Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (884)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.81 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. [1; +∞).
D. (−∞; −3].
Câu 2. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3

a
a
5
6
a3 15
A.
.
B. a3 6.
C.


.
D.
.
3
3
3
Câu 3. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Hai cạnh.

D. Ba cạnh.

Câu 4. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 5.
mệnh đề sau, mệnh đềZ nào sai? Z
Z Cho hàm số f (x),
Z g(x) liên
Z tục trên R. Trong các Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z

Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 6. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
B. a 2.
C.
.
D.
.
A. a 3.
2
3
Câu 7. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của khối
chóp A.GBC
A. V = 6.
B. V = 3.

C. V = 4.
D. V = 5.
Câu 8. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 3.
D. 0.
Câu 9. Giá√trị cực đại của hàm số y =√x3 − 3x2 − 3x + 2

B. −3 + 4 2.
C. 3 + 4 2.
A. 3 − 4 2.


D. −3 − 4 2.
!
3n + 2
2
Câu 10. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.
D. 2.
Câu 11. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .

B.
.
C. 5.
D. 7.
2
2
Câu 12. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
1 − 2n
Câu 13. [1] Tính lim
bằng?
3n + 1
2
A. .
B. 1.
3

C.

1
.
3

2
D. − .
3
Trang 1/10 Mã đề 1



Câu 14. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC

√ với đáy và S C = a 3. 3Thể
√là
a3 3
2a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
4
9
2
12
Câu 15. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.

C. 20.


D. 8.

Câu 16. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
Câu 17. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 18. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.

.
C.
.
D.
.
A.
4
6
12
12
2

Câu 19. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 7.

D. 6.

Câu 20.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
xα+1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z x

Z
C.

0dx = C, C là hằng số.

D.

dx = x + C, C là hằng số.

Câu 21. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 22. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
8
2
4
Câu 23. Cho hình chóp S .ABCD

√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
a
a 3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
3
9
a
1
Câu 24. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 7.
C. 4.
D. 2.


Câu 25. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38
3a
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Trang 2/10 Mã đề 1


Câu 26. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).

D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
2−n
bằng
Câu 27. Giá trị của giới hạn lim
n+1
A. 0.
B. 1.

C. 2.
D. −1.
2
ln x
m
Câu 28. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
C. S = 22.
D. S = 32.
Câu 29. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 30. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.

B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 31. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 32. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 24.
D. 20.
Câu 33.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
2
4
Câu 34. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

Câu 35. [2] Tổng các nghiệm của phương trình 3
A. 4.
B. 3.
3
x −1
Câu 36. Tính lim
x→1 x − 1
A. −∞.
B. 3.


a3 2
C.
.
12


a3 2
D.
.
6

C. Khối tứ diện đều.

D. Khối lập phương.

x2 −4x+5

= 9 là
C. 2.


D. 5.

C. +∞.

D. 0.

Câu 37. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 38. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.
Trang 3/10 Mã đề 1



Câu 39. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
=
=
.
B. = =
.
A.
2
3
4
1 1
1
x−2 y+2 z−3
x y−2 z−3

C.
=
=
.
D. =
=
.
2
2
2
2
3
−1
1
Câu 40. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 4.
D. 1.
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 4 − 2 ln 2.
C. 1.
D. e.
2x + 1
Câu 42. Tính giới hạn lim
x→+∞ x + 1
1

A. 1.
B. .
C. 2.
D. −1.
2
Câu 43. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 44. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.

C. 30.

D. 20.

Câu 45. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
.
A. .
n
n

1
C. √ .
n


D.

sin n
.
n

Câu 46. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 4 mặt.

D. 3 mặt.
q
Câu 47. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 48. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 6, 12, 24.
D. 2, 4, 8.
Câu 49. Cho hàm số y = x3 − 2x2 + x + 1.

! Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 50. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {5; 3}.

