Preferred Limits and Fits for
Cylindrical Parts
USAS B4.1-1967 (R1974)
Note
For soft conversion of nominal dimensions and limits given
in this standard, 1 inch = 25.4 mm.
For explanation of conversion techniques see American
National Standard 2210.1-1972, Metric Practice Guide.
REAFFIRMED 1999
FOR CURRENTCOMMllTEE PERSONNEL
PLEASE SEE ASME MANUAL AS-11
REAFFIRMED 2004
FOR CURRENT COMMITTEE PERSONNEL
PLEASE E-MAIL
sponmr
The American Society
of Mechanical Engineers
T H EA M E R I C A NS O C I E T Y
U n i t eEdn g i n e e r i nCge n t e r
OF
M E C H A N I C A LE N G I N E E R S
345 E a s4t7 tSht r e eNteYwo r k
, N. Y . 10017
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
S T A N D A R D
U S A
ACCEPTANCE NOTICE
The above IndustryStandardization Document was adopted on 4 January 1972 and is approved
for use by the DoD. The indicated industry groups have furnished the clearances required by existing regulations. Copies of the document are stocked by Do0 Single Stock Point, U.S. Naval Publications and Forms Center, Philadelphia, Pennsylvania 19120, for issue to DoD activities only.
Title of Document: Preferred Limits and Fits for Cylindrical
Parts
- Plus Errata
Date of Specific Issue Adopted: 18September1967
Releasing Industry Group: The American Society of Mechanical Engineers
Custodians:
Army - MU
Navy - SH
Air Force - 70
Military Coordinating Activity:
Air Force - 70
Project No. MISC-0596
No part of this document may be reproduced in any form, in an
electronic retrieval system or otherwise. without the prior
written permission of the publisher.
a,
C o p y r ~ g h r . 1367. b y
T H E A M E R I C A N S O C I E T Y O F M E C H A S I C A LE N G I N E E R S
Prlnred In U . S . A .
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
ANSI84.1-1967
4 January 1972
T
HIS standard represents t h e latest result of vork which began w i t h the organization of Sectional Committee B4 i n June 1920 under the name “Sectional Committee on the Standardization of PlainLimitGages
for GeneralEngineering’ Work. ” Thisoriginalcommitteeproduced
AmericanStandard ASA B4a-1925,“Tolerances,Allowances
and Gagesfor Metal F i t s , ” which
was used in varying degree for many years.
In December1930,SectionalCommittee
64wasreorganizedandthe
name changedtothe
presentform,“SectionalCommittee
on theStandardization
of Allowances and Tolerances for
Cylindrical Parts and L i m i t Gages.” The change in name indicated a significant shift to a more
definite and somewhat more restricted mission for the committee.
During the years of WorldWar I1 an ASAWar Committee formed i n 1943 worked on theproject but produced no completed results, and the activity was turned
back to Sectional Committee
B4. Afterthe war the subject was discussed at the Canadian Conference
on the Unification of
Engineering Standards held i n Ottawa in 1945, attended by delegates from Great Britain, Canada,
i n NewYork later in the same year.
and the United States,
and again at another joint meeting
Thesemeetingsaresignificantbecausesince
1945 work i n t h i s projecthasbeenstronglyinfluenced by theseandsimilar
ABC conferences.Properevaluationofthepresentstandard
w i l l depend upon an appreciation of the important effects of progress towards agreement
on u n i fication of standards between t h e ABC countries.
Theresult
of theactivitiesimmediatelyfollowing
World
War
11 was .4merican Standard
“Limits and Fits for Engineerirg and Manufacturing (Part I), ASA B4.1-1947.” In the preface to
that document it was stated that the
ABC meetings resulted i n agreement on five b a s ~ cprinciples,
and since the first
four of these principles, w i t h certain minor and obvious variations, apply to
them here.First,there
m u s t be a
this present standard, i t is considered worth whiletorepeat
common language (definitions) through which analyses may be recordedandconveyed.Second,
a table of preferred basic sizes helps
i n reducingthe number of differentdiameters commonly
used in a givensizerange.Third,preferredtolerances
and allowancesare a logicalcomplement topreferredsizes
a n d should a i d the designer i n se!ectingstandardtolerances.Fourth,
uniformity of method of applying tolerances is essential.
Additional ABC conferences were held i n NewYork i n June 1952 and February 1953. Delegations from SectionalCommittee B4 were active i n theseconferences, which resulted i n a draft
proposal for an ABC system of Limits and Fits, published as
ASA 84/30. The Sectional
Committee B4 delegates to these conferences voted to recommend approval of the ABC proposals as
the basis for an American standard i f and when such a standard were developed.
Sincethepublication
of t h i s standardtherehas
been additionaldiscussions
a t ABC conferences held i n Ottawa i n June 1960 a n d at Arden House, New Y o r k , in September 1962. There
of definitions under ASA B1.7,and
theyarereflected
in therevision.
hasbeenanexpansion
Therevisedproposalwassubmittedtothesponsororganizationandtothe
USA Standards
Institute (formerly American Standards Association) for final approval a s a USA Standard. This
approval was granted on August 3, 1966.
This revision,however,wasneverpublishedasitwasnotedthatotherrhanges.agreed
to
at the Arden House ABC Conference, had not been incorporated i n the standard.
A new revisionwasissued,andfollowingapproval
by the USA StandardsCommittee 8 4 , i t
was approved by the sponsor and on September 18, 1967 by the USA,Standards Instirute.
USA STANDARD
T h i s USA Standard is one of nearly 3000 standards approved a s American
t h e ASA
Standards by the American Standards Association. On August24,1966,
was reconstituted as the United States
of America Standards Institute. Standards
approved a s American Standards are n o w designated USA Standards. There is no
change in their.index identification or technical content.
UDC 621.753.1.3
...
111
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
Foreword
B4, Standardizationof
AllowancesandTolerancesforCylindricalPartsandLimitGages
OFFICERS
G. H. Stimson, Chairman
COMMITTEE MEMBERS
AMERICAN SOCIETY FOR QUALITY CONTROL
R. J . Morris, International Harvester Co., C h i c a g o , I11
AMERICAN SOCIETY O F M E C H A N I C A L E N G I N E E R S , T H E
Z . R. Bliss, Brown University, Providence, R.
I.
R. T. Woythal, Kearney 8 Trecker Corp., Milwaukee, Wisconsin
AMERICAN SOCIETY OF TOOL AND MANUFACTURING ENGINEERS
G. H. Stimson, Greenfield Tap and Die, Division
of United-Greenfield Corp., Greenfield,
ANTI-FRICTION BEARING MANUFACTURERS ASSOCIATION, INC.
H. L. P o t t e r , T h e F a f n i r B e a r i n g Co., New Britain, Conn.
BUSINESS EQUIPMENT MANUFACTURERS ASSOCIATION
A. E. Mall, International Business Machines Corp., Endicott,
METAL CUTTING TOOL INSTITUTE
A. F. Miller, Jr., Wells Tool Co., Greenfield,
N . Y.
Mass.
NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION
F. V. Kupchak, Westinghouse Electric Corp., Pittsburgh,
Pa.
L. D. P r i c e , A l t e r n a t e , N a t i o n a l E l e c t r i c a l M f g r s . A s s o c i a t i o n , N e w Y o r k , N .
NATIONAL MACHINE TOOL BUILDERS’ ASSOCIATION
F. S . B l a c k a l l , 111, T h e T a f t - P e i r c e Mfg. Co., Woonsocket, R.
I.
SOCIETY OF AUTOMOTIVE ENGINEERS, I N C .
R. F. Holmes, General Motors Technical Center, Warren, Michigan
SPORTING ARMS
AMMUNITIONS
MANUFACTURERSASSOCIATION
J . F. Walsh, Olin Mathieson Chemical Co., New Haven, Conn.
U. S. D E P T . OF T H E ARMY
C . B. K e a n e , F r a n k f o r d A r s e n a l , P h i l a d e l p h i a ,
U. S. D E P T . O F C O M M E R C E
I. H. Fullmer, National Bureau
Pa.
of Standards, Washington, D. C.
U. S. D E P T . O F T H E NAVY
Code 609.3C, Bureau of Ships, Navy Dept., Washington, D.
C.
J.C . R e i d , A l t e r n a t e , B u r e a u of Ships, Navy Dept., Washington,
D. C.
U. S . MACHINE, CAP, WOOD AND TAPPING SCREW BUREAUS
H. G . Muenchinger, Holo-Krome Screw Corp., Hartford, Conn.
INDIVIDUALMEMBERS
W. S . Brown, Roanoke, Virginia
H. W. Fahrlander, Sr., St. P e t e r s b u r g , F l a .
W. H. Gourlie, West Hartford, Conn.
R. E . W. Harrison, Harrison Engineering Services, Inc., Washington,
Ronald Jones, Westinghouse Electric Corp., Philadelphia,
Pa.
A. 0. S c h m i d t , T h e P e n n s y l v a n i a S t a t e U n i v e r s i t y , U n i v e r s i t y P a r k ,
L. F. Spector, Hitchcock Publishing Co., Wheaton, Ill.
H. D. Stover, Timken Roller Bearing Co., Canton. Ohio
iv
D.
c.
Pa.
Y
Mass.
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
USA StandardsCommittee
PreferredLimitsand
Fits forCylindricalParts
2.3 Size.Sizeis
a designation of magnitude.
When a value i s a s s i g n e d to a dimension it i s referred to hereinafter a s the size of that dimension.
1. Scope and Application.
1.1 Thisstandardpresentsdefinitions
of terms
applying
to
fits
between
plain
(non-threaded)
cylindrical parts and makes recommendations
on
preferred sizes, allowances, tolerances, and fits
for u s e wherever they are applicable. The standard through 20 in. diameter i s in accord with the
recommendations of American-British-Canadian
Conferences. Experimental work i s being carried
onand when results are available, agreement
in
20 in.will be sought. It repretherangeabove
sentsthecombinedthinkingandexperience
of
groups who have been interested in standards
in
thisfield,anditshouldhaveapplication
for a
widerange
of products.Therecommendations,
therefore, are presented for guidance and for use
where t h e y might serveto improve andsimplify
products, practices, and facilities.
