Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (43)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.66 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1
Câu 1. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3, m = 4.
Câu 2. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 3. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 4. [3] Biết rằng giá trị lớn nhất của hàm số y =


số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 135.

D. S = 22.

d = 120◦ .
Câu 5. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B.
.
C. 4a.
D. 3a.
2
2x + 1
Câu 6. Tính giới hạn lim
x→+∞ x + 1
1
B. 2.
C. −1.
D. 1.

A. .
2
Câu 7. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
x
Câu 8. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
B.
.
C. .
D. 1.
A. .
2
2
2
Câu 9. !Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
4
5
1

5
A.
.
B.
.
C.
.
D. − .
e
3
3
3

Câu 10. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {4; 3}.

D. {3; 3}.

!

Câu 11. [2] Phương trình log x 4 log2
A. Vô nghiệm.

B. 3.

Câu 12. Khối lập phương thuộc loại
A. {4; 3}.

B. {3; 3}.

5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. 2.
D. 1.
C. {5; 3}.

D. {3; 4}.

Câu 13. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
A.
.
B. −
.
C.
.
D. − .
25
100
100
16
Trang 1/10 Mã đề 1



x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
1
Câu 15. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 1.
D. 2.
!
1
1
1
Câu 16. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.

B. 2.
C. .
D. .
2
2
3
Câu 17. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. 6.
B. −1.
C. 1.
D. 2.
Câu 14. [3-1214d] Cho hàm số y =

Câu 18. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
Câu 19. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 20. Khối đa diện đều loại {3; 3} có số cạnh

A. 5.
B. 4.

C. 8.

D. 6.

Câu 21. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 3, 55.
D. 20.
Câu 22. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số đồng biến trên khoảng ; 1 .
3
!3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
1
Câu 23. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 24. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. a.
B. .
C.
.
D. .
2
2
3

Câu 25. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 108.
D. 4.
Câu 26. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.

B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 27. Xét hai câu sau
Trang 2/10 Mã đề 1


Z
(I)

( f (x) + g(x))dx =

Z

f (x)dx +

Z

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai câu trên sai.

Câu 28. Khối đa diện đều loại {3; 4} có số mặt

A. 8.
B. 12.

C. 10.

D. 6.

Câu 29. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.

D. m = 0.

Câu 30. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 31. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Khơng thay đổi.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
Câu 32.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.

dx = x + C, C là hằng số.
x
Z
Z
xα+1
α
+ C, C là hằng số.
D.
0dx = C, C là hằng số.
C.
x dx =
α+1
Câu 33. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.

C. 30.

D. 12.

Câu 34. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.



x=t





Câu 35. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4

4
Câu 36. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 37. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.

D. {3; 4}.
Trang 3/10 Mã đề 1


Câu 38. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 2

a 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
4
2
2
2
2
2
1 + 2 + ··· + n
Câu 40. [3-1133d] Tính lim
n3
1
2
A. +∞.
B. .
C. .
D. 0.
3
3
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 41. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là





a3 3
a3 2
a3 3
2
.
C.
.
D.
.
A. 2a 2.
B.
12
24
24
Câu 42. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 10 mặt.

D. 6 mặt.

9x
Câu 43. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1

A. −1.
B. .
C. 1.
D. 2.
2
Câu 44. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 10 cạnh.
D. 9 cạnh.
Câu 45. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. −3.
D. 0.
Câu 46. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 8.

D. 12.

Câu 47. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 5.
D. 3.
Câu 48. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng

(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
q
Câu 49. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Câu 50. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 51. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = x + ln x.

C. y0 = ln x − 1.

D. y0 = 1 − ln x.

Câu 52. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|




12 17
A.
.
B. 5.
C. 34.
D. 68.
17
Trang 4/10 Mã đề 1


Câu 53. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
8a 3
a 3
4a 3
.
B.
.
C.

.
D.
.
A.
9
9
3
9
Câu 54. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 55. Hàm số nào sau đây khơng có cực trị
1
A. y = x4 − 2x + 1.
B. y = x + .
x
2
x − 5x + 6
Câu 56. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
Câu 57. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.
4x + 1

bằng?
Câu 58. [1] Tính lim
x→−∞ x + 1
A. −1.
B. −4.

C. y = x3 − 3x.

D. y =

C. −1.

D. 1.

C. 7.

D. 5.

C. 4.

D. 2.

x−2
.
2x + 1

Câu 59. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 60. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 2.

B. m = ±1.
C. m = ±3.
D. m = ± 3.
Câu 61. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −4.
D. −2.
A. −7.
B.
27
Câu 62. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


3
a 3
a3 3
a3
A.
.
B.
.
C. a3 .
D.
.
2
6

3
2

2

Câu 63. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt
√ là
C. 2 2 và 3.
D. 2 và 2 2.
A. 2 và 3.
B. 2 và 3.
Câu 64. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. −7, 2.
0

0

D. 72.

0

Câu 65. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3

BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
24
36
Câu 66. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 67. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
Câu 68. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e + 1.
C. 2e.
e

D. 3.
Trang 5/10 Mã đề 1


Câu 69. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
π
Câu 70. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √

thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 4.
C. T = 2 3.
D. T = 2.
Câu 71. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.

D. −1 + sin x cos x.

Câu 72. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
B. lim [ f (x)g(x)] = ab.
A. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

Câu 73. [1-c] Giá trị của biểu thức

A. 4.

log7 16
log7 15 − log7

B. 2.

15
30

bằng
C. −2.
4
3

√3

D. −4.

Câu 74. [1-c] Cho a là số thực dương .Giá trị của biểu thức a : a2 bằng
7
2
5
5
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
!
x+1

. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 75. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A.
.
B.
.
C.
.
D. 2017.
2018
2018
2017


4n2 + 1 − n + 2
bằng
Câu 76. Tính lim
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2
x−2 x−1
x

x+1
Câu 77. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
Câu 78. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m > 0.