D. {3; 4}.

Câu 51. Tìm giá trị lớn chất của hàm số y = x − 2x − 4x + 1 trên đoạn [1; 3].
3

A. −4.

B. −2.

2


C. −7.

Câu 52. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).
Câu 53. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4e + 2

D.

67
.
27

D. (1; +∞).
D. m =

1 + 2e

.
4 − 2e
Trang 4/10 Mã đề 1


x2 − 5x + 6
Câu 54. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.

C. 5.

D. 1.

Câu 55. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Câu 56. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 18 tháng.
D. 16 tháng.

Câu 57. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 58. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 59. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?

Câu 60. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
B. lim un = 1.
A. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 61. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 12.
C. 18.
D. 27.
2
x+1
Câu 62. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
4
3


x2 + 3x + 5
Câu 63. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 1.
C. − .
D. 0.
4
4
Câu 64. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 0.
C. 7.
D. 5.
Câu 65. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3

3
a 6
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
48
24
16
Câu 67. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.
C. 5.
D. 6.
Trang 5/10 Mã đề 1


Câu 68. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là




3
5a 3
4a3 3
a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
12 + 22 + · · · + n2
Câu 69. [3-1133d] Tính lim
n3
2
1
A. .
B. .
3
3

C. 0.


D. +∞.

[ = 60◦ , S O
Câu 70. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A.
C.
.
B. a 57.
.
D.
.
19
19
17
x2 − 3x + 3
đạt cực đại tại
Câu 71. Hàm số y =
x−2
A. x = 2.
B. x = 3.
C. x = 1.
D. x = 0.

!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 72. [2] Phương trình log x 4 log2
12x − 8
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
2a
a
a
a 2
.
B.
.
C. .
D. .
A.
3
3
4
3
 π π
Câu 74. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;

2 2
A. 1.
B. 7.
C. 3.
D. −1.
Câu 73. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 75. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. Cả ba mệnh đề.

Câu 76. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.

D. (II) và (III).
D. 2.

Câu 77. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.

B. 0, 4.
C. 0, 5.
D. 0, 2.
Câu 78. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m ≥ .
D. m < .
A. m ≤ .
4
4
4
4
Trang 6/10 Mã đề 1


Câu 79. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
d = 30◦ , biết S BC là tam giác đều
Câu 80. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách

√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
26
13
9
Câu 81. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 82. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
C. 12.
D. 8.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?

Câu 83. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 84. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (−∞; 1).

D. (2; +∞).

Câu 85. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(4; 8).
D. A(−4; 8).
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 6.
C. 2 2.
D. 2.

Câu 86. [3-1214d] Cho hàm số y =

Câu 87. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
Câu 88. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.

D. Hai mặt.

Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
8a 3
a 3
4a 3
A.
.
B.

.
C.
.
D.
.
9
3
9
9
Câu 90. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. Một mặt.

Câu 91. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
Câu 92. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.
Trang 7/10 Mã đề 1



2n + 1
Câu 93. Tìm giới hạn lim
n+1
A. 1.
B. 3.

C. 0.

D. 2.
un
Câu 94. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 95. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Câu 96. [4-1212d] Cho hai hàm số y =

Câu 97. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Câu 98. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
5a
8a
.
B.
.
C. .
D.
.

A.
9
9
9
9
Câu 99. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = [2; 1].
D. D = (−2; 1).
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 100. Tìm m để hàm số y =
x+m
A. 34.
B. 45.
C. 67.
D. 26.
2

Câu 101. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
2
3
Câu 102. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với

đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
A. 20a3 .
B.
.
C. 10a3 .
D. 40a3 .
3
2

Câu 103. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
.
C. 3 .
A. √ .
B.
3
2e
e
2 e
Câu 104. Hàm số nào sau đây khơng có cực trị
1
A. y = x3 − 3x.
B. y = x + .
x


C. y =

x−2
.
2x + 1

D.

