Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (880)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.03 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số y =
A. x = 2.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

C. x = 0.

D. x = 3.

Câu 2. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2


3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
=
=
.
B. = =
.
A.
2
3
4
1 1
1
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.
2
3
−1

2
2
2
Câu 3. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Có một hoặc hai.
D. Khơng có.
Câu 4. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 5. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là

4 √



a3 3
a3 3

a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
36
24
Câu 6. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
8a3 3
a3 3
4a3 3
8a3 3
A.
.

B.
.
C.
.
D.
.
3
9
9
9
log(mx)
Câu 8. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 9. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).

B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n

Câu 10. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ

C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B. 2.
C. 3.
D.
.
3
Câu 11. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.

D. 8 mặt.
Trang 1/10 Mã đề 1


Câu 12. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).

(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.

C. Câu (III) sai.

D. Câu (I) sai.

Câu 13. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 2e.
C. 3.
A. .
e

D. 2e + 1.

Câu 14. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
Câu 15. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc

với
đáy

S
C
=
a
3. √
Thể tích khối chóp S .ABC √là


3
3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
2
9
4
Câu 16.! Dãy số nào sau đây có giới

!n hạn là 0?
n
4
1
.
B.
.
A.
3
e

!n
5
C. − .
3

!n
5
D.
.
3

log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.


Câu 18. √Xác định phần ảo của số phức z = ( 2 + 3i)2
A. −6 2.
B. 7.
C. −7.
Câu 17. [1-c] Giá trị biểu thức

Câu 19. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 4.

C. 2.

D. 1.

D. 6 2.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 20. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.

B. 7 3.
C. 8 3.
D. 8 2.
Câu 21. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 4.

D. 24.

Câu 22. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. n3 lần.
D. 3n3 lần.
3
2
Câu 23. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.


D. −3 − 4 2.

Câu 24. Khối đa diện loại {4; 3} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối lập phương.

D. Khối bát diện đều.

C. Khối 12 mặt đều.

2
Câu 25. Tính
√ mô đun của số phức z√biết (1 + 2i)z = 3 + 4i. √4
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| = 5.
Trang 2/10 Mã đề 1


Câu 26. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
.
ln 10
Câu 27. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
7
5
8

; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
A. f 0 (0) = ln 10.

B. f 0 (0) = 1.

C. f 0 (0) = 10.

D. f 0 (0) =

C. 3.

D. +∞.

Câu 28. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 1.

Câu 29.

bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.
.
B. .
C.
.
4
4
2
Câu 30. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 11 cạnh.
C. 12 cạnh.


3
D.
.
12
D. 9 cạnh.

2

Câu 31. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.

C. 2 − log2 3.

D. 1 − log3 2.

Câu 32. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.

D. 3.

Câu 33. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
Câu 34. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n
C. {5; 3}.

Câu 35. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.


D. {4; 3}.
D. Hai mặt.

Câu 36. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 37. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 38. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
Câu 39. Tính lim
A. 0.

2n − 3
bằng

+ 3n + 1
B. +∞.

2n2

C. −∞.

D. 1.
Trang 3/10 Mã đề 1


Câu 40. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.

Câu 41. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.

C. 9.

D. 7.

C. 4.

D. 36.

Câu 42. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp

cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
!x
1
1−x

Câu 43. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. log2 3.
B. − log3 2.
C. 1 − log2 3.

D. − log2 3.
Câu 44. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
1
9
A. .
B. .
C.
.
D.
.
5
5
10
10

Câu 45. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vơ số.
1
Câu 46. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.

B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
x2 − 12x + 35
x→5
25 − 5x
2
2
A. −∞.
B. .
C. +∞.
D. − .
5
5
Z 3
x
a
a
Câu 48. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 16.
D. P = 4.


Câu 47. Tính lim

Câu 49. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + 1.
D. T = e + .
e
e
3
2
Câu 50. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [1; 2].
B. (−∞; +∞).
C. (1; 2).
D. [−1; 2).
1
Câu 51. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 52. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối chóp S .ABMN là
Trang 4/10 Mã đề 1




5a3 3
A.
.
3


4a3 3
B.
.
3
2n + 1
Câu 53. Tìm giới hạn lim
n+1
A. 1.
B. 2.


2a3 3
C.
.
3


a3 3
D.
.
2


C. 3.

D. 0.

Câu 54. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.

B. y = x4 − 2x + 1.

C. y =

x−2
.
2x + 1

1
D. y = x + .
x

Câu 55. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
C.
;3 .
D. [3; 4).
A. (1; 2).

B. 2; .
2
2
Câu 56. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều.


ab.

D. Bát diện đều.

2n + 1
Câu 57. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. 0.
C. .
D. .
3
2
2
4
0
Câu 58. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
ln 2
1

C. 2.
D.
.
A. 1.
B. .
2
2
Câu 59. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).

D. lim+ f (x) = lim− f (x) = +∞.

x→a

x→a

x→a

Câu 60. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 64cm3 .
D. 91cm3 .

Câu 61. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (−∞; 1).

D. (0; 2).
 π π
3
Câu 62. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. −1.
D. 7.
Câu 63. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.

C. 6.

Câu 64. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
C. − .
B. − 2 .
2e
e
e

Câu 65. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 3 nghiệm.
Câu 66. Tính lim

D. 10.
D. −e.
D. 2 nghiệm.

2n2 − 1
3n6 + n4

2
.
D. 2.
3
Câu 67. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
A. 1.

B. 0.

C.

Trang 5/10 Mã đề 1



Câu 68. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
B. − ; +∞ .
C. −∞; − .
D.
; +∞ .
A. −∞; .
2
2
2
2
Z 1
Câu 69. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
C. 1.
D.
2
Câu 70. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.