D. m , 0.

Câu 79. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. .
C. .
D. 6.

2
2
Câu 80. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 3.

Câu 81. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2
5n − 3n2

C. +∞.
C. un =

D. 1.
1 − 2n
.
5n + n2


D. un =

n2 − 3n
.
n2
Trang 6/10 Mã đề 1


x+2
Câu 82. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 83. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).

D. (−∞; 1).

Câu 84. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. .

C. .
D. 1.
2
2
Câu 85. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 10.
D. 12.
2

Câu 86. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 7.

D. 5.

Câu 87. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 88. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình tam giác.

D. Hình lăng trụ.


Câu 89. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 0.
D. 22016 .
q
Câu 90. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 91. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
Câu 92. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 6.

C. 3.

D. 4.

C. 10.

D. 4.


x3 −3x+3

Câu 93. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
2
3
A. e .
B. e.
C. e .

D. e5 .

Câu 94. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 8%.
D. 0, 6%.
Câu 95. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
5a
8a
a
A.
.
B.

.
C.
.
D. .
9
9
9
9
Câu 96. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.

D. 4 − 2 ln 2.
Trang 7/10 Mã đề 1


Câu 97. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 3.
D. 2.

Câu 98. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vơ số.
Câu 99. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 100. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 101. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
D. −e.
e
2e
e



x = 1 + 3t





Câu 102. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương



 trình là








x = 1 + 7t
x
=
−1
+
2t
x
=
1

+
3t
x
=
−1
+
2t
















.
C. 
A. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .
y = −10 + 11t . B. 

















z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
z = −6 − 5t
Câu 103. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
!2x−1
!2−x
3
3



Câu 104. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. [1; +∞).
C. (+∞; −∞).

D. {3; 3}.

D. (−∞; 1].

Câu 105. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
A. 27.
B. 3 3.
C. 8.
D. 9.
Câu 106. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (2; 4; 4).
D. (1; 3; 2).
Câu 107. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.

C. 12.

D. 8.


d = 300 .
Câu 108. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
3
3
A. V = 3a 3.
B. V = 6a .
C. V =
.
D. V =
.
2
2
Câu 109. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 110. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.

D. 3.
Trang 8/10 Mã đề 1



Câu 111. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 112. Tính lim
x→3

A. 6.

x2 − 9
x−3

B. 3.

C. −3.

D. +∞.

Câu 113. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(4; −8).
Z 2
ln(x + 1)
Câu 114. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2

1
A. −3.
B. 1.
C. 0.
D. 3.
Câu 115.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
B. 1.
C. 2.
D. 10.
A. 2.

Câu 116. Xác định phần ảo của √
số phức z = ( 2 + 3i)2

A. −7.
B. 6 2.
C. 7.
D. −6 2.
[ = 60◦ , S O
Câu 117. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ Khoảng cách từ O đến (S BC) bằng
√ với mặt đáy và S O = a.

a 57
a 57
2a 57

D.
.
B.
.
C. a 57.
.
A.
19
19
17
Câu 118. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
Câu 119. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m ≥ 0.
!4x
!2−x
2
3
Câu 120. Tập các số x thỏa mãn


3
2
!

"
!
#
"
2
2
2
B. −∞; .
C.
; +∞ .
A. − ; +∞ .
3
3
5
Câu 121. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.

D. m > 0.

#
2
D. −∞; .
5
D. 9.

d = 30◦ , biết S BC là tam giác đều
Câu 122. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √

và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
9
26
13
Câu 123. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
b a2 + c2
a b2 + c2
abc b2 + c2
c a2 + b2

A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 124. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
 π
Câu 125. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π
A.
e .
B.

e .
C. 1.
D. e 3 .
2
2
2
Trang 9/10 Mã đề 1


Câu 126. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 127. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).

D. (2; 2).

Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.

B.
.
C.
.
D.
.
4
12
12
6

Câu 129. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38
a 38
3a
A.
.
B.
.
C.
.
D.
.
29

29
29
29

Câu 130. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 6
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
6
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4.

B
B

5.

B

6.

7.

B

8.


9.
11.
13.

10.

C
D

B

14.

B

16.

17. A

18.

19.

D

21. A
B

C

B
C

20.

D

22.

D

24. A

25.

D

26. A

27. A
29.

D

12. A

15. A

23.


D

28. A
B

30.

31. A

B

32.

33.

C

34.
D

35.

C
B

36. A

37. A

38. A


39.

40.

C
D

41.

B
D

42.

43.

C

44.

45.

C

46.

C
B


47.

B

48.

C

49.

B

50.

C

51. A
53.

52. A
B

55.
57.

D
B

54.


C

56.

C

58.

C

59.

D

60.

61.

D

62. A

63.
65.
67.

C
B
D


64.

C

66.

C

68.
1

B

D


69.

D

70.
72. A

71. A
D

73.
75.

74.


B

B

76.

77.
79.

B

C

78.

D
B

D

80. A

81.

C

82.

83.


C

84.

C

86.

C

88.

C

90.

C

D

85.
87.

B

89.

C


91.

D

92.

93.

D

94. A

C

D

B

96.

C

97. A

98.

C

100. A


101.

B

103.

B
B

95.

102.

C

104.

B

105.

106.

B

107. A

108.

D


110.

109.

C

111.

C

D

112. A

113.

114. A

115.

B

117.

B

119.

B


116.

B

118.

D

120. A

121.

122.
124.

D

123.

B

126.
128.

C

125. A
D


127. A

B

129. A

130. A

2

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×