TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI TỐN SỬ THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
x+2
Câu 2. Tính lim
bằng?
x→2
x
A. 3.
B. 1.
C. 0.
D. 2.
x−1
y
z+1
Câu 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x + y − z = 0.
D. 2x − y + 2z − 1 = 0.
Câu 4. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
d = 300 .
Câu 5. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.
3
√
3a 3
a 3
A. V =
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
2
2
5
Câu 6. Tính lim
n+3
A. 1.
B. 0.
C. 3.
D. 2.
Câu 7. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ√thức |z − 1 + 3i| = 3. Tìm√min |z − 1 − i|.
A. 2.
B. 1.
C. 2.
D. 10.
√
Câu 8. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá
trị nhỏ nhất của biểu thức P = "x + 2y! thuộc tập nào dưới đây?
"
!
5
5
;3 .
A. [3; 4).
B. 2; .
C. (1; 2).
D.
2
2
Câu 9. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 3.
D. 0.
Câu 10. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; .
C. −∞; − .
2
2
2
!
1
D.
; +∞ .
2
Câu 11. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
x+3
Câu 12. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 13. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
A. √
.
B. 2
.
C.
.
D.
.
√
√
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 1/10 Mã đề 1
Câu 14. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = [2; 1].
2
D. D = (−2; 1).
Câu 15. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 16. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối bát diện đều.
2
Câu 17. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
B. m = ±1.
C. m = ± 2.
D. m = ±3.
A. m = ± 3.
Câu 18.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
4
6
12
2
Câu 19. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 20. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. 6.
D. .
A. 9.
B. .
2
2
x−3 x−2
x−3
x−2
Câu 21. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 22. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 23. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.
C. 4.
D. 8.
d = 30◦ , biết S BC là tam giác đều
Câu 24. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
9
26
13
Câu 25. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là
√
3
3
3
4a
2a
2a 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3
√
a 3
a 2
a 3
A.
.
B.
.
C. a3 3.
D.
.
4
2
2
Câu 27. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Trang 2/10 Mã đề 1
Câu 28. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.
√
√
4n2 + 1 − n + 2
Câu 29. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. +∞.
2
Câu 30. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. Không tồn tại.
D. e.
D. 1.
D. 0.
Câu 31. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 32. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.
C. 8.
D. 30.
Câu 33. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 10.
D. 27.
Câu 34. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 − sin 2x.
Câu 35. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
.
B. a 3.
C. a 6.
D. 2a 6.
A.
2
Câu 36. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
Câu 37. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
D. m = −1.
Câu 38. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. .
C. 1.
D. 3.
2
2
Câu 39. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.
D. −2.
Câu 40. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
2a3 6
a3 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
2
4
Câu 41. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 42. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
3
2
Câu 43. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Trang 3/10 Mã đề 1
Câu 44. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
!
1
1
1
Câu 45. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 1.
C. 0.
D. 2.
2
Câu 46. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Câu 47. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Câu 48. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (1; 0; 2).
D. ~u = (2; 1; 6).
Câu 49. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 50. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 9 năm.
D. 7 năm.
Câu 51. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
Câu 52. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
Câu 53. [3-1229d] Đạo hàm của hàm số y =
A. y0 =
1 − 2 log 2x
.
x3
B. y0 =
2x3
1
.
ln 10
C. y0 = 1 + ln x.
log 2x
là
x2
C. y0 =
1 − 4 ln 2x
.
2x3 ln 10
D. y0 = 1 − ln x.
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
Câu 54. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + 3.
C. T = 4 + .
D. T = e + .
e
e
Trang 4/10 Mã đề 1
x = 1 + 3t
Câu 55. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
7t
x
=
1
+
3t
x = −1 + 2t
A.
.
C.
D.
y = −10 + 11t . B.
y=1+t
y = 1 + 4t .
y = −10 + 11t .
z = 6 − 5t
z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
Câu 56. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 57. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
C. 5.
D. 2.
Câu 58. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
n2 − 2
n2 − 3n
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
A. un =
n
n
n
n2
(n + 1)2
5n + n2
5n − 3n2
Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
3
3
3
.
A. 40a .
B. 10a .
C. 20a .
D.
3
√
Câu 60. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 61. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
Z 2
ln(x + 1)
Câu 62. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 3.
D. 1.
1
Câu 63. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 1.
D. 4.
Câu 64. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.
C. 10.
D. 6.
Câu 65.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) − g(x))dx =
A.
Z
C.
( f (x) + g(x))dx =
f (x)dx −
Z
f (x)dx +
g(x)dx.
k f (x)dx = f
B.
Z
Z
g(x)dx.
D.
f (x)g(x)dx =
Z
f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.
Câu 66. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 5
a 15
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Trang 5/10 Mã đề 1
√
x2 + 3x + 5
x→−∞
4x − 1
1
B. − .
4
Câu 67. Tính giới hạn lim
A. 0.
1
.
4
D. 1.
C. 2.
D. 3.
C. −1.
D. 2.
C.
Câu 68. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.
1
Câu 69. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
Câu 70. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. Không tồn tại.
D. −5.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 71. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
.
B.
.
C. 2a 2.
D.
.
A.
12
24
24
3a
, hình chiếu vng
Câu 72. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a
2a
a 2
A. .
B. .
C.
.
D.
.
4
3
3
3
Câu 73. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 2.