Many factors, such as length
of engagement,
bearing
load,
speed,
lubrication,
temperature,
must
humidity,surfacetexture,andmaterials,
be takenintoconsideration
in theselection
of
fits for a particular application, and modifications
intheserecommendations
might be required to
satisfyextremeconditions.Subsequentadjustments might also be desired as the result of experience in a particularapplicationtosuitcritical functional requirements or to permit optimum
manufacturingeconomy.Selection
of departure
from theserecommendationswilldepend
upon
and economic
consideration of theengineering
factors that might be involved.
NOTE: I t i sr e c o g n i z e dt h a t
the w o r d s“ d i m e n s i o n ”
to c o n v e y the meanand “size” are both used at times
i n g of magnitude.
2.4 NominalSize. The nominal size is t h e designation which i s u s e d for the purpose of general
identification.
2 . 5 Basic Size.Thebasicsizeisthatsize
from which the limits of size are derived by the
application of allowances and tolerances.
2 . 6 ReferenceSize. A referencesizeis
a size
without tolerance used only
for informationpurposes and does not govern machining
or inspection operations.
2 . 7 DesignSize. The designsize is thebasic
s i z e with allowance
applied,
from which
the
by theapplicationof
limits of sizearederived
tolerances. If there i s n o allowancethedesign
size is the same as the basic size.
2 . 8 ActualSize.
size.
a measured
2 . 9 Limits of Size.Thelimits
of sizeare the
applicable maximum and minimum sizes.
(See
2.14, Tolerance Limit)
2 . 1 0 Maximum MaterialLimit.
A maximum mais thatlimit
of sizethatprovides
reriallimit
the maximum amount of material for the part. Normally i t i s the maximum limit of size of an external dimension or the minimum limit of size of an
internal dimension.
2. Definitions
2 . 1 Termsrelatingtothesizeandfit
whicharegenerallyapplicabletomechanical
parts, are defined as follows:
An a c t u a ls i z ei s
2.11 Minimum Material
Limit.
A minimum material limit is that limit of size that provides the
minimum amount of material for the part. Normally it i s the minimum limit of size of an external
dimension or the maximum limit of size of an internal dimension.
of parts
2 . 2 Dimension. A dimension i s a geometrical
characteristic such a s diameter, length, angle, or
centerdistance.The
term “dimension” i s a l s o
or
used for conveniencetoindicatethesize
numerical value of a dimension as specified on
the drawing.
NOTE: Anexample
of e x c e p t i o n s :a ne x t e r i o rc o r n e r
radiuswhere the m a x i m u mr a d i wi st h em i n i m u mm a teriallimitand
the minimumradius
i s the maximum
material limit.
1
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
USA Standard
2.12 Allowance. An allowance isa prescribed
difference between the maximum-material-limits
of mating parts. It i s the minimum clearance (positive allowance) or maximum interference (negative allowance) between such parts. (See 2.17 Fit.)
2.13 Tolerance. A tolerance i s the totai permissible variation of asize. Thetolerance i s the
difference between the limits of size.
2.24 Basic Hole System. A basicholesystem
i s a systemoffits in which the design size of
thehole i s the basic size and theallowance, if
any, i s applied to the shaft.
2.25 BasicShaft System. A basicshaft system
i s asystemoffits
inwhich the design size of
the shaft is the basicsize and theallowance,
if any, i s applied to the hole.
NOTE: Theplural
term “tolerances”issometimes
usedtodenotethepermissiblevariations
from the
specified or designsize, when thetolerance
i s expressedbilaterally. In this sense the
term i s identical to “Tolerance limit.”
2.14 Toleraoce Limit. A tolerancelimit
i s the
variation, positive or negative, by which a size
i s permitted to depart from the design size. (See
2.9, Limits of Size)
2.15 UnilateralTolerance.
A unilateraltolerance i sa tolerancein
which variation i s permitted only in one direction from t h e design size.
2.16 BilateralTolerance. A bilateraltolerance
i s a tolerance in which variation i s permitted in
both directions from the design size.
2.17 Fit. Fit is
thegeneral term used to signify
therange of tightness or looseness which may
result from the application of a specific combination of allowances and tolerances in the design
of mating parts.
2.18 ActualFit.Theactualfit
between two
mating partsisthe
relationexisting
between
them with respect to the amount of clearance or
interferencethat
i s present when they areas- 7
3. Preferred Basic Sizes
In specifyingfits,thebasicsize
of mating
partsshall be chosen from the following tables
(one for fractional and one for decimal sizes)
whenever possible. All dimensionsare given in
inches.
TABLE 1
Preferred Basic Sizes
Fractional
sembled.
NOTE: Fitsare
of threegeneraltypes:clearance,
transition, and interference.
0.015625
0.03125
0.0625
0.09375
0.1250
0.15625
0.1875
5/16
3/8 8
7/16
1/2
9/16
5/8
11/16
3/4
7/8
0.3 125
1/4
2.19 Clearance
Fit.
A clearance
fit
is
one
having limits of size so prescribed that a clearancealwaysresults
when mating partsare assembled.
2.20 InterferenceFit. An interferencefit i s one
having -limits of size so prescribed that an interferencealwaysresults
when mating parts are
assembled.
51/64
1/32 5
1/16 5
3/32 5
1/8
5/3 2
3/16
1
1
:/4
1 1/2
13/4
2
2.21 Transition Fit. A transition f i t i s one
having limits of size so prescribed that either
aclearance or a n interference m a y result when
mating parts are assembled.
2 1/4
2 1/2
2 3/4
3
3 1/4
3 1/2
3 3/4
2.22 Unilateral
Tolerance
System.
A design
is
plan which uses only unilateraltolerances
known a s a unilateral tolerance system.
2.23 BilateralTolerance System. A design plan
which uses only bilateral tolerances i s known a s
a bilateral tolerance system.
4
4 1/4
4 1/2
4 3/4
2
0.2 500
0.3750
0.4375
0.5000
0.5625
0.6250
0.6875
0.7500
0.8750
1.0000
1.2500
1.5000
1.7500
2.0000
2.2500
2.5000
2.7500
3.0000
3.2500
3.5000
3.7500
4.0000
4.2500
4.5000
4.7500
1/11
1/2
6
3/4
6 1/2
7 1/2
a
9
1/2
9. 112
10
10 1/2
11
11 1/2
12
12 1/2
13
13 1/2
14
14 l / 2
15
151/2
16
16 1/2
17
17 1/2
18
181/2
19
19 1/2
20
5.0000
5.2500
5.5000
5.7500
6.0000
6.5000
7.0000
7.5000
8.0000
8.5000
9.0000
9.5000
10.0000
10.5000
11.oooo
11.5000
12.0000
12.5000
13.OOOO
13.5000
14.0000
14.5000
15.0000
15.5000
16.0000
16.5000
17.0000
17.5060
18.0000
18.5000
19.0000
19.5000
20.0000
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
USA STANDARD
5. Acceptance of Parts
TABLE 2
Preferred Basic Sizes
5.1 Acceptability. A part shall be dimensionally
acceptable if its actual size does not exceed the
limits of sizespecified in numericalvalues on
the drawing or in writing. It does not meet dimensionalspecification
if itsactualsizeexceeds
those limits.
Decimal
0.010
0.012
0.016
0.020
0.025
0.032
0.040
0.05
0.06
0.08
0.10
0.12
0.16
0.20
0.24
0.30
0.40
0.50
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40
4.60
4.80
5.00
5.20
5.40
5.60
5.80
6.00
6.50
7.00
7.50
8.00
8.50
9.00
3.50
10.00
10.50
11.00
11.50
12.00
12.50
5.2 ReferenceTemperature.Limits
of s i z ea s
derived from t h e tolerances shown herein are the
extremevalues,withinwhichtheactualsize
of
the dimension shall lie, at the standard temperature of 20C or 68F.
13 .OO
13.50
14.00
14.50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
13.50
20.00
For Length deviations per inch
(or per centimeter) for temperaturesotherthan68F,and
for
variouscoefficients
of thermalexpansion,referenceshould
be made to thetables inAppendix 11.
5.3 Limitsandtolerancesareconsidered
to be
absoluteregardless
of the number of decimal
places. Limits and tolerances are to
be used a s
i f they were continued with zeros beyond the last
significant figure.
4. Preferred Series for Tolerances and Allowances.
NOTE: This means that all inaccuracies
of size, due
to errors,wear,
or changein tools, gages,machines,
processes of measurement,shall
be includedwithin
these limits.
A l l fundamentaltolerancesandallowances
of
all shafts and holeshavebeentaken
from the
series given in the following table. A l l dimensions
are given in thousandths of an inch.
5.4 Effect of Surface Texture. Parts of necessity
of surfaceirreguaremeasuredoverthecrests
larities, yet for
moving partssuchirregularities
Soon wear off and clearances are increased. For
this reason surface finish is quite critical, especiallyforthefinergrades,andshould
be specified when considerednecessary.Forfurther
subject
refer
to
USA Standard
detail o n this
Surface Texture, USAS B46.1.
TABLE 3
0.1
...
0.15
...
200
... 18
0.2
20
... 22
250 0.2525
...
30
0.3
...35
0.4
...45
0.5
0.6
0.7
0.8
0.9
1
125
1.2
1.4
160
1.6
1.8
2
2.2
2.5
2.8
3
3.5
4
4.5
5
6
7
8
9...
10
12
14
16
100
...
...
...
40
...
...
...
...
50
60
70
80
...
...
...
...
28
...
6 . StandardTolerances
Theseries
of standardtolerancesshown
in
Table 4 are s o arrangedthat forany onegrade
theyrepresentapproximatelysimilarproduction
considerationsthroughouttherange
of sizes.
Thetableprovides
a suitablerange from which
appropriatetolerances for holesandshaftscan
be selected.Thisenablestheuse
of standard
gages.Thesetoleranceshave
been used in arranging the fits given in Tables 5 to 9.
...
