Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 1 (51)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.48 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tính lim

2n2 − 1
3n6 + n4

2
.
3
d = 90◦ , ABC
d
Câu 2. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là

a3 2
a3 3
.
B.
.
A.
24
24



4n2 + 1 − n + 2
bằng
Câu 3. Tính lim
2n − 3
A. 2.
B. +∞.
A. 2.

B.

C. 0.

D. 1.

= 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).

a3 3
C.
.
12


D. 2a2 2.

C. 1.

D.

Câu 4. Khối chóp ngũ giác có số cạnh là

A. 10 cạnh.
B. 11 cạnh.

C. 12 cạnh.

D. 9 cạnh.

Câu 5. !Dãy số nào sau đây có giới !hạn là 0?
n
n
1
5
A.
.
B. − .
3
3

!n
4
C.
.
e

!n
5
D.
.
3


3
.
2

Câu 6. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 3.
D. 7.
Câu 7. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.

C. {5; 3}.

D. {3; 4}.

Câu 8. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 0.
D. 13.
!
!
!
x
1
2
2016
4

. Tính tổng T = f
+f
+ ··· + f
Câu 9. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
2017
Câu 10. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
Câu 11. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 12. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm

mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Câu 13. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 14. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12

12
4
6
Trang 1/10 Mã đề 1



Câu 15. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
.
B. V = a3 2.
A.
C. 2a3 2.
3

D. V = 2a3 .


Câu 16. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là


a3 3
a3
a3 3
3

A.
.
B.
.
C. a 3.
.
D.
12
4
3
Câu 17. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 18. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln x.
A. y0 = x
2 . ln x

C. y0 =

1
.
ln 2

D. y0 = 2 x . ln 2.


Câu 19. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 22016 .
D. 0.
π
Câu 20. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 4.
C. T = 3 3 + 1.
D. T = 2.
Câu 21. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.


B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

Câu 22. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.

D. Chỉ có (I) đúng.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.

Câu 23. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 0.

D. 3.

Câu 24. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3
3

a
5
a

6
a
15
A. a3 6.
B.
.
C.
.
D.
.
3
3
3
1 − xy
Câu 25. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 − 19
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.

D. Pmin =
.
21
9
3
9
Trang 2/10 Mã đề 1


Câu 26. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 27. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
2
4
8
!4x
!2−x
2
3
Câu 28. Tập các số x thỏa mãn



3 # 2
"
!
#
"
!
2
2
2
2
A.
; +∞ .
B. −∞; .
C. −∞; .
D. − ; +∞ .
5
3
5
3
log7 16
Câu 29. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.
C. 4.
D. −2.

!
1
1
1
+
+ ··· +
Câu 30. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 1.
D. 2.
2
Câu 31. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
n2 + n + 1
1 − 2n
A. un =
.
B.
u
=
.
C.
u
=
.

D.
u
=
.
n
n
n
n2
5n − 3n2
(n + 1)2
5n + n2
Câu 32. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên n lần.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
x−1 y z+1
= =

Câu 33. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 34. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
Câu 35. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. 2a 2.
B.
.
C. a 2.
D.
.
2
4
Câu 36. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (−1; 0).
Câu 37. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
Trang 3/10 Mã đề 1


Câu 38. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.

D. 5.

Câu 39. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.

D. {4; 3}.

5
Câu 40. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

1

A. .
D. 25.
B. 5.
C. 5.
5

Câu 41. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
log √a

Câu 42. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = (−2; 1).
2

D. D = [2; 1].

Câu 43. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 44. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 45. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Trục ảo.
Câu 46. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

Câu 47. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.

.
D. a3 .
12
6
24
Câu 48. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. 7.
C. .
D.
.
2
2
Câu 49. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 50. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .

C. (−1)−1 .

D.



−1.

−3

Câu 51. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Trang 4/10 Mã đề 1


Câu 52. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

1
B. − .
C. −e.
D. − .
A. − 2 .
e
e
2e
x
x
Câu 53. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 54. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 55. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .

D. k = .
A. k = .
9
6
18
15
Câu 56. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 57. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.

C. 12.

2
Câu 58. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i. √
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. 20.
D. |z| = 5.

Câu 59. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?

9
3
A. .
B. 1.
C. 3.
D. .
2
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 60. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
A. a 3.
B.
.
C.
.
D.
.
12
6

4
Câu 61. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 10.
D. ln 4.
1
Câu 62. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = −ey − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
3

Câu 63. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .
D. e.
x+1
Câu 64. Tính lim
bằng
x→−∞ 6x − 2
1
1
1

A. .
B. 1.
C. .
D. .
6
3
2
2
Câu 65. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 66. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Một mặt.

D. Ba mặt.
Trang 5/10 Mã đề 1


Câu 67. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
23
1728
.
B.

.
C.
.
D.
.
A.
4913
4913
4913
68
Câu 68. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.
C. 6.
D. 12.
Câu 69. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
9t
Câu 70. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. 1.
D. Vô số.

Câu 71. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 7 năm.
D. 9 năm.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 72. Tìm m để hàm số y =
x+m
A. 45.
B. 34.
C. 67.
D. 26.
Câu 73. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.

.
6
2
3
Câu 74. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 75. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.

C. 6.

D. 10.

Câu 76. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 77. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m
B. 8 3.
C. 16.

