
Câu 34. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 0.
D. 3.
Câu 35. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 21.
D. 24.
Câu 36. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
C. 30.
D. 20.
3a
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
a
2a
A. .
B.
.
C. .
D.
.
3
3
4
3
√
x2 + 3x + 5
Câu 38. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. 1.
D. − .
4
4
Trang 3/10 Mã đề 1
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 40. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.
C. 6.
D. 10.
Câu 41. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 42. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 3.
D. 0.
Câu 43. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.
C. |z| = 5.
A. |z| = 5.
√
D. |z| = 2 5.
2
Câu 44. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 45. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 3
a3 2
2
.
B. 2a 2.
.
D.
.
A.
C.
24
24
12
x2 − 3x + 3
Câu 46. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 1.
C. x = 3.
D. x = 2.
!
3n + 2
2
Câu 47. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.
D. 2.
Câu 48. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 49. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 50. [2] Phương trình log x 4 log2
12x − 8
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
cos n + sin n
Câu 51. Tính lim
n2 + 1
A. 0.
B. −∞.
C. 1.
D. +∞.
0 0 0 0
0
Câu 52.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
x3 − 1
Câu 53. Tính lim
x→1 x − 1
A. +∞.
B. 0.
C. 3.
D. −∞.
Câu 54. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Trang 4/10 Mã đề 1
Câu 55.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
4
2
12
Câu 56. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
Câu 57. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
A. f 0 (0) =
ln 10
Câu 58. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
C. 12.
D. f 0 (0) = ln 10.
D. 8.
Câu 59. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
.
B. y0 =
.
C. y0 =
.
D. y0 = .
A.
10 ln x
x
x ln 10
x
Câu 60. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
12 + 22 + · · · + n2
Câu 61. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. +∞.
3
3
Câu 62. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. 0.
Câu 63. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 4.
D. 11.
Câu 64. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
Câu 65. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.
C. 10.
D. 4.
Câu 66. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 67. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 68. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.
2
2
Trang 5/10 Mã đề 1
Câu 69. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
Câu 70. Dãy
!n số nào sau đây có giới
!n hạn là 0?
!n
!n
5
4
1
5
A. − .
B.
.
C.
.
D.
.
3
e
3
3
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. 0.
D. Vơ số.
√
Câu 72. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
Câu 71. [4] Xét hàm số f (t) =
Câu 73. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối tứ diện đều.
Câu 74. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 27.
x−2
Câu 75. Tính lim
x→+∞ x + 3
2
A. −3.
B. 2.
C. − .
3
Câu 76.
D. Khối 12 mặt đều.
D. 3.
D. 1.
[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
q
x+ log23 x + 1+4m−1 =
D. m ∈ [−1; 0].
Câu 77. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. − .
C. −2.
D. .
2
2
Câu 78. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 79. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 8, 16, 32.
B. 2, 4, 8.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 80. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 2.
D. 1.
x−2 x−1
x
x+1
Câu 81. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3].
Câu 82. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Trang 6/10 Mã đề 1
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 0.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
a
1
Câu 84. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 4.
D. 7.
Câu 83. [3-1132d] Cho dãy số (un ) với un =
Câu 85. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
C. 20.
D. 8.
Câu 86.
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
A. 10.
B. 1.
C. 2.
D. 2.
Câu 87. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n
.
B.
u
=
.
A. un =
n
n2
(n + 1)2
C. un =
1 − 2n
.
5n + n2
D. un =
n2 − 2
.
5n − 3n2
Câu 88.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
8
Câu 89. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 81.
D. 82.
Câu 90. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
2
Câu 91. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 7.
B. 5.
C. 0.
D. 9.
Câu 92. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 6.
D. 3.
Câu 93. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5
Câu 94. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
1
n+1
A. √ .
B.
.
C. .
D.
.
n
n
n
n
Câu 95. Tính lim
A. 1.
2n2 − 1
3n6 + n4
B. 0.
C.
2
.
3
D. 2.
2
Câu 96. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 6.