3
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w
PREFERRED LIMITS AND FITS
TABLE 4
Tolerance values are in thousandths of an inch. Data in bold face are
Nominal
Over
-
I
Grade
Grade
6
Grade
7
0.15
0.20
0.25
0.3
0.4
0.4
0.5
0.6
0.7
0.8
0.9
1.o
1.o
1.2
1.6
2.0
2.5
0.25
0.3
0.4
0.4
0.5
0.6
0.7
0.9
1.o
1.2
1.2
1.4
1.6
2.0
2.5
0.4
0.5
0.6
0.7
0.8
1.o
1.2
1.4
1.6
1.8
2.0
2.2
2.5
4
6
8
10
5
To
0
0.12
0.12 - 0.24
0.24 - 0.40
0.40 - 0.71
0.71
1.19
1.19 - 1.97
1.97 - 3.15
3.15 - 4.73
4.73 - 7.09
7.09 - 9.85
9.85 - 12.41
12.41 - 15.75
15.75 - 19.69
19.69 - 30.09
30.09 - 41.49
41.49 - 56.19
56.19 - 76.39
76.39 -100.9
100.9-131.9
131.9 -171.9
171.9 -200
-
--
0.12
0.15
0.15
0.2
0.25
0.3
0.3
0.4
0.5
0.6
0.6
0.7
0.8
0.9
1.o
1.2
1.6
2 .o
2.5
3
4
3
5
6
3
4
5
3
4
5
6
8
10
12
16
Grade
8
0.6
0.7
0.9
1.0
1.2
1.6
1.8
2.2
2.5
2.8
3.0
3.5
4
5
6
8
10
12
16
20
25
7. S e I e c t i o n o f F i t s
Grade
7
1.o
1.2
1.4
1.6
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6
6
8
10
12
16
20
25
30
40
in accordance with ABC agreements.
Grade
10
Grade
11
Grade
12
1.6
1.8
2.2
2.8
3.5
4.0
4.5
5
6
7
8
9
10
12
16
20
25
30
40
50
60
2.5
3.0
3.5
4.0
5.0
6
7
4
5
6
7
8
10
12
14
16
9
10
12
12
14
16
20
25
30
40
50
60
80
100
18
25
20
22
30
40
50
60
80
100
160
125
Grade
13
6
7
9
10
12
16
18
22
25
28
30
35
40
50
60
80
100
125
160
200
250
been extended to include
a wider range of s i z e s .
Standard
fits
are
represented
graphically
by
Figures 1 to 5.
In selecting limits of size for any application,
the type of fit i s determined first, based on the
u s e or service required from the equipment being
designed;thenthelimits
of s i z e of themating
parts are established, to assure that the desired
fit will be produced.
Theoretically an infinite number
of fits could
be chosen, but the small number
of standard fits
shownhereinshouldcovermostapplications.
8.2Designation
of StandardFits.Standardfits
by means of the symbols given
aredesignated
of fit for
below to facilitate reference to classes
educationalpurposes.Thesesymbolsarenot
intended to be shown on manufacturing drawings;
i n s t e a d ,s i z e ss h o u l db es p e c i f i e d
on drawings.
The letter symbols used are a s follows:
RC Running or Sliding Clearance Fit
LCLocationalClearanceFit
L T T r a n s i t i o n C l e a r a n c e o r Interference Fit
LNLocationalInterferenceFit
F N F o r c e or Shrink Fit
Theselettersymbolsareusedinconjunction
withnumbersrepresentingthe
class of fit;thus
“ F N 4” represents a c l a s s 4 , force fit.
E a c h of these symbols (two letters and
a number) represents a complete fit, for which the minimum and maximum clearance or interference, and
the limits of size for the mating parts, are given
directly in the tables.
8. Standard Fits
8.1 T a b l e s 5 to 9 havebeendevelopedtogive
a s e r i e s of standard types and classes
of fit on
a unilateral hole basis, such that the fit produced
one classwillproduce
by matingpartsinany
approximatelysimilarconditionsthroughoutthe
range of sizes. T h e s e t a b l e s p r e s c r i b e t h e f i t f o r
any given size, or type of fit; they also prescribe
thestandardlimitsforthematingpartswhich
will produce the fit.
In developing Tables 5 to 9 it has been recognized that any fit .will usually be required to performone of three functions, as indicated
by the
three general typesof fits: running fits, iocational
fits, and force fits.
T h ef i t sl i s t e di nT a b l e s
5 to 9 containall
thoseintheapprovedABCproposalbuthave
8.3 Description of Fits.
8.3.1 Running and Sliding Fits. Runningand
slidingfits,forwhichlimitsofclearancc.are
given in Table 5 , are intended to provide
a sim-
4
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w
USA STANDARD
ilarrunningperformance,withsuitablelubricationallowance,throughouttherange
of sizes.
Theclearances for thefirst
two c l a s s e s ,u s e d
chiefly as slide fits, increase
more slowly with
diameter than the other classes,
so that accurate
location i s maintainedevenattheexpense
of
free relative motion.
10
8
6
4
2
H
T h e s e f i t s may be described briefly a s follows:
areintendedfortheacRC 1 Close sliding fits
m u s t assemcurate location of parts which
ble without perceptible play.
6,
LC11
12
y
$
m
RC9-
4
2
0
-2
-4
-6
-8
-
-10
12
14
16
..
-
18
-. . .
.
-20
- 22
E O
In
-2
p -4
-6
HOLES
FIG. 2 GRAPHICAL REPRESENTATION OF STANDARD
LOCATIONAL CLEARANCE FITS (SHOWN IN
TABLE 6)
---I SHAFTS
-8
-IO
FIG. 1 GRAPHICAL REPRESENTATION OF STANDARD
RUNNING OR SLIDING CLEARANCE FITS (SHOWN
IN TABLE 5)
RC 2 Sliding fits are intended for accurate location but with greater maximum clearance
thanclass
RC 1. Parts made to thisfit
move and turn easily but are not intended
to run freely,andinthelarger
s i z e s may
seize with small
temperature
changes.
RC 3 Precision running fits are about the closest
fits which can be expectedto run freely,
and are intended for precision work at slow
speeds and light journal pressures,
but are
not suitable where appreciable temperature
differencesarelikely
to be encountered
RC 4 Closerunningfits
areintendedchiefly
for
runninR
with
- f i t s on accuratemachinery
moderatesurfacespeeds
and journalpressures, where accurate location and minimum
play is desired.
1
8.3.2 Locational Fits. Locational fits are fits
intended to determineonlythelocation
of the
mating parts; they may providerigid or accurate
or provide
location,as
with interferencefits,
some freedom of location, as with clearance fits.
Accordingly t h e y aredividedintothreegroups:
clearancefits,transitionfits,andinter'ference
fits.
Theseare
more fullydescribed
a s follows:
LC
Locationalclearance
fits areintended for
partswhichare
normally stationary, but
which can be freely assembled or disassembled.They run from snug fits for parts requiringaccuracy
of location, through the
medium clearancefits
for p a r t ss u c ha s
ball,raceandhousing,to
t h e looserfastener fits where
freedom of assembly is of
prime importance.
LT
Locational transition fits are a compromise
between clearance and interference fits, for
application where accuracy of location i s
important, but either a small amount of
clearance or interference i s permissible.
RCS Medium running fits are intended for higher
running speeds, or heavy journal pressures,
R C 6 or both.
R C 7 Free running /its are intended for use where
accuracy i s not essential, or wherelarge
temperaturevariationsarelikelyto
be encountered, or under both of these conditions.
.
-2
Looserunningfits
areintended
for use
wherewidecommercialtolerances
may be
necessary,together with an allowance, on
t h e external member.
.
HOLES
~
SHAFTS
.
.
SCALE: THOUSANOTHS OF AN W H
FOR A OIAWETER OF ONE INCH
FIG. 3 GRAPHICAL REPRESENTATION OF STANDARD
LOCATIONALTRANSITIONFITS
(SHOWN IN
TABLE 71
5
Continued on page 12
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
PREFERRED LIMITS AND FITS
TABLE 5 RUNNING AND SLIDING
Limits are in thousandths
FITS
of an inch.
Limits for hole and shaft are applied algebraically to the basic size to obtain the limits of size for the parts.
Data in bold face are in accordance with ABC agreements.
in ABC System (Appendix 1).
Symbols H5, g5. etc., are Hole and Shaft designations used
I
171.9
-200
1
8.0
18.0
+
I
6.0
0
--12.08.0
8.0
22.0
+10.0
- 8.0
0 48.0-12.0
22.0
I
+16.0
0
-22.0
-32.0
22.0
63.0
t2S.O
0
-22.0
-3t..O
Continued on page 7
6
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
USA STANDARD
TABLE 5 RUNNINGAND SLlDING FITS (continued from page 6 )
Limits are in thousandths of an inch.
Limits for hole and shaft are applied algebraically to the b a s i c s i z e to obtain the limits
of s i z e for the parts
Data in bold face are in accordance with ABC agreements
Symbols HE, e 7 , e t c . , are Hole and Shaft designations used in ABC System (Appendix
C l a s s RC 5
+
O
P,
Limits
2rJ
.g m‘
25
Hole
0.6
1.6
3- 0.6
0.8
2.0
1.0
2.5
1.2
2.9
1.6
3.6
2.0
. 4.6
2.5
5.5
3.0
6.6
3.5
7.6
4.
8,:
5.0
10.0
6.0
11.7
8.0
14.5
10.0
18.0
12.0
22.0
16.0
29.0
H8
-
0
+ 0.7
- 0
+ 0.9
- 0
+ 1.0
- 0
- 0
Standard
Limits
u
; Hole Shaft
ylc
.z
- 0.8
- 1.3
- 1.0
- 1.6
- 1.2
-
1.9
1.2 - 1.6
- 0 - 2.4
+ 1.6 - 2.0
- 0 - 3.0
+ 1.8 - 2.5
+
0
Shaft .E2
e 7 -)O
- 0.6
- 1.0
- 3.7
+ 2.2 - 0 -
H9
e8
0.6 .t 1.02.2 - 0
0.8
1.2 2.7 - 0 1.0 + 1 . 4 3.3 - 0 -
-
+
1.2
3.8
1.6
4.8
2.0
6.1
2.5
7.3
+ 1.6 - 0 + 2.0 - 0 + 2.5-0 + 3.0-0 -
3.0 3.0 + T - - 3
0
4.4 8.7
+ 2.5 - 3.5 3.5 4 . 0 0 - 0 - 5.1 10.0
+ 2. - 4. 4.
