Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 1 (172)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.27 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.

C. 4.

D. 10.

Câu 2. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.

3
1
3
A. 1.
B. .
C. .
D.
.
2
2
2
Câu 3. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √


Khoảng cách từ C đến AC√0 bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7
Câu 4. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 5. [1] Đạo hàm của làm số y = log x là
1
1
B.
.
A. y0 = .
x

10 ln x

C. y0 =

1
.
x ln 10

D. y0 =

ln 10
.
x

Câu 6. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C 0√
D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C.
.
D. a 3.

2
2
3
Câu 7. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.

D. Bốn mặt.
8
x
D. 96.

Câu 8. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 82.

B. 81.

C. 64.

Câu 9. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
√3
4
Câu 10. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
5

A. a 3 .
B. a 3 .
C. a 8 .

D. 1 + 2 sin 2x.
7

D. a 3 .

Câu 11. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 12. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
24
6
12

2

Câu 13. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 3.

D. 5.

x2
Câu 14. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = 0.
e
e
Trang 1/10 Mã đề 1




Câu 15. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .

4
4

x2 + 3x + 5
Câu 16. Tính giới hạn lim
x→−∞
4x − 1
A. 1.
B. 0.

1−x2



− 4.2 x+

1−x2

− 3m + 4 = 0 có nghiệm

C. m ≥ 0.

C.

1
.
4

3
D. 0 < m ≤ .

4

1
D. − .
4

[ = 60◦ , S O
Câu 17. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S
√ BC) bằng
√ với mặt đáy và S O = a.

a 57
a 57
2a 57
.
B.
.
C.
.
D. a 57.
A.
19
17
19
Câu 18. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
C. 20.

D. 8.
Z 3
x
a
a
Câu 19. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = 28.
D. P = −2.
Câu 20. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 21. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B. 2
.

C. √
.
D. √
.
A. √
2
2
2
2
2
a +b
a +b
a +b
2 a2 + b2
Câu 22. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 6.

D. 10.

Câu 23. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 24. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 7.
D. 2.
2


Câu 25. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. √ .
C. 3 .
A. 2 .
e
2e
2 e

D.

2
.
e3

π
Câu 26. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2 3.
C. T = 2.
D. T = 4.
A. T = 3 3 + 1.
Câu 27. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O

đến (S AB) bằng




a 6
A. a 6.
B. 2a 6.
C.
.
D. a 3.
2
Câu 28. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. +∞.

C. 2.

D. 3.
Trang 2/10 Mã đề 1



Câu 29. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a 38
3a 58
a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
!
x+1
Câu 30. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A. 2017.
B.
.
C.

.
D.
.
2018
2018
2017
Câu 31. Các khẳng định nào sau đây là sai?
!0
Z
Z
Z
A.
k f (x)dx = k
f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 32. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng





a 2
a 2
A. a 2.
B. 2a 2.
C.
.
D.
.
4
2
!2x−1
!2−x
3
3


Câu 33. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).
D. [3; +∞).
Câu 34. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α α

α


A. a b = (ab) .

B. a

αβ

α β

= (a ) .

C. a

α+β

α

β

= a .a .

α

D. β = a β .
a

Câu 35. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một hoặc hai.

D. Có một.


4n2 + 1 − n + 2
Câu 36. Tính lim
bằng
2n − 3
3
A. 1.
B. 2.
C. +∞.
D. .
2
Câu 37. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. − < m < 0.
C. m ≤ 0.
D. m > − .
4
4
Câu 38. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = ln x − 1.

D. y0 = x + ln x.


Câu 39. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m > 0.

D. m , 0.

Câu 40. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 3.

D. 2.

Câu 41. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 2400 m.
D. 1202 m.
Trang 3/10 Mã đề 1


Câu 42. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .

B. m < .
C. m > .
D. m ≥ .
4
4
4
4
2
2
2
1 + 2 + ··· + n
Câu 43. [3-1133d] Tính lim
n3
1
2
A. +∞.
B. .
C. 0.
D. .
3
3
0
Câu 44. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 4.
D. 11.
Câu 45. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 46. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞ g(x)
b
1
Câu 47. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
Câu 48. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √

Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
4
12
2
x−2 x−1
x
x+1
Câu 49. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x

x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3].
5
Câu 50. Tính lim
n+3
A. 1.
B. 2.
C. 0.
D. 3.
Câu 51. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 52.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 3.
C. 2.
D. 1.
Câu 53. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
Trang 4/10 Mã đề 1



C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Câu 54. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 26.
.
C. 2.
B.
D. 2 13.
13
n−1
Câu 55. Tính lim 2
n +2
A. 0.
B. 2.
C. 1.
D. 3.
Câu 56. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 27.

D. 12.


Câu 57. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
Câu 58. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 59. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 20.
D. 15, 36.
Câu 60. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
3
6
Câu 61. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. a.
C. .
D.
.
A. .
3
2
2
x3 − 1
Câu 62. Tính lim
x→1 x − 1

A. −∞.
B. +∞.
C. 3.
D. 0.
Câu 63. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 64. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 65. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.

B. P = 10.
C. P = −10.
D. P = −21.
Câu 66. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 5/10 Mã đề 1


(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 67. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
.
C. P = 2.
D. P =
.
A. P = 2i.
B. P =
2
2
1

Câu 68. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 69. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. −4.

D. 4.

Câu 70. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
B. m = ±1.
C. m = ± 3.
D. m = ±3.
A. m = ± 2.
Câu 71. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 7 3.
B. 16.