C. 5.
D. 7.
Trang 7/10 Mã đề 1
7n2 − 2n3 + 1
Câu 97. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
C. 0.
D. 1.
3
3
Câu 98. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
36
6
24
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 99. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 100. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là
√
√
3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 101. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 1.
D. 3.
4x + 1
Câu 102. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −1.
C. −4.
D. 2.
√
Câu 103. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
3a 38
3a
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
3
2
Câu 104. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
B. −3 − 4 2.
C. 3 + 4 2.
A. −3 + 4 2.
√
D. 3 − 4 2.
Câu 105. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 25.
B. .
C. 5.
D. 5.
5
1
Câu 106. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3.
C. m = −3, m = 4.
D. m = 4.
√
Câu 107. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
18
9
6
Câu 108. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − 2 .
e
e
√
√
4n2 + 1 − n + 2
Câu 109. Tính lim
bằng
2n − 3
3
A. 1.
B. .
C. 2.
2
D. −
1
.
2e
D. +∞.
Trang 8/10 Mã đề 1
Câu 110. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có một hoặc hai.
Câu 111. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = 4 + .
C. T = e + 3.
D. T = e + 1.
A. T = e + .
e
e
Câu 112. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.
C. 8.
D. 6.
Câu 113. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −1.
D. m = −3.
Câu 114. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (2; 2).
D. (−1; −7).
2
2
Câu 115. [3-c] Giá trị nhỏ nhất√và giá trị lớn nhất của hàm số √
f (x) = 2sin x + 2cos x √
lần lượt là
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
Câu 116. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. n3 lần.
D. 3n3 lần.
1 − xy
Câu 117. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
9 11 − 19
18 11 − 29
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21
3
9
Câu 118. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 119. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m ≤ 0.
Câu 120. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
π
Câu 121. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2.
Câu 122. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình lập phương.
D. Hình tam giác.
1 − n2
Câu 123. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. .
2
3
C. 0.
1
D. − .
2
C. 3.
D. 4.
Câu 124. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.
Trang 9/10 Mã đề 1
Câu 125. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 20.
D. 24.
d = 120◦ .
Câu 126. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 4a.
D. 3a.
A. 2a.
B.
2
Câu 127.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
1
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
A.
α+1
Z x
Z
C.
dx = x + C, C là hằng số.
D.
0dx = C, C là hằng số.
Câu 128. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 91cm3 .
D. 64cm3 .
Câu 129. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
A. 9.
B. 3 3.
C. 8.
D. 27.
Câu 130. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
B.
.
C. 2.
A. .
2
2
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3.
4. A
C
D
5.
6.
7. A
D
10.
11.
D
13.
B
B
D
C
16.
17.
19.
C
8. A
9.
15.
B
D
B
D
21.
18.
B
20.
B
22.
B
24.
23. A
25.
C
26.
27.
D
28. A
29.
D
30. A
31. A
C
C
B
34.
35.
B
36.
D
B
32.
33.
37.
D
B
D
38.
39. A
40. A
41.
D
42.
43. A
D
44.
B
B
45.
C
46.
47.
C
48.
C
49.
C
50.
C
52.
C
54.
C
51. A
53.
C
55.
D
56.
57.
D
58. A
59.
D
60.
C
D
61. A
62.
63. A
64. A
65. A
66.
B
68.
B
67.
69.
B
D
70.
1
C
C
71.
B
72. A
73.
B
74.
D
76.
D
D
75.
77.
C
78.
B
79.
C
80.
B
81.
D
82.
D
D
83.
B
84.
85.
B
86.
87.
C
88. A
89.
C
90.
D
91.
B
B
92.
D
93.
B
94.
D
95.
B
96.
D
97.
B
98. A
99.
B
100.
101. A
102. A
103. A
104. A
105. A
106.
108.
D
109. A
110.
D
111.
112.
D
113.
C
C
B
115.
114. A
116.
118.
C
C
117.
C
119.
B
120.
D
D
121.
C
C
122.
D
123.
124.
D
125.
B
127.
B
129.
B
126.
B
128.
130.
D
C
2
D