4.5- O 8 - 5.80 11.;
0 + 3.0 - 5.0
5.0 + 5.0
0 0 - 7.0 13.0
+ 3.5 - 6.0 b.0 + 6.0 8.2 15.5
0
0 +4.0 - 8.0
8.0 + 6.0
-
-
+
+
-
.-
+
+
+
0
5.0
0
6.0
-10.5
-10.0
-13.0
-12.0
0 -16.0
8.0 -16.0
0 -21
C l a s s RC 7
C l a s s RC 6
-
0.6
1.2
0.8
1.5
1.0
1.9
1.2
2.2
1.6
2.8
2.0
3.6
2.5
4.3
.0
5.2
3.5
6.0
4.
6.80
5.0
8.0
6.0
9.5
8.0
-12.0
+ 8.0 -10.0
0 -15.0
+10.0 -12.0
12.0
0 -18.0
28.0
16.0 +12.0 -16.0
0
36.0
4
18.0
10.0
23.0
0
-
Standard
p)
+
0 0
.-2
g
.E 4
0
1.0
2.6
1.2
3.1
1.6
3.9
2.0
4.6
2.5
5.7
3.0
7.1
4.0
8.8
--5.6
10.7
6.0
12.5
I:.:
.
8.0
Standard
Limlts
Hole
H3
+
+
+
+
+
+
+
+
+
+
+
C l a s s RC 8
1.0
0
1.2
0
1.4
0
1.6
0
2.0
0
2.5
0
3.0
0
3.5
0
4.0
0
4.5
0
5.0
0
6.0
16.0
10.0 +
0
19.5
12.0 + 6.0
22.0
0
16.0 + 8.0
0
29.0
20.0 +10.0
0
36.0
+12.0
25.0
~
-
-
-
-
-
-
-
1.0
1.6
1.2
1.9
1.6
2.5
2.0
3.0
2.5
3.7
3.0
4.6
4.0
:.
E
.g 5
-I V
C l a s s RC 9
Standard
Limits
C,
Inc
Shaft
d8
-
o
Hole
H10
2.5+
5.1
2.8 +
5.8
1.6
0
1.8
0
3 . 0 + 2.2
6.6
0
3.5 +
7.9
4.5 t
10.0
5.0+
11.5
6.0 +
o
5
.E
-
4.0 + 2.5
0
8.1
4.5
9.0 + 3*0
5.0 + 3.5
0
10.7
+
4.0
6.0
0
12.8
7.0 + 5.0
15.5
0
8.0 + 6.0
18.0
0
9.0 + 7.0
c9
-
2.5
3.5
2.8
4.0
3.0
4.4
-1
3
Hole
H11
3.5
5.1
4.5
0 - 6.5
4.0
5.0
0 - 7.5
4.5
6.0
5.8 13.5_ 0 - 9.0 2 0 . 5
0
5.0‘
7.6TTT5.(r--7.01O.O+9D0
7.2
15.5
0 - 10.5 24.0
6.0
+ 6.0 -8.0 8.0 12.0 + 10.0
8.5 18.0
0 - 12.0 28.0
0
7.
1
7.
.O 15.0
9.:
2!.!
0’ - :!.5
3 4 . 0 , “O0
12.0 + 8.0 - 12.0 18.0 + 12.0
8.0
0 - 17.0 38.0
0
11.0 25.0
2.8
0
3.5
. +
10.0
13.5
12.0
16.0
16.0
21.0
20.0
26.0
25.0
+
9.0
14.0
29.0
0
16.0 +10.0
0
32.0
20.0 +12.0
40.0
0
25.0 +16.0
0
51.0
30.0 +20.0
-
-
+
-
14.0
-
16.0
22.0
- 20.0
-- 20.0
28.0
- 25.0
- 35.0
-- 30.0
22.0
45.0
25.0
51.0
30.0
62.0
40.0
81.0
50.0
10
Nominal
Size Range
Inches
Standard
Z
ylc
- m
.3
Shaft
-
I).
+
+
f
+
+
Shaft
-
Over
To
4.0
- 5.6
1
- 5.0
- 7.2
- 6.0
- 8.8
- 7.0
- 10.5
- 8.0
- 12.0
- 9.0
- 13.5
-
-
-
-
0
4:.
-
0.12
o.12-
o.24
0*24-
Oa40
0.40-
0.71
0.71-
1-19
1.19-
1.97
1.97- 3.15
-
2
10.
12.0
18.0.
15.0
- 22.0
- 18.0
26.0
14.0 - 22.0
0
31.0
16.0 - 25.0
0 -. 35.0
20.0
30.0
0
42.0
25.0
40.0
0 - 56.0
50.0
30.0
-
3.15-
4.73
4, 73-
7-09
7.09-
9.85
9.85-
12.41
12.41-
15,75
15.75-
19*69
19.69-
30.09
30.09-
41.49
4 1.49-
56.19
End of Table 5
7
Limits
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
PREFERRED LIMITS A N D FITS
TABLE 6 LOCATIONAL CLEARANCE FITS
Limits are in thousandths of an inch.
Limits for hole and shaft are applied algebraically
to the basic size to obtain the limits of s i z e for the parts.
Data in bold face are in accordance with ABC agreements.
ABC System (Appendix I).
Symbols H6, h5, etc., are Hole and Shaft designations used in
Nominal
Size Range
Inc he s
Over
0
To
-
0.12
0.12-
0.24
0.24-
0.40
0.40-
0.71
0.71-
1.19
191.
1.97
1.97-
3.15
3.15-
4.73
4.73-
7.09
7.09-
9.85
9.8512.41
12.41--.
15.75
15.75-
19.69
19.6930.09
30.09-
41.49
4 1.49-
56.19
56.19-
76.3 9
76.39-
100.9
100.9
-
131.9
131.9
-
171.9
171.9
-
200
8
Continued on page 9
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
USA STANDARD
TABLE 6 LOCATIONALCLEARANCE
FITS (continued from page 8 )
Limits are in thousandths of an inch.
Limits for hole and shaft are applied algebraically
to t h e b a s i c s i z e to obtain the limits of s i z e for the parts.
Data in bold face are' in accordance with ABC agreements.
Symbols H9, f8, etc., are Hole and Shaft designations used in ABC
Syst.em (Appendix 1).
Class LC 6
.=
Standard
Limits
.cci
0
- 2
:$
-w
!-
0.3
1.9
0.4
2.3
0.5
2.8
Shaft
Hole
f8
H9
+
+
+
1.0 I- 0.3
0 - 0.9
1.2 - 0.4
0 - 1.1
1.4 - 0.5
0 - 1.4
Class LC 7
Standard
Limits
c)
0 c,
2:
5
-'a
Hole
H10
Shafl
e9
0.6 + 1.6 3.2
0
0.8 + 1.8
0 3.8
1.0 t 2.2 0 4.6
0.6
- 1.6
- 0.8
2.0
1.0
2.4
I
- 0
0 u
'2 2
-z
.3
0
2.2
10.2
2.5
12.0
2.8
12.8
+ 5.0
+ 6.0
+
6.0
Shaft
d7
'2
.-
- 2.0
2.2
5.2
2.5
6.0
2.8
6.8
J-JY
5.0
5.0
+
+
9.0 - 5
10. - 5
+ 5.0 - 5.0
- 0 - 8.5
+ 6 - 6
- 0 -10
7
+- 77
18.5 - 0
7
+ 8
20
-0
8
23
9
25
-11.5
29
-7
-12
-8
- 0 -14
+lo - 9
- 0 -15
+9
Hole
H11
do
2.5
6.6
2.8
7.6
3.0
8.7
Shaft
+
+
+
+
-
. Inc
3.5
0 - 6.3
5.04.5
0 - 8.0
4.0-
6
0
7
0
'-
Limits
0 U
-e
'2 2
ic
4
2.5 - 2.5
0 - 4.1
12
3.0 - 2.8
4.5
0 -- 4.6 14.5
5
3.5- 3.0
0 - 5.2 17
+
+
-
C l a s s L C 11
C l a s s L C 10
c10
- 5
- 9
t- 6
- 10.5
7 + 9 - 7
21 - 0 - 12
8 +lo - 8
24 - 0 - 14
+1102
- 10
0 - 17
12 t 1 2 - 1 2
32 - 0 - 20
14 + 14 - 14
37 - 0 - 23
16 + 16 - 16
42 - 0 - 75
26
3.0 + 4.0 - 3.0 5
9.5 - 0 - 5.5 15
4.0 + 3.5 - 4.0
6
11.5 - 0 - 7.0 17.5
6
16
4.5
Hole
H10
Standard
Limits
.c
2.0 + 2.8 - 2.0 3.5
6.4 - 0 - 3.6 10.3
2.5 + 3.5 - 2.5 4.5
8.0 - 0 - 4.5 13.0
5.0
+
Standard
Limits
1.0 + 1.6 - 1.0
3.6 - 0 - 2.0
1.2 t 1.8 - 1.2
4.2 - 0 1 - 2.4
+ 2.2 -1.61.6
5.2 - 0 - 3.0
13.5
2.0
Class LC 9
Class LC 8
6
20
7
23
8
28
10
34
Hole
H12
+
+
+
-
4
0
5
0
6
0
+
-
7
0
8
0
-
+
+
10
- 0
+ 12
- 0
11 + 14
0
Shaft
1-
4
8
-
4.5
9.5
5
11
-
-
. 2 5
- 6
- 13
- 7
- 15
- 8
- 18
- 10
- 22
- 11
39 - 0 - 25
1 2 +-111862+ 2 5 - 1 8
4 - 0 - 28
1 6 +-1
218
26t 2 8 - 2 2
- 0 34
20+20 -20
60 - 0 - 40
52
22 + 22
66 - 0
25 + 25
- 0
-
- 22
-44
- 25
- 115
50
u
:$
-'g
Standard
Limits
Hole
H13
Shaft
5 + 6 17
0 - 11
-
z;
25
+
To
Over
0
- 0.12
'0 r 1! d.12 0
- 16
8 t1028 - 0 10 + 12 34 - 0 -
8
18
10
22
o.24
0.24
-
0.40
0'40
-
O''
0"1
-
"19
12
+
16 - 12
- ""
14
50
+ 18 - 14
- 0 - 32
1'97 - 3'15
16
60
t 22
44 - 0 - 28
- 16
- 0 - 38 3*13- 4.73
4'73 68 - 0 - 4 3
-__-__
78 - 0 - 50
28+30
28
- 58
88 30
100
35
+- 3; - i3
+- 40
- 0
137;
~
9
Nominal
Standard
Size Range
Inches
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled when
PREFERRED LIMITS AND FITS
7'09
-
9.85
-
12.41
12.41 - 15.75
15."