1
.
e2

D. y = x4 − 2x + 1.

Câu 105. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 106. Tính lim
x→2

A. 3.

x+2
bằng?
x
B. 2.

C. 1.


Câu 107. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.

D. 0.
D. −1.
Trang 8/10 Mã đề 1


Câu 108. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √

a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x
Câu 109.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
A.
.
B. .
C. 1.
D. .
2
2
2

Câu 110. Tính mơ đun của số phức √
z biết (1 + 2i)z2 = 3 + 4i. √
4
C. |z| = 5.
A. |z| = 5.
B. |z| = 5.


D. |z| = 2 5.

Câu 111. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức

trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
10
40
20
C50
.(3)30
C50
.(3)40
C50
.(3)10
C50
.(3)20
.
B.
.
C.
.
D.
.
A.
450
450
450
450
Câu 112. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.

C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 113. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
B.
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 114. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
!4x
!2−x
3
2
Câu 115. Tập các số x thỏa mãn


3 #
2
#
"

!
"
!
2
2
2
2
A. −∞; .
B. −∞; .
C.
; +∞ .
D. − ; +∞ .
5
3
5
3
Câu 116. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3
a3 3
A.
.
B.
.
C.

.
D. a3 .
2
3
6
Câu 117. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
12
4
8
4
Câu 118. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. .
C. 2e + 1.

e

D. 2e.
Trang 9/10 Mã đề 1


3

Câu 119. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e2 .
D. e.
[ = 60◦ , S A ⊥ (ABCD).
Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a
a
a
2
3
2
.

C.
.
D.
.
A. a3 3.
B.
12
6
4
Câu 121. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 122. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.

D. Vơ nghiệm.

Câu 123. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.

D. m = 0.

Câu 124. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.

B. ln 4.
C. ln 14.
D. ln 10.
Câu 125. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
1079
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
!
!
!
4x
1
2
2016
Câu 126. [3] Cho hàm số f (x) = x
. Tính tổng T = f

+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2016.
D. T = 2017.
2017
Câu 127. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = x + ln x.
C. y0 = 1 − ln x.
D. y0 = ln x − 1.


4n2 + 1 − n + 2
bằng
Câu 128. Tính lim
2n − 3
3
A. 1.
B. .
C. 2.
D. +∞.
2

Câu 129. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).


Câu 130. Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
√6 − x


A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

2.

1. A
3.

D

4.

5. A
C

10.

B

12.

13.

C
B

14.

D

15. A

16.


17. A

18.

19.

C

8. A

11. A

C

20.

21.

B

22.

23.

B

24.

25. A


D
B
D
B
D
B

26.

27.

D

29. A

D

30.

D

C

32.

33.

C


34.

35. A

36.

37.

D
B
D

41.

C

28.

31.

39.

B

6.

7.
9.

D


B
D
B

38.

D

40.

D

42.

43. A

44.

C
B

45.

B

46.

C


47.

B

48.

C

49.
51.
53.

50.

C
B

52.
56.
58.

C

59.

D

D
B


60. A

61.

C

62. A

63.

C

64. A

65.

C

66.

67.

C

54. A

C

55. A
57.


D

D

68.
1

B
C


69.

70.

B

71.

D

72.

C

73.

B


74. A

75.

B

76.

77. A

C

78. A

79.

80.

C

C
D

82.

81. A
83.

C


84. A

85.

C

86. A

87.

D

88. A

89. A
91.

C

90. A
B

92.

93.

D

94. A


95.

D

96. A

97.

B

98. A

99.

B

100. A

101.

B

102. A

C

103.

D


104.

105.

D

106.

B

108.

B

107.

B

109.

C

111. A
113.

D

117.

110.


C

112.

C

114.

C

115.

D

116. A

C

118. A
120.

119. A
121.

C

C
C


B

124.

125.

B

126.

127. A

D

122.

123.

129.

C

B

128. A
D

130.

2


C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×