D. 8 2.
A. 7 3.
8
Câu 78. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 64.
D. 96.
Câu 79. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Không có câu nào C. Câu (II) sai.
sai.

D. Câu (I) sai.
Trang 6/10 Mã đề 1


Câu 80. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
Câu 81.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh

Z đề nàoZsai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 82. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 24.
D. 22.

Câu 83. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

C. 4.

D. 2.

Câu 84. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Z 2
ln(x + 1)
Câu 85. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 1.
D. 3.
Câu 86. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x3 − 3x.
x
5
Câu 87. Tính lim

n+3
A. 0.
B. 3.

C. y =

C. 1.

x−2
.
2x + 1

D. y = x4 − 2x + 1.

D. 2.

Câu 88. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
log(mx)
Câu 89. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.

Câu 90. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 1.

C. 3.

D. 2.

2
Câu 91. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.

Câu 92. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.
.
C. 18.
D. 27.
2
Câu 93. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
A. a 6.
B.
.
C. 2a 6.
D. a 3.
2
Câu 94. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
Trang 7/10 Mã đề 1


C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 95. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
A. √
.

D. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
x+1
Câu 96. Tính lim
bằng
x→+∞ 4x + 3
1
1
D. .
A. 1.
B. 3.
C. .
3
4
1
Câu 97. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Câu 98. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 2.
D. 0, 4.

x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 99. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
Câu 100. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 101. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
Z 3
x
a
a

Câu 102. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 4.
D. P = 16.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 103. [2] Phương trình log x 4 log2
12x − 8
A. 1.
B. Vơ nghiệm.
C. 2.
D. 3.
2n + 1
Câu 104. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. 0.
C. .
D. .

3
2
2
2
Câu 105. [1] Tập nghiệm của phương trình log2 (x − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5}.
C. {5; 2}.
D. {3}.
Câu 106. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (−∞; 1).

D. (1; +∞).

Câu 107. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 108. Cho z √
là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2.
C. P =

.
D. P = 2i.
2
2
Trang 8/10 Mã đề 1


2

Câu 109. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 6.

D. 8.
tan x + m
Câu 110. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 111. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = −1.


D. m = 0.

d = 120◦ .
Câu 112. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 3a.
D. 2a.
2
Câu 113. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 114. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 115. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 1.
C. T = 4 + .

D. T = e + 3.
e
e
Câu 116. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B. y0 = .
x
x

C.

1
.
10 ln x

D. y0 =

1
.
x ln 10

d = 30◦ , biết S BC là tam giác đều
Câu 117. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√

a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
13
26
9
Câu 118. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2

−1
x y z−1
x y−2 z−3
A. = =
.
B. =
=
.
1 1
1
2
3
−1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2
2
2
Câu 119. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

A. 5 mặt.
B. 4 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 120. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
Trang 9/10 Mã đề 1


Câu 121. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
√ thể tích của khối chóp 3S .ABC theo a


3
a 15
a
a3 15
a3 5
A.
.

B.
.
C.
.
D.
.
5
3
25
25
Câu 122. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của


√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích
a2 2
a2 5
a2 7
11a2
A.
.
B.
.
C.
.
D.
.

4
16
8
32
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 123. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
1
Câu 124. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. −3 ≤ m ≤ 4.
D. m = −3, m = 4.
Câu 125. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
B. −∞; .

C.
; +∞ .
A. − ; +∞ .
2
2
2

!
1
D. −∞; − .
2

Câu 126. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.

C. 5.

D. 4.

Z

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒


Z

f (u)dx = F(u) +C.


Câu 127. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
3
6
Câu 128. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .

B. 2e2 .
C. −e2 .
D. 2e4 .
n−1
Câu 129. Tính lim 2
n +2
A. 0.
B. 3.
C. 1.
D. 2.
Câu 130.
Các khẳngZđịnh nào sau đây là sai?
Z
A.
Z
C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

B.
Z
D.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.

C

4. A

5. A
7.

6.
B

C
C

D

10.

11.


D

12. A
14. A

C

15.

16.

D
D

17.

D

18.

19.

D

20.

21.

B


22.

B

23.

C

24.

25.

C

26.

27.

C

28.

29.

B

8.

9.

13. A

B

B

D
C
B
D

30.

C

31.

D

32.

C

33.

D

34.

C


35.

36.

B

37.

C

38.

44.

C

45. A

46. A

47. A

48.

49. A

50. A

51. A


52.

53.

D

54.

56.

B

57.

58.

B

59.

60.

D

61. A

62.

D


63. A

64. A
68.

D

42. A

B

43.

66.

B

40.

39. A
41.

D

B

1

C

D
B
C
D

65.

B

67.

B

69. A

C

D


70.

B

71.

72.

B


73.
C

74.
76.

D

84.

D

79.

B

81.

B

83.

86.

C

87. A

88.


C

89. A
D

90.

91.

C

B

93. A

94. A

95. A

96.
98.

C

85. A

B

92.


C

77.

B

82.

B

75. A

78. A
80.

D

D

97. A

B

99. A

100. A

101. A

102.


C

103. A

104. A

105.

B

106. A

107.

B

108.

B

109. A

110.

B

111. A

112.


B

113.

D
D

114.

D

115.

116.

D

117.

B

119.

B

118. A
120.

C


121.

122.

C

123. A

124.

D

125. A

126.

D

127.

128.
130.

129. A

C
D

2


C

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×