- 19'69
~.
End of Table 6
0.40
-
0.24
-0
9.85
-
- 12.41
7.09
9.85
15.75 - 19.69
12.41 - 15.75
7.09
-
4.73
3.15 - 4.73
I
+0.6
4.6
+2 0
0
-0.6
I- I
-0.6
+2.6
-0
tQ.6
-0
+1.8
-0.6
+0.4
-0.4
+0.5
-0.5
+1.6
t2.4
m
I
L
-4.2
+0.2
x
8
t0.7
-0.7
I I +0.8
4 . 7 +2 2
+2.9 - 0
-0.8 +2.5
I
+1.2
+0.4
+0.25 -4.4
-0.25
+0.3 -0.5 +1.6 t 0 . 5
-0.3 . L t I - t L
t0.3
-0.3
-0.5
+2.1
I
-0.4 +1.4
+1.8 - 0
1.97-
3.15
-0
+1.05 - 0
+1.2
-0.3
+1.5
1.19
-0.3
+1.0
+1.3
-
+0.2
-0.2
+0.15
-0.15
-0.15 +0.5
t0.65 - 0
-0.2 t 0 . 7
+0.9 - 0
-0.25 +0.8
rO.10 -0.2 +0.6
+0.8 - 0
Hole Shaft
-0.10
Shaft
-0.10 + 0 . 4
t0.50 - 0
Ifole
Standard
Limits
t2.5
tble
H7
i
i
Fit
i
t18
Hole
ClL
a sTs
-2.7 .+4.0
t 0 . 2 +3.8 - 0
t 1.8
k6
Shaft
Standard
Limits
+2.3 - 0
-1.8
__
i
Standard
Standard
Standard
Limits
Limits
.
Fit
Fit
C l a s s LT 3
i
+2.7
t0.2
k7
Shaft
4
-0
1
+2.5 +3.4
+0.7 - 0 +1.8
-3.4
+0.25
Limits
5
Hole Shaft
H7
n6
-0.5 -t0.4 +0.5
+0.1
C lL
a sTs
End of Table 7
+2.0 +3.4
1xx-4
Standard
Class LT 6
-3.4
in ABC System (Appendix I).
Symbols H7, js6, ctc., are Hole and Shaft designations used
Class LT 2
maximum clearance (plus values).
Data in bold face are in accordance with ABC agreements.
of s i z e for the mating parts.
represents the maximtim interference (minus values) and the
Class LT 1
”
1.19 - 1.97
0.71
0.40 - 0.71
0.24
-
0.12
To
0.12
0 -
Over
Nominal
Size Range
Inches
“Fit
TABLE 7 LOCATIONAL TRANSITION F I T S
Limits are in thousandths of an inch.
Limits f o r hole and shaft are applied algebraically to the basic size to obtain the limits
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled whe
T A B L E 8 L O C A T I O N A LI N T E R F E R E N C E
FITS
Limits are in thousandths of an inch.
Limits for hole and shaft are applied algebraically to the
b a s i c s i z e to obtain the limits of s i z e for the parts.
Data in bold face are in accordance with
ABC agreements,
Symbols H7, p6, etc., are Hole and Shaft designations
u s e d i n A R C System (Appendix I).
Class LN 3
0.6
2.9
15.75 - 19.69
19.69 - 30.09
30.03
-
41.49
-
56.19
56.19
-
76.39
76.39
;:1 1 1 i : :1
+
41.49
- 100.9
100.7
-13 1.9
131.9
-171.9
171.9 -200
1
I
:' 11::';
0.9
3.5
1.2
4.2
1.5
4.7
'051:
2.0
0.5
+
0.5
+ 2.5
-
7.0
+- '40 ++
+- 03.0
+ 4.0
1
+ 5
- 0
+ 5.0
- 0
+ 6.0
- 0
+ 6.0
- 0
+10.0
- 0
I
3
- 0
+
;:
5.5
+ 3.5
- 0 + 6
+11
+6
- 0 I+ 7
I
I
+ 8 +14
14
- 0 + 9
2 +18 +10
18
- 0 +12
4
+12 +24
24
- 0 +16
9
1
11
1
4
30
11
+16 +30
- 0 +20
1.4
+ 2.9
- 0 + 2.0
+ 1.6 + 3 . 5
- 0 + 2.5
+ 1.8 + 4.2
- 0 + 3.0
+ 2.0 ' + 4.7
- 0 !+ 3 . 5
I
7.C
4.5 11.5
+ 9
+
+
+
p
- 40
+11.5
9
0 1+12
+10
50
0
+40
E n d of T a b l e 8
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled whe
P R E F E R R E D LIMITS AND FITS
Continued from page 5
m -- i2
t
9. ModifiedStandardFits
9.1 Bilateralhole
o r b a s i cs h a fst y s t e mf i t s
havingthe same amounts of c l e a r a n c e or interference remain the same a s those shown in Tables
5 to 9 , but the limits
of size are calculated for
h o l e s or shafts and differ from those shown in the
tables. This may be accomplished
by one of t h e
following:
-
HOLES
SHAFTS
SCALE: THOUSANDTHS OF AN INCHFOA A DIAMETER OF ONE INW
FIG. 4 G R A P H I C A L R E P R E S E N T A T I O N O F S T A N D A R D
LOCATIONALINTERFERENCEFITS
T A B L E 8)
(SHOWN I N
(a)Bilateralholes(SymbolB)-Thiswillresult in nonstandard holes and shafts.
(b) A basic shaft system (Symbol S)-This will
result in nonstandard holes and shafts.
LN
Locational interference f i t s areusedwhere
accuracy of l o c a t i o n i s of prime importance
andforpartsrequiringrigidityandalignment with no special requirements for bore
pressure.Suchfitsarenotintendedfor
p a r t s d e s i g n e d to transmitfrictionalloads
from oneparttoanother
by virtue of the
t i g h t n e s s of fit, a.s t h e s ec o n d i t i o n sa r e
covered by force fits.
8.3.3 Force Fits. F o r c e or shrinkfitscons t i t u t e a s p e c i a l t y p e of interference fit, normally characterized by maintenance of constant bore
pressuresthroughouttherange
of s i z e sT. h e
interference therefore varies almost directly with
diameter, and the difference between its minimum
andmaximumvalue
i s s m a l l to maintaintheresulting pressures within reasonable ‘limits.
T h e s e f i t s maybe described briefly as follows:
FN 1 Lightdrivefits
arethoserequiringlight
assemblypressuresandproducemoreor
less permanent assemblies. They are suitable for t h i ns e c t i o n s
or longfits,orin
cast-iron external members.
FN 2 ,Medium drivefits a r e s u i t a b l e for ordinary
s t e e l p a r t s or forshrinkfitsonlightsections. They are about the tightest fits that
canbeusedwithhigh-gradecast-ironexternal members.
FN3 Heavydrivefits
aresuitableforheavier
s t e e pl a r t s
or for
shrinkfitsinmedium
sections.
Forcefits are suitable for parts which can
be highly stressed or for shrink fits where
the
heavy
pressing
forces
required
are
3-
I
-2
a1”OLES
9.2 BilateralHole
Fits (SymbolB).Thecommon case is where holes are produced with fixed
t o o l s ,s u c ha sd r i l l s
or reamers;toprovide
a
longer wear life for such tools
a bilateral tolerance is desired,
The symbols used
for t h e s e f i t s a r e i d e n t i c a l
withstandardfitsexceptthattheyarefollowed
a locational
by theletter“B.”Thus“LC4B”is
clearance fit, class 4,except that is is produced
with a bilateral hole.
The limits of clearance or interference are identicalwiththoseshowninTables
5 to 3 forthe
corresponding fits.
The hole tolerance is changed so that the plus
limit i s t h a t foronegradefinerthanthevaIue
shown i n t h e t a b l e s ,
t h e m i n u sl i m i t
e q u a l s the
amount by which the plus limit was lowered, and
theshaftlimitsarebothlowered
by the same
amount asthelowerlimit
of s i z e of t h e hole.
Thefinergrade
of tolerancecanbefoundin
Table 4.
9.3 BasicShaftFits(Symbol
S). Forthesefits
the maximum s i z e of t h e s h a f t i s b a s i c a n d t h e
a l l o w a n c ei sa p p l i e dt ot h eh o l e .T h el i m i t s
of
c l e a r a n c e o r interference are identical with. tRse
showninTablesS to 9 forthecorresponding
fits. T h e symbols u s e d for these fits are identical with those used for standard fits except that
theyarefollowedbythe
letter “S.” T h u s “ L C
4s” i s a l o c a t i o n a lc l e a r a n c ef i t ,c l a s s4 ,e x cept that it
is produced on a b a s i c s h a f t b a s i s .
‘The limits for hole and shaft a s g i v e n i n
5 to 3 areincreasedforclearancefits,
c r e a s e d for transition or interference fits,
value of theuppershaftlimit;thatis,
amountrequiredtochangethemaximumshnftto
the basic size.