B. 26.
C. 2 13.
D.
.
13
Câu 74. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 4.
C. 0, 2.
D. 0, 3.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 75. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. [−3; +∞).
D. (−∞; −3].
Câu 76. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 3.
C. 5.
D. 2.
Câu 77. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
12
6
log(mx)
Câu 78. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 79. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.
C. 5.
3
2
Câu 80. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. −3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.
D. 2.
√
D. 3 − 4 2.
Trang 6/10 Mã đề 1
√
Câu 81. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3
a3 3
3
D.
A.
.
B.
.
C. a 3.
.
4
12
3
Câu 82. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
4a3 3
5a3 3
2a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
! x3 −3mx2 +m
1
Câu 83. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
Câu 84. Tính lim
x→3
x2 − 9
x−3
C. −3.
D. +∞.
log(mx)
Câu 85. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
!
x+1
Câu 86. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
B. 2017.
C.
.
D.
.
A.
2017
2018
2018
√
Câu 87. √Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. 7.
C. 6 2.
D. −7.
A. 6.
B. 3.
Câu 88. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 89. Tính lim
x→+∞
A. −3.
x−2
x+3
B. 2.
2
C. − .
3
D. 1.
Câu 90. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 91. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −8.
D. x = −2.
Câu 92. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = +∞.
C. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
D. lim f (x) = f (a).
x→a
Trang 7/10 Mã đề 1
Câu 93. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 20.
D. 24.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 94. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. Vơ số.
D. 0.
q
2
Câu 95. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 96. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (I) và (III).
C. Cả ba mệnh đề.
Câu 97. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (0; −2).
√
√
D. (II) và (III).
D. (1; −3).
Câu 98. [12215d] Tìm m để phương trình 4 x+
− 4.2 x+
− 3m + 4 = 0 có nghiệm
3
3
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 99. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. .
D. 4.
A. .
8
2
4
Câu 100. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
1−x2
1−x2
mx − 4
Câu 101. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 67.
D. 45.
Câu 102. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 103. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 9 mặt.
!4x
!2−x
2
3
Câu 104. Tập các số x thỏa mãn
≤
là
3 #
2
#
"
!
"
!
2
2
2
2
A. −∞; .
B. −∞; .
C.
; +∞ .
D. − ; +∞ .
3
5
5
3
Trang 8/10 Mã đề 1
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 4.
Câu 105. [1-c] Giá trị biểu thức
A. 1.
D. 3.
Câu 106. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 1.
B. 3.
C. 2.
D. 5.
2
x
Câu 107. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = .
e
e
Câu 108. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1079
1728
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 109. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −2.
C. −7.
D.
.
27
Câu 110. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Có hai.
D. Khơng có.
Câu 111. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C. x = 2.
D. x = 0.
Câu 112. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 113. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. −6.
2
D. 5.
Câu 114. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. − .
D. − .
A. −e.
B. − 2 .
e
2e
e
Câu 115. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
4
12
Câu 116. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
Câu 117. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 4 mặt.
0
0
D. 6 mặt.
0
Câu 118. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
6
2
Câu 119. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. 2.
B. −2.
C. − .
D. .
2
2
Câu 120. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
Trang 9/10 Mã đề 1
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 0.
C. 2.
D. 3.
Câu 121. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 =
.
C. y0 = 2 x . ln 2.
D. y0 = 2 x . ln x.
2 . ln x
ln 2
Câu 122. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
a
2a
.
B.
.
C.
.
D. .
A.
9
9
9
9
√
Câu 123. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
Câu 124. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
Câu 125. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 126. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =
A. Nếu
Z
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Câu 127. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 128. Tính lim
A. 1.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.
C.
Câu 129.
Các khẳng định nàoZsau đây là sai?
Z
A.
Z
C.
7
.
3
Z
2
D. - .
3
!0
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Câu 130. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.
C
1.
3. A
4.
5. A
6.
7.
D
D
C
12.
13.
D
15. A
B
D
21.
14.
B
16.
B
C
18.
19.
20.
24.
25. A
26.
B
29.
D
22. A
C
23. A
31.
B
10. A
11. A
27.
C
8.
B
9.
17.
D
D
B
B
28.
D
30.
D
32.
33. A
D
B
C
34.
35.
36.
C
37. A
D
38.
B
B
39.
D
40.
41.
D
42.
C
44.
C
43. A
45.
B
46.
47.
D
49.
C
48.
C
50.
C
C
51.
D
52.
53.
D
54.
55. A
57.
B
59.
61.
B
63.
67.
C
58.
C
B
62. A
64.
C
65.
B
56.
60.
C
B
D
B
1
D
66.
C
68.
C
69. A
70.
C
C
71.
D
72.
73.
D
74.
D
75.
D
76.
D
78.
D
77.
C
79. A
80.
D
81.
82. A
C
83.
84. A
D
85.
C
87.
89.
D
D
88.
D
C
92.
93. A
95.
86.
90.
C
91.
B
94.
D
B
96. A
B
97.
C
98.
B
99.
C
100.
B
101.
B
103.
102. A
104.
C
105.
B
106.
107.
B
108.
109.
B
110.
D
C
B
C
111. A
112.
113. A
114.
C
115. A
116.
C
118.
C
120.
C
122.
C
D
117.
119.
B
121.
123.
C
B
124.
B
D
125. A
126.
127. A
128.
D
129. A
130.
D
2
B