C. 8 3.
D. 8 2.
Câu 72. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 2.

C. 1.

D. +∞.

Câu 73. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 1587 m.
D. 387 m.
Câu 74. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
Câu 75. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .

C. 48cm3 .
D. 84cm3 .
log7 16
bằng
Câu 76. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. −4.
B. 4.
C. 2.
D. −2.
3a
Câu 77. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3

4
3
x−3
Câu 78. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. 0.
C. −∞.
D. +∞.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 79. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. −1.
C. 2.
D. .
2
x
x
x
Câu 80. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Trang 6/10 Mã đề 1



x+2
Câu 81. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 82. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2

a2 + b2 + c2
a2 + b2 + c2
Câu 83. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. (−∞; +∞).

D. [1; 2].

Câu 84. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 85. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.

C. 20.

D. 30.

Câu 86. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.

C. 0.

D. 13.



x=t




Câu 87. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2

2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
t
9
Câu 88. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. Vơ số.
D. 1.
Câu 89. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
2n − 3
Câu 90. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. −∞.

C. +∞.
D. 0.
Câu 91. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


a3 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
!
5 − 12x
Câu 92. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.

B. 2.
C. 1.
D. Vô nghiệm.
Trang 7/10 Mã đề 1


Câu 93. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.

1 − 2n
Câu 94. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. − .
C. .
D. 1.
3

3
3
mx − 4
Câu 95. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 34.
C. 67.
D. 26.
Câu 96. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. 6.

D. −1.

Câu 97. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.

D. 20.

C. 8.

Câu 98. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt

2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
B.
.
C. 2.
D. 1.
A. 3.
3
Z 1
Câu 99. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4

0

B. 1.

C.

Câu 100. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.


1
.
2

D. 0.

C. 144.

D. 24.

Câu 101. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
1

Câu 102. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = R.

D. D = (−∞; 1).


d = 30◦ , biết S BC là tam giác đều
Câu 103. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
26
9
16
Trang 8/10 Mã đề 1


Câu 104. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.

C. −2.
D. −7.
27
Câu 105. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. (4; +∞).
D. [6, 5; +∞).
Câu 106. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4e + 2

D. m =

1 + 2e
.
4 − 2e

Câu 107. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.

B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 108. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 2.

D. 1.

Câu 109. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Thập nhị diện đều. D. Bát diện đều.
1
Câu 110. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.

C. 1.

D. −1.

Câu 111. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1

B. k = .
C. k = .
D. k = .
A. k = .
18
15
6
9
Câu 112. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
7
5
8
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
3

Câu 113. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e2 .
D. e.

log23

q
x + log23 x + 1 + 4m −

Câu 114. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].

Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

3
10a
3
A. 10a3 .
B. 20a3 .
C. 40a3 .
D.
.
3
Câu 116. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1

1
2
.
B. .
C.
.
D. .
A.
10
5
10
5
Câu 117. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 118. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 2.
D. 0, 4.
Trang 9/10 Mã đề 1


Câu 119. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.


D. 1.

Câu 120. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
2−n
Câu 121. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 2.
C. −1.
D. 0.
Câu 122. Tính mơ đun của số phức√z biết (1 + 2i)z2 = 3 + 4i. √

4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.

Câu 123. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 124. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 125. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. [1; +∞).
D. (−∞; −3].
Câu 126. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh

A, B, C, M,

√ N, P bằng


14 3
20 3
C.
.
B. 6 3.
.
D. 8 3.
A.
3
3
Câu 127. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.
D. e.
Câu 128. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln x.
ln 2
Câu 129.
√ Biểu thức nào sau đây khơng
√ 0 có nghĩa
−3

A.
−1.
B. (− 2) .
!
1
1
1
Câu 130. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 1.
2

C. y0 =

1
2 x . ln

x

.

D. y0 = 2 x . ln 2.

C. 0−1 .


D. (−1)−1 .

C. 0.

D. 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3.

B

4.
C

5.
7.


D
C

6.
D

8.

B
B

9.

C

10.

11.

C

12.

D

14.

D

16.


D

13. A
15.

B

17. A
19.

18. A
B

20. A

21. A

22.

23.

D

B

24.

D


25. A

26.

D

27. A

28.

29.
31.
33.

30.

C
D
B

35.

C

C
B

32.

D


34.

D

36. A

37.

D

38. A

39.

D

40. A

41.

B

42. A

43.

B

44. A


45. A

46.

C

48.

C

50.

C

51. A

52.

C

53. A

54.

B

55. A

56.


B

47.

B

49.

D

57.

D

58. A

59.

D

60.

C
C

61.

B


62.

63.

B

64. A

65.
67.

D

66. A
68.

C
1

B


69. A
71.

70. A
B

72. A


73. A

75.

76. A

77. A

78.

79. A

B

80.

C

81. A

82.

C

83.

84.

C


85.

86.

C

87. A

88.

B

90.

D

92.
94.

C
B

C
B

89.

C

91.


C

93.

C

95.

96.

C

97.

98.

C

99.

100.

C

102.

B

B

D
C

101. A

B

103. A

104.

C

105. A

106.

C

107.

C

108.

C

109.

C


110.

112.

B

113. A
115.

116. A

B
D

118.

119.

D

120.
122.

C

123. A

124.


125. A

126.

127.
129.

C

114.

117.
121.

D

D

B
C
B
C
B

128.
130.

C

2


D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×