SHAFTS
SCALE : THOUSANDTHS of AN INCH
FOR A DIAMETER OF ON VlCH
FIG. 5 G R A P H I C A L R E P R E S E N T A T I O N O F S T A N D A R D
FORCEORSHRINKFITS
(SHOWN I N T A B L E 9)
12
Tables
or deby che
by the
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled whe
USA STANDARD
9.4 If standard stock sizes or special conditions
use of otherholesizesandshaft
requirethe
s i z e s , r e f e r e n c e s h o u l d bemadefortherequired
I which are taken
froin
f i t t o tables in Appendix
the ABC proposal.
DIAMONO BORING
BROACHING
10. Machining Processes.
REAMING
TURNING
To indicatethemachiningprocesseswhich
m a y normally be expected to produce work within
thetolerancesindicated
bythegradesgivenin
this Standard, Fig. 6 has been provided. This information is intended merely as a guide in selecti n gs u i t a b l ep r o c e s s e s
for a particulargrade.
BORING
MILLING
PLANING 8 SHAPING
DRILLING
FIG. 6 M A C H I N I N G P R O C E S S E S
13
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled whe
P R E F E R R E D LIMITS AND F I T S
T A B L E 9 FORCEANDSHRINKFITS
L i m i t s a r e i n t h o u s a n d t h s of an inch.
Limits for hole and shaft are applied algebraically
Data in bold face
to t h e b a s i c s i z e to o b t a i n t h e l i m i t s of s i z e for the parts.
are in accordance with ABC agreements.
I).
S y m b o l s H7, s 6 , etc., are Hole and Shaft designations used in ABC System (Appendix
Class FN 1
Nominal
SizeRange
Inches
To
Over
0
- 0.12
o.12
-
o.24
0.24
-
0-40
0*40 - o ' 5 6
0.56
-
0.71
0'71
-
0'95
0*95- '.19
l.58
1.97
1*97-
2.56
2 . ~ 6 - 3-15
3.1s3.944.73
-
5.52-
5+52
6'30
6 * 3 0 - 7*09
7.09
-
7.88
7*88 -
8.86 - 9.85
9.85
-
I1.O3
11.03 - 12.41
1 2 * 4 1 -13-98
13.98-15-75
15.75 - 1 7 . 7 2
17*72
U
.s
.
3
A
5
LI
U
w
2
.
Hole
H6
+
0.1
0.75
0.1
0.8
0.2
0.9
0.2
1.1
0.3
1.2
0.3
1.3
0.4
1.4
0.9
+0.9
-0
1.1
2.6
1.2
2.9
+0.9
- 0
+1.0
- 0
+1.0
- 0
+1.0
- 0
+1.2
-0
+1.2
-0
1.8
-
0
2.3
+1.2
-0
2.8
+1.2
-0
+1.2
-0
+1.4
-0
+1.4
-0
+1.6
- 0
+1.6
- 0
4.3
4.9
2.8
4.9
3.1
5.5
3.6
6.1
4.4
7.0
4.4
7.0
0.4
W7
-],C
+
0.2
0.83 - 0
0.2
1.0 - 0
+
+
+
+
+
0.8
I
+
+
1.8
1.3
+
1.9
1.4
+
2.4
1.8
+
+
+ 2.6
+ 2.0
+ 2.9
+ 2.2
+
+
+
+
+
+
+
+
+
+
+
+
+
+
3.2
2.5
3.5
2.8
3.8
3.0
4.3
3.5
4.3
3.5
4.9
4.0
4.9
4.0
+ 5.5
+
+
+
+
+
+
+
I
0.8
2.4
-
0.8
2.7
t-1.2
- 0
1.0
2.9
. .
1.4
3.7
1.6
3.9
I
-
~
+
+
0
I
0
- 0
- 0
+1.6
-0
4.5
2.4
5.0 - 0
2.9 + 1 . 6
5.5 - 0
3.2 + 1 . 8
6.2 - 0
3.2 + 1 . 8
6.2 - 0
4.2 +1.8
7.2
4.0
7.2
. 5.0
8.2
5.8
9.4
5.8
9.4
6.5
10.6
4.5
6.1
5.0
7.0
6.0
7.0
6.0 11.6
-
0
+2.0
- 0
+2.0
-
0
+2.2
-
0
+2.2
-0
4~2.5
-0
-
0
Standard
Limits
Loo
"
Hole
E 8 Hole
2 5 H7
Shaft
0.8 t0.8
2.1 - 0
1.0 + 1 . 0
2.6 - 0
41.2
~1.0
2.8 - 0
2.4
1.8
+ 2.7
+ 2.0
+ 2.9
+ 2.2
+ 3.7
+ 2.8
+ 3.9
I
+1.2
3.2 I - 0
-11.2
1.8 + 1 . 2
3.7 - 0
+
+
+
+
+
+
+
+
+
+
+ 2.8
+ 2.2
+1 .3.2
3
+2.5
I
+
+
3.7
3.0
4.4
3.5
+
I
4.2 , - 0
2.8 + 1 . 2
4.7 - 0
5.9 - 0
I
+
13.2
+ l o 2 10.0
13.2
12.0
- 0 + 9.0 15.2
+ 2 . 2 +11.4 13.8
- 0 +10.0 17.4
15.8
+2.2
- 0 +12.0 19.4
17.5
9.0 13.6 - 0
21.6
11.5 ++11.6
+2.5 7.5
2 . 5 +15.6
0 + 1 4 . 0 23.6
15.6 -+10.0
7.0
10.2
7.0
10.2
7.8
11.4
9.8
13.4
14
+2.0
-
0
+2.0
t 9.0
liole
H8
0 . 3 t 0.6
1.3 - 0
+0.5
0 . 5 + 0.7
0.4
1.7 - 0
5
2.0
2.3
0.8
2.5
3.0
+
t- 1 . 2
+1 . 03 . 0
- 0 + 2.2
+ 3.3
+ 1.2 1.3
3.3 - 0
1.4 + 1.6
4.0 - 0
t
4.2
3.5
+ 1 . 2 t 21..38
6.2 4 - 0
4.2 + 1.8
7.2 - 0
+
+
5.9
+ 5.0
+4.66.9
- 0
+4.8
1 . 4 + 32 . 62
8.4 - 0
+2.5
4.0
+3.0
+
+ 5.0
2.4
+ 4.0
+3 . 26 . 2
+5.0
7.2
6.0
+
+
+
+
+
+
8.4
7.0
5.8 + 2 . 2
9.4 - 0
715 + 2.5
11.6 - 0
+ 2.5
13.6 - 0
+9.5
1 . 6 + 2.5
13.6 - 0
11.2 + 2 . 8
15.8 - 0
2.8
13.2 ++11.2
17.8 - 0
9.4
8.0
+11.6
+10.0
9+13.6
.5
1-12.0
+13.6
+12.0
+15.8
+14.0
+17.8
+1.8
+16.0
0
17.8 -+12.0
t17.8
+16.0
13.2
+ 2.8
3.0
15.0 ++13.2
20.0- - 0
+ 3.0
- 0 +14.0 22.0 - 0
+ 2 . 2 t 1 7 . 4 18.5 + 3.5
- 0 +16.0 24.2 + 0
++13.4
2 . 2 +19.4 21.5 + 3.5
-0
0
27.2 -+18.0
4.0
+13.6+21.6
+2.5 +2.5
9.5 + +10.6
-+12.0
0 +20.0 30.5 - 0
+ 4.0
+2.5 +23.6
19.5
- 0 +22.0 32.5 - 0
+2.0
- 0 +12.0
++10.2
2.0
+
+
+
x7
1.3
0.9
1.7
1.2
0+. 52.0
+ 1 . 0 + 1.6
5.0 - 0
4.7
4.0
+
0.9
3.4
2.8
+
+
Shaft
- 0 + 1.4
+ 1 . 0 0+. 62.3
- 0 + 1.6
+ 2.5
t- 1 . 0
+ 1.8
- 0
+
4.9
+1.4
4 . 0 6.9 - 0
+ 6.0
8.0
6.0
4-1.6 +5.4
5.0 8.0 - 0 + 7 . 0
+ 1 . 6 +5 .84. 0
6.0
5.0 8.0 - 0 + 7 . 0
+ 9.0
7 . 0 6.4
+ 8.0
6.0 9 . 0 - 0
7 . 2 + 1 . 8 +10.2
8.2
7 . 0 10.2 - 0 + 9 . 0
8.2
7 . 0 11.2 - 0 +10.0
8.0
.d
0.95
0.7
1.2
0.9
+
+
+ 1.6
+ 1.2
+0.7
1.8
+1.8
1.0
3.4 - 0
,E
Standard
Limits
2
:i
0
Class FN 5
2
0.6 + 0 . 6
1.6 - 0
+ 0.7
1 . 8 - 0 + 1.4
0.7 + 0.7 4- 1 . 8
1.8 - 0 + 1.4
0.8 + 0.8 -t 2.1
2.1 - 0 + 1 . 6
1.0 + 0 . 8 + 2.3
2.3 - 0
+ 1.8
1.5 + 1 . 0 + 3.1
3.1 - 0 + 2.5
2.1
t1.6
+ 2.6
+ 2.0
.,. "
u6
6.2 +1.8 t 9.2 10.2 t 1 . 8 t13.2
6.0
7.2
6.0
8.2
7.0
9.4
8.0
9.4
8.0
Shaft
J.5
+
9.2 - 0
+ 7.2
i Ilole
ti7
1.2 - 0
+
3.5
5.0
+
+
.E
Standard
Limits
0.3 + 0 . 4
0.95 - 0
5.5
+4.5
+ 6.2
+ 5.0
+ 6.2
+ 5.0
9
+1 .4.5
+
- .-" c
0
vi
t6
+2.1
1 . 4+ 1 . 4 +
4.4 - 0 +
4-1.4
2.6 + 1 . 4 +
4 . 9 - 0+ 3 . 0+
3.4 +1.6 +
6.0 - 0 +
+
3.4
1 . 6+ 1 . 6 +
6 . 0 - +04 . 0+
4.4 +1.6 +
7.0 - 0
+
5.2 + 1 . 8 +
8.2 - 0 +
5.2 + 1 . 8 +
8.2 - 0 +
+
2
0.85 +0.4
0.6
1.0 +0.5
0.7
1.4
1.4 - 0 + 1.0
0.5 + 0 . 7 + 1 . 6
1.6 - 0 + 1.2
0.5 +0.7 + 1.6
1.6 - 0 + 1.2
0.6 + 0 . 8 + 1.9
1.9 - 0 + 1.4
1.9
1-0.8 +0.6
+ 1.4
1.9 - 0
0.8 + 1 . 0 + 2.4
2.4 - 0 + 1 . 8
0.5
Class FN 4
Class FN 3
e.,.