.
B. −7.
C. −2.
D.
27
Câu 71. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. −5.
D.
A. 0.

B.

1
.
4
−4.

Không tồn tại.

Câu 72. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .

C. k = .
D. k = .
15
6
9
18
Câu 73.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
2


a3 2
C.
.
4


a3 2
D.
.
12


3

Câu 74. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .

D. e.

Câu 75. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 76.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 77. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.

B. {4; 3}.
C. {5; 3}.

D. {3; 4}.

Câu 78. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.

D. 20.

C. 8.

Câu 79. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 80. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
0

0

C. 4.
0

0


D. 6.
0

Câu 81. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 82. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 6/10 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 3.

Câu 83. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.

C. 2.

D. 1.

B. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.


Câu 84. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.

D. {3; 4}.

Câu 85.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
B. 2.
C. 1.
D. 10.
A. 2.
Câu 86. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 87. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = 0.

D. x = −8.

Câu 88. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ

liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
n−1
Câu 89. Tính lim 2
n +2
A. 2.
B. 3.
C. 1.
D. 0.
Câu 90. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.

C. y0 = ln x − 1.

D. y0 = 1 − ln x.

Câu 91. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 92. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.

C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 93.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. (−1)−1 .

C.


−1.

−3

D. 0−1 .

Câu 94.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =

f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 7/10 Mã đề 1


Câu 95. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.

C. D = R.

D. D = R \ {1}.

Câu 96. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 97. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. 2.
C. − .
D. −2.
2
2
Câu 98. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình

lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 99. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều đúng.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m ≤ 0.

Câu 100. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m < 0.

Câu 101. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a

A.
.
B. 2a.
C. 4a.
2
Câu 102. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b.
thẳng BB0 và AC 0 bằng
1
1
ab
A. √
.
B. √
.
C. √
.
2 a2 + b2
a2 + b2
a2 + b2
5
Câu 103. Tính lim
n+3
A. 1.
B. 2.
C. 0.

d = 120◦ .
= BC = 2a và ABC
D. 3a.
Khoảng cách giữa hai đường

D.

a2

ab
.
+ b2

D. 3.

Câu 104. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 105. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 2.
C. 1.
Câu 106. Tính lim
x→3

A. 3.

x2 − 9
x−3

B. +∞.

D. 3.


C. −3.

D. 6.

Câu 107. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
36
6
18
6
Trang 8/10 Mã đề 1



Câu 108. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 24.
D. 15, 36.
Câu 109. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).

D. [6, 5; +∞).

Câu 110. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp đôi.
d = 60◦ . Đường chéo
Câu 111. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0






a3 6
4a3 6
2a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
x+1
Câu 112. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. .
D. 1.
4
3
Câu 113. Khối đa diện đều loại {5; 3} có số mặt

A. 30.
B. 8.
C. 20.
D. 12.
2

2

sin x
Câu 114.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá
√ trị lớn nhất của hàm√số f (x) = 2
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.

Câu 115. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
4a
2a 3
2a3

A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 116. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
abc b2 + c2
c a2 + b2
a b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.

A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 117. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng


a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
3
2

Câu 118. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. 5.
C. 5.
D. .
5
Câu 119. Khối đa diện đều loại {3; 5} có số cạnh

A. 12.
B. 30.
C. 8.
D. 20.
mx − 4
Câu 120. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.
C. 45.
D. 67.
Câu 121. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 122. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 6.
D. 3.
Trang 9/10 Mã đề 1


Câu 123. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2

A. m = 0.
B. m = −1.
C. m = −3.

D. m = −2.

6
. Tính
Câu 124. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x
+
1
Z 1
f (x)dx.
0

A. −1.

B. 6.

C. 2.

D. 4.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.

C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 125. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 126. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. − < m < 0.
D. m ≤ 0.
4
4
Câu 127. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. Không tồn tại.
D. 9.
Câu 128. Dãy
!n số nào có giới hạn bằng 0?
!n
−2
6
.
B. un =
.
A. un =

5
3

C. un = n2 − 4n.

D. un =

n3 − 3n
.
n+1

Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD
√ là

a3
a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
6
3
3

3
Câu 130. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

C

3.
5. A

2.

B

4.

B

6. A

7.

B

8.

9.

B

10.

11. A

14.


C

15. A

C

16. A
18.

B

19.

D
B

22.

23.

B

24.
C

25.

D


20. A

21.

27.

B

12. A

13.
17.

C

C
B

26. A

B

28. A

29. A

30. A

31.


32.

C

33. A

34.

35. A

36. A

37.

C
B

38.

D

39. A

D

40.

41.

42. A


C
D

43.
45.

C

C

44.

D

46.

D
D

47.

B

48.

49.

B


50.

51.

B

52.

53.

B

54.

C

56.

C

58.

C

60.

C

55.


C

57. A
59.

C

61.
63.

D

62.

B
D

B

64. A

C

65.

D

66.

B


67.

D

68.

B

1


69.

70.

B
D

71.
74.

B

76. A
78. A

79. A

80. A

82.

B

83.

C

84. A

85.

C

86. A

87.

D

88.

89.

D

90.

91.


D

92.

93.

D

94. A

95.

B

C
B
C

96. A

C
D

97.
99.

D

73.


77. A
81.

C

D

98.

B

100. A

101. A

C

102.

103.

C

104.

105.

C

106.


D

107.

C

108.

D

109.

B

110.

111.

B

112.

113.

D
B

116.


117.

B

118. A

119.

B

120. A

121. A
125.

D
C

127. A
129.

C
B

114.

115.

123.


B

2

D

122.

D

124.

D

126.

B

128.

B

130.

C

C

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×