.3
Shaft
s6
+ 0.75 0.4 + 0 . 6
+
+ 0.4
+0.7
3.5
1.8
3.8
2.3
4.3
."- .,0. .
0.6
E
Standard
Limits
CJ
.E i
- 0
+ 0.5
+ 0.9
+0.4
-0
+ 0.6
+ 1.1
+0.5
- 0
+ 0.7
+ 1.2
+0.5
- 0
+0.8
+ 0 . 6 1 + 1.3
- 0
+ 0.9
+ 1.4
+0.6
- 0 + 1.0
0.7
1.9
3.2
+
+
+0.4
-0
0.6 + 0 . 7
1.8
~.~ - 0
1.5
+
0.5
0.3
'
Class FN 2
a
T
vi"
0 5
Shaft
0.05 + 0 . 2 5
0.5 - 0
0.1 + 0 . 3
0.6 - 0
2.4
4.73
Standard
Limits
c.
vi
0
-
-
8.2
+20.0
+18.0
17.0
422.0 +15.2
+2O.O
+24.2
+22.0
+27.2
+25.0
24.0
+30.5
~
+28.0
26.0
+32.5
+30.0
C o n t i n u e d o n p a g e 15
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w
USA STANDARD
T A B L E 7 F O R C E AND SHRINK FITS (Continued
from p a g e 14)
L i m i t s a r e i n t h o u s a n d t h s of an inch.
Limits for hole and shaft are applied algebraically to the basic size
to o b t a i n t h e l i m i t s
of s i z e for the parts.
Data in bold face are in accordance with ABC agreements.
ABC System (Appendix 1).
S y m b o l s H 7 , s 6 , etc., are Hole and Shaft designations used in
Nominal
SizeRange
Inches
To
Over
19.69 -24.34
2 4 . 3 4 - 30.09
30'09 - 3 5 . 4 7
35.47 -41.49
41'49 -48'28
48.28 - 5 6 . 1 9
C l a s s FN 1
r r o
Standard
Limits
g
II 2
.- 2
.E ;
6.0
9.2
7.0
10.2
Hole
H6
+
2.0
- 0
+ 2.0
- 0
+ 2.5
Shaft
t- 9.2
+
8.0
-tlO.2
+ 9.0
Class F N 2
;;8
.-II 9JE
,52
9.0
14.0
11.0
16.0
C l a s s FN 3
Standard
Limits
Hole
+
+
3.0
- 0
+ 3.0
- 0
+
+
+
Standard
Limits
s6
,sz
14.0
12.0
16.0
14.0
15.0 + 3.0 +
20.0 - 0 +17.0 + 3 . 0 +
22.0 - 0 +
Shaft
H7
z:
.= ; c U
Hole
Shaft
H7
t6
20.0
18.0
22.0
20.0
Class FN 4
$
.z
vI
;j
$
Standard
Limits
c
Hole
Shaft
H7
u6
2
2
I
22.0+
27.0 27.0+
32.0 -
3.0
0
3.0
0
+
27.0
+ 25.0
+ 32.0
Class FN 5
38
Standard
Limits
3
.g 2
3
Hole
2
30.0
+
-
5.0
0
35.0 + 5.0
43.0 - 0
38.0
Shaft
x7 H8
+
38.0
35.0
+ 43.0
+ 40.0
+
+ 30.0
21.0 + 4.0 + 27.5 3 1 . 0 +
44.0 + 6.0 + 54.0
+ 37.5 4.0
- 0
+10.0
20.5 - 0 + 18.0 27.5 - 0 + 25.0 37.5 - 0 + 35.0 54.0 - 0
+ 50.0
+ 2.5 +13.6
+ 4.0 16.0
+ 2 2 . 5 24.0 t 4.0 + 30.5 36.0 + 4.0 + 43.5 54.0 + 6.0 + 64.0
- 0
+12.0 22.5 - 0 + 20.0 30.5 - 0 + 28.0 43.5 - 0 + 40.0 64.0 - 0
+ 60.0
11.0
+ 3.0 +16.O 17.0 + 5.0 + 2 5 . 0 30.0 + 5.0 + 38.0 45.0 + 5.0 + 53.0 62.0 + 8 . 0 - ~+ 75.0
16.0 - 0
+14.0 25.0 - 0 + 22.0 38.0 - 0 + 35.0 53.08.- 0 + 50.0 75.0 - 0
+ 70.0
13.0 + 3.0 +18.0 20.0 + 5.0 + 28.0 35.0 + 5.0 -t 43.0 55.0 + 5.0 + 63.0 72.0 + 8.0 + 85.0
18.0 - 0
+16.O 28.0
+ 25.0 43.0 - 0 + 40.0 63.0 - 0 + 60.0 85.0 - 0 + 80.0
0
14.0 + 4.0 +20.5 24.0 + 6.0 + 34.0 39.0 + 6.0 t 49.0
+ 6.0 +64.0
74.0 90.0 +10.0 +I06
20.5
- 0
+18.0 34.0 - 0 + 30.0 49.0 - 0 -t 45.0 74.0 - 0 + 70.0 106 - 0
+lo0
18.0 -t 4.0 +24.5
+ 39.0 (t4.0+ 6.0;- ~%-+
6.0 +84.0110~+126
- 0
24.5
+22.0 39.0 - 0 +/35.0 54.0 - 0 -t 50.0 84.0 - 0 + 80.0 126 - 0
+120
20.0 + 5.0 +28.0
+ 8.0 t32.045.0 52.0 + 8.0 + 65.0 8 2 . 0 + 8.0 + 95.0 128 +12.0 +I48
28.0
- 0
+25.0 45.0 - 0 + 40.0 65.0 - 0 t 60.0 95.0 - 0 + 90.0 148 - 0
+I40
23.0 + 5.0 +31.0 37.0 + 8.0 t 50.0 62.0 + 8.0 + 75.0 92.0 + 8.0 + l o 5 148 +12.0 +I68
31.0 - 0
+28.0 50.0 - 0 + 45.0 75.0 - 0 + 70.0 105 - 0 + l o 0 168 - 0
+I60
2ilO +6.0+34.040.0+10.0+56.070.0+10.0+86.0110+10.0+12/3~+16.0+130
34.0
- 0
+30.0 56.0 - 0
+ 50.0 86.0 - 0 + 80.0 126 - 0 +I20 190 - 0 + I 8 0
+ 6.0 +39.0 50.0 +10.0 + 66.0 80.0 +10.0 + 96.0 130 +10.0 +146 184
29.0
+210 +16.0
39.0 - 0
+35.0 66.0 - 0 + 60.0 96.0 - 0 + 90.0 146 - 0 +140 210 - 0
+200
37.0 + 8.0 +50.0 58.0 +12.0 + 78.0 88.0+12.0+108
200 +20.0 +232
148
+168 +12.0
50.0 - 0
78.0 +45.0
- 0 + 70.0 108 - 0 +IO0 168 - 0 +160 232 - 0 +22O
42.0 + 8.0 +55.0 68.0 +12.0 + 88.0 108
230 +*O.O
+26*
+128 +12.0
168
+188 12.0
- 0 +50.0 88.0 - o + 80.0 128 - o 4 - 1 2 0 188
55.0
o +I80 262 - 0 +250
50.0 +10.0 +66.O 74.0 +16.0 +IO0
124 +16.O +150
184 +16.0 +210 275 +25.0 +316
66.0 - 0
+6O.O 100
- 0 + 90 150 - 0 +140 210 - 0 +200 316 - 0 +300
7.5
11.6
9.5
13.6
+11.6
+ 4.0 +14.020.5
1-
-----
5G.19 - 6 5 . 5 4
~
65.54 - 76'39
""'
-87'79
87'79 -100'9
100.9 - 1 1 5 . 3
1 1 5 . 3 -131.9
131.9 -152.2
~~~
152.2-171.9
1 7 1 . 9 -'O0
E n d of T a b l e 9
15
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
P R E F E R R E D LIMITS A N D FITS
I
Limits for Holes C to X
Tolerance Unit 0.001 in.
IJ-Upper Limit
L-Lower
Limit
Diameters Over: To ( I n c h e s )
N
'
7
IL-
...
!.U+
g.0
.. .
0.1
0.4
0.1
1 L-
...
. . . .0.5
!L-
...
...
lu+
0.0
0.1
0.2
0.7
0.4
0.2
0.5
0.2
0.8
0.5
0.2
0.6
0.3
0.7
0.5
0.3
0.7
1.1
16
. 0.6
0.4
0.8
0.5
1.3
0.7
0.4
1.0
0.5 0.7
1.5
.
.
0.8
0.5
1.1
0.8
1.7
1.0
0.5
1.3
0.8
2.0
1.2 1.2
0.6
1.6
0.8
1.1
2.2
2.4
Continued on page
1.0
0.6
1.4
0.7
1.8
1.3
2.7
17
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
APPENDIX
Limits for Holes C to X ( C o n t i n u e d from p a g e 16)
U-Upper Limit
L-Lower
Limit
Tolerance Unit 0.001 in.
17
End of Table
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled whe
APPENDIX I
LIMITS FOR SHAFTS c to x
Tolerance Unit 0.001 in.
U-Upper
L-Lower
Limit
Limit
I
I
I
Over:Diameters
To (Inches)
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled whe
APPENDIX I
LIMITS FOR SHAFTS c to x (continued from page 18)
Tolerance Unit
0.001 in.
L-Lower
Limit
U-Upper
Limit
I
I
(Inches)
To
Over: Diameters
0.5
0.7
1.1
0.1
I
5
iU+ (0.3510.410.451
0.6
I
1.6
2.5
4.0
6.0
0.0
,
I
0.6
0.8
1.3
0.1
1.8
3.0
4.5
7.0
0.0
0.8
1.1
1.7
0.1
2.5
4.0
0.7
1.0
I
1.5
0.1
2.2
3.5
5.0
9.0
0.0
I
I
6.0
I
10.0
0.0
I
1.0
1.4
2.0
0.2
2.8
4.5
7.0
12.0
0.0
I
1.1
1.4
2.2
0.2
3.0
5.0
8.0
12.0
0.0
I
1.2
1.6
2.4
0.2
1.2
1.8
2.7
0.2
3.5
4.0
6.0
10.0
16.0
6.0
9.0
14.0
0.0
I
0.0
0.7
E
5-7
L+
U+
U+
7
5-7
L+
5-7
L+
u+
~
5-7
L+
U+
7
5-7
U+
u+
iJ
Y
*.
5-7
L+
1.1
1.15
1.3
0.9 1
1.41.651.92.12.62.9
3.0
1.5 1.8 2.0 2.22.7
2.3 2.5 3.0 3:3
1.72.0
1.21.4
1.6 1 ,1.8 12.2 12.5
1
1
19
End of Table
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
APPENDIX I
'
,
Temperature
Deg F
,
1
Coefficient of thermal expansion of material
per
degree
F, X IO6
4 2
3
5
10
15
20
25
Total change in length from standard, microinches per inch of length.
38
39
40
41
42
-30
-29
-28
-27
-26
-60
-58
-56
-54
-52
-90
-8 7
-84
-8 1
-78
-120
-116
-1 12
-108
-104
-1 50
-145
-140
-135
-130
-300
-290
-280
-270
-260
43
44
45
46
47
-25
-24
-23
-22
-21
-50
-48
-46
-44
-42
-7 5
-7 2
-69
-66
-63
-100
- .96
- 92
- 88
- 84
-125
-120
-1 15
-1 10
-105
-250
-240
-23 0
-220
-2 10
48
49
50
51
52
-20
-19
-18
-17
-16
-40
-38
-36
-3 4
-3 2
-60
-57
-54
-5 1
-48
80
76
72
68
64
-100
- 95
- 90
- 85
80
53
54
55
56
57
-1 5
-14
-13
-12
-11
-30
-28
-26
-4 5
-4 2
-3 9
-
58
59
60
61
60
56
52
48
44
40
36
32
28
24
20
16
12
- 8
- 4
-
-2 2
-36
-33
62
-10
- 9
- 8
- 7
- 6
-20
-18
-16
-14
-12
-30
-2:
-2 4
-2 1
-18
63
64
- 5
- 4
-10
- 8
-15
-1 2
66
67
- 2
- 1
- 4
- 2
68
0
0
69
71
72
73
74
75
76
77
78
1
2
3
4
5
2
4
6
8
10
- 6
- 3
0
3
6
3
12
15
4
8
12
16
20
6
7
8
9
10
12
14
16
18
20
18
21
24
27
30
24
28
32
36
40
79
80
81
82
83
11
12
13
14
15
22
24
26
28
30
33
36
39
42
45
84
85
86
87
88
16
17
18
19
20
34
36
38
40
32
48
51
89
90
91
92
93
21
22
23
24
25
94
95
96
97
98
26
27
28
29
30
65
70
- 3
-24
- 6
- 9
-
-
0
30
-450
-43 5
-420
-405
-390
-600
-580
-560
-540
-520
-750
-725
-700
-675
-650
-900
-870
-840
-810
-780
-375
-345
-3 30
-315
-500
-480
-460
-440
-420
-625
-600
-575
-550
-525
-750
-720
-690
-660
-630
-200
-190
-180
-1 70
-160
-300
-285
-270
-255
-240
-400
-3 80
-3 60
-3 40
-3 20
-500
-475
-450
-425
-400
-600
-570
-540
-510
-480
75
70
65
60
55
-150
-140
-130
-120
- 110
-225
-2 10
-195
-180
-165
-300
-280
-2 60
-240
-220
-3 75
-3 50
-325
-3 00
-275
-450
-420
-390
-360
-330
- 50
- 45
- 40
- 35
- 30
-100
- 90
- 80
- 70
- 60
-1 50
-135
-120
-105
- 90
-200
-1 80
-1 60
-140
-1 20
-250
-225
-200
-175
-1 50
-300
-270
-240
-210
-180
-
-
- 60
- 45
-
-125
-150
-120
- 90
- 60
- 30
-
25
20
15
- 10
- 5
0
5
10
50
40
30
20
- 10
0
10
20
-3 60
- 75
- 30
- 15
0
-100
80
60
40
20
0
-100
- 70
- 50
- 25
0
0
30
20
40
60
80
100
25
50
30
60
40
50
I5
30
45
60
75
100
125
120
150
30
35
40
45
50
60
70
80
90
100
90
105
120
135
150
120
140
160
180
200
150
175
200
225
2 50
180
210
240
270
300
44
48
52
56
60
55
60
65
70
75
110
120
130
140
150
165
180
195
210
225
220
240
2 60
2 80
3 00
275
330
3 60
3 90
420
4 50
80
54
85
90
95
100
46
48
50
63
66
69
72
75
84
88
92
96
100
105
110
115
120
125
160
170
180
190
200
210
220
230
240
250
240
57
60
64
68
72
76
80
52
54
56
58
60
78
81
84
87
90
104
108
112
116
120
130
135
140
145
150
2 60
270
280
290
300
42
44
1s
20
25
75
3 00
325
3 50
375
90
480
510
540
570
600
3 20
400
3 60
380
400
450
475
500
315
33 0
345
360
375
420
440
460
480
500
525
5 50
575
600
625
660
690
720
750
3 90
520
540
5 60
580
600
650
67 5
700
725
750
780
810
840
870
900
255
3 40
270
285
300
405
420
43 5
450
425
63 0
For intermediate coefficients add appropriate listed values. For example, a length change for a coefficient o f
7 is the sum of values in the 5 and 2 columns. Fractional interpolation maybe similarly calculated.
*Or hundredths of micron (microns/100) per centimeter.
20
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
APPEND1X I I
LENGTH DIFFERENCES PER INCH FROM STANDARD FOR TEMPERATURES 38 TO 98 F
FROM STANDARDTEMPERATURE 0 TO 40
LENGTHDIFFERENCESPERCENTIMETER
TemperCoefficient
ature
1
Deg
-20
-19
-18
-17
-16
-40
-3 8
-3 6
-3 4
-3 2
-60
-57
-5 4
-5 1
-48
-80
-76
-7 2
-68
-64
5
9
-3 0
-28
-26
-24
-22
-4 5
-42
-39
-36
-33
-60
7
8
-1 5
-14
-13
-1 2
-1 1
10
-10
-20
-3 0
-27
-24
-2 1
-18
-40
-3 6
-3 2
-28
-24
-15
-12
-20
-16
-12
- 8
- 4
6
x 10
of thermal expansion of material
per
degree
C,
2
5 3
4
15
10
20
25
30
Total change in length from standard, hundredths of microns (microns/lOO)per centimeter of length.
0
1
2
3
4
CELSIUS
11
12
13
14
- 8
- 7
- 6
-18
-16
-14
-12
15
16
17
18
19
-
-10
- 8
- 6
- 4
- 2
- 9
5
4
3
2
1
20
21
22
23
24
0
25
26
27
28
29
5
1
2
3
4
- 9
- 6
- 3
0
0
6
-56
-52
-48
-44
-100
- 95
- 90
- 85
- 80
- 75
- 70
- 65
- 60
-
55
- 50
- 45
-
40
35
30
-
10
5
25
- 20
- 15
-
0
0
-200
-190
-180
-170
-160
-150
-140
-13 0
-1 20
-1 10
-100
- 90
- 80
- 70
- 60
- 50
- 40
- 30
- 20
- 10
0
-3 00
-400
-3 8 0
-360
-3 40
-3 20
-500
-475
-4 50
-425
-400
-600
-570
-540
-510
-480
-225
-195
-180
-165
-3 00
- 280
-2 60
-240
-220
-375
-350
-325
-3 00
-27 5
-450
-420
-3 90
-360
-330
-1 50
-135
-120
-105
- 90
-200
-180
-1 60
-140
-1 20
-2 50
-225
-200
-175
-150
-3 00
-270
-240
-2 10
-180
75
- 60
- 45
- 30
- 15
-
-1 25
-1 50
-120
- 90
- 60
- 30
-28 5
-270
-255
-240
-2 10
-
0
-1 00
80
60
40
20
0
-100
- 75
- 50
- 25
0
0
8
6
9
12
4
8
12
16
5
10
15
20
10
20
30
40
15
30
45
60
20
40
60
80
25
50
75
100
30
60
90
120
9
15
18
21
24
27
20
24
28
32
36
25
30
35
40
45
50
60
70
80
90
75
90
105
120
13 5
100
7
8
10
12
14
16
18
120
140
160
180
125
150
175
200
225
150
180
210
240
270
30
31
32
10
11
12
20
22
24
30
33
36
40
44
48
50
55
60
100
110
120
150
165
180
14
28
42
56
70
140
210
250
275
3 00
325
3 50
3 00
330
34
200
220
240
2 60
280
75
80
85
90
95
100
150
160
170
180
190
200
225
240
255
2 70
285
300
300
320
3 40
3 60
380
400
3 75
400
425
4 50
475
500
450
480
5 10
5 40
570
600
33
35
36
37
38
39
40
6
13
15
16
17
18
19
20
2
4
26
30
32
34
36
38
40
3
39
45
48
51
54
57
60
52
60
64
68
72
76
80
65
130
195
3 60
3 90
420
For intermediate coefficients add appropriate listed values.
For example, a length change for a coefficient
of
11 i s thesumofthe
values inthe 1 0 and 1 columns. Fractional interpolations may be similarly calculated.
*Or microinches per inch.
1 C = 1.8 F
21
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled wh
APPENDIX I1