BS EN 618B5S0E-7N-461108:5200-173-+4A101::22001136
BSI Standards Publication
Communication networks
and systems for power
utility automation
Part 7-410: Basic communication structure
— Hydroelectric power plants —
Communication for monitoring and control
BS EN 61850-7-410:2013+A1:2016 BRITISH STANDARD
National foreword
This British Standard is the UK implementation of
EN 61850-7-410:2013+A1:2016. It is identical to IEC 61850-7-410:2012,
incorporating amendment 1:2015. It supersedes BS EN 61850-7-410:2013,
which is withdrawn.
The start and finish of text introduced or altered by amendment is
indicated in the text by tags. Tags indicating changes to IEC text carry
the number of the IEC amendment. For example, text altered by
IEC amendment 1 is indicated by .
The UK participation in its preparation was entrusted to Technical
Committee PEL/57, Power systems management and associated
information exchange.
A list of organizations represented on this committee can be obtained
on request to its secretary.
This publication does not purport to include all the necessary provisions
of a contract. Users are responsible for its correct application.
© The British Standards Institution 2016.
Published by BSI Standards Limited 2016
ISBN 978 0 580 84068 5
ICS 33.200
Compliance with a British Standard cannot confer immunity from
legal obligations.
This British Standard was published under the authority of the Standards
Policy and Strategy Committee on 30 April 2013.
Amendments/corrigenda issued since publication
Date Text affected
Implementation of IEC amendment 1:2015 with
CENELEC endorsement A1:2016
EUROPEAN STANDARD BS EN 61850-7-410:2013
NORME EUROPÉENNE
EUROPÄISCHE NORM EENN616815805-07--74-1401:02013+A1
ICS 33.200 FeJbarunaurayry20210613 Supersedes EN 61850-7-410:2007
English version
Communication networks and systems for power utility automation -
Part 7-410: Basic communication structure -
Hydroelectric power plants -
Communication for monitoring and control
(IEC 61850-7-410:2012)
Réseaux et systèmes de communication Kommunikationsnetze und -systeme für
pour l'automatisation die Automatisierung in der elektrischen
des systèmes électriques - Energieversorgung -
Partie 7-410: Structure Teil 7-410: Wasserkraftwerke -
de communication de base - Kommunikation für Überwachung,
Centrales hydroélectriques - Regelung und Steuerung
Communication pour le contrôle- (IEC 61850-7-410:2012)
commande
(CEI 61850-7-410:2012)
This European Standard was approved by CENELEC on 2012-12-04. CENELEC members are bound to comply
with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard
the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the CEN-CENELEC Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and notified
to the CEN-CENELEC Management Centre has the same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus,
the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
CENELEC European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
Management Centre: Avenue Marnix 17, B - 1000 Brussels
© 2013 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.
Ref. No. EN 61850-7-410:2013 E
BS EN 61850-7-410:2013+A1:2016
EN 61850-7-410:2013+A1:2016
- 2 -
Foreword
The text of document 57/1274/FDIS, future edition 2 of IEC 61850-7-410, prepared by IEC TC 57 "Power
systems management and associated information exchange" was submitted to the IEC-CENELEC
parallel vote and approved by CENELEC as EN 61850-7-410:2013.
The following dates are fixed: (dop) 2013-09-04
(dow) 2015-12-04
• latest date by which the document has
to be implemented at national level by
publication of an identical national
standard or by endorsement
• latest date by which the national
standards conflicting with the
document have to be withdrawn
This document supersedes EN 61850-7-410:2007.
EN 61850-7-410:2013 includes the following significant technical changes with respect to EN 61850-7-
410:2007:
a) The logical nodes in EN 61850-7-410:2007 that were not specific to hydropower plants have been
transferred to EN 61850-7-4:2010 and have been removed from this edition of EN 61850-7-410.
b) The definitions of logical nodes in this edition of EN 61850-7-410 have been updated using the format
introduced in EN 61850-7-4:2010.
c) Most of the modelling examples and background information that was included in EN 61850-7-
410:2007 has been transferred to IEC/TR 61850-7-510.
d) However, this edition of EN 61850-7-410 includes additional general-purpose logical nodes that were
not included in EN 61850-7-4:2010, but are required in order to represent the complete control and
monitoring system of a hydropower plant.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent
rights.
Endorsement notice
The text of the International Standard IEC 61850-7-410:2012 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standards indicated:
IEC 61362 NOTE Harmonized as EN 61362.
IEC 61850-10 NOTE Harmonized as EN 61850-10.
IEC 61970-301 NOTE Harmonized as EN 61970-301.
IEC 62270 NOTE Harmonized as EN 62270.
BS EN 61850-7-410:2013+A1:2016
61850-7-410 © IEC:2012+A1:2015
- 3 -
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.
Publication Year Title EN/HD Year
IEC/TS 61850-2 - - -
IEC 61850-7-1 - Communication networks and systems in EN 61850-7-1 -
IEC 61850-7-2 2010 substations - EN 61850-7-2 2010
Part 2: Glossary
IEC 61850-7-3 2010 EN 61850-7-3 2011
IEC 61850-7-4 2010 Communication networks and systems for EN 61850-7-4 2010
power utility automation -
Part 7-1: Basic communication structure -
Principles and models
Communication networks and systems for
power utility automation -
Part 7-2: Basic information and
communication structure - Abstract
communication service interface (ACSI)
Communication networks and systems for
power utility automation -
Part 7-3: Basic communication structure -
Common data classes
Communication networks and systems for
power utility automation -
Part 7-4: Basic communication structure -
Compatible logical node classes and data
object classes
BESN E6N1865108-570--471-401:02:0210313/A+1A:12:2001166 –4–
EN 61850-7-410:2013+A1:2016
ForewEuorodpteoanamfoernewdmorednt A1
The text of document 57/1607/FDIS, future IEC 61850-7-410:2012/A1, prepared by IEC/TC 57 "Power
systems management and associated information exchange" was submitted to the IEC-CENELEC
parallel vote and approved by CENELEC as EN 61850-7-410:2013/A1:2016.
The following dates are fixed:
• latest date by which the document has to be implemented at (dop) 2016-09-17
national level by publication of an identical national
standard or by endorsement
• latest date by which the national standards conflicting with (dow) 2018-12-17
the document have to be withdrawn
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such
patent rights.
This document has been prepared under a mandate given to CENELEC by the European Commission
and the European Free Trade Association.
Endorsement notice
The text of the International Standard IEC 61850-7-410:2012/A1:2015 was approved by CENELEC as
a European Standard without any modification.
2
–5– BS EN 61850-7-410:2013+A1:2016
61850-7-410 © IEC:2012+A1:2015
– 2 – IEC 61850-7-410:2012+AMD1:2015 CSV
IEC 2015
CONTENTS
FOR EW ORD ........................................................................................................................... 25
1 Scope ...............................................................................................................................97
2 Normative references .......................................................................................................97
3 Terms and definitions .......................................................................................................97
4 Abbreviated terms ............................................................................................................97
5 Logical node classes .......................................................................................................1.19
5.1 Logical node groups ...............................................................................................1.19
5.2 Interpretation of logical node tables ........................................................................1.19
5.3 Summary of logical nodes groups to be used in power plants ................................131
5.3.1 General ..................................................................................................... 131
5.3.2 Group A – Automatic functions .................................................................. 131
5.3.3 Group F – Functional blocks ......................................................................131
5.3.4 Group H – Hydropower specific logical nodes ............................................142
5.3.5 Group I – Interface and archiving...............................................................153
5.3.6 Group K – Mechanical and non-electrical primary equipment .....................153
5.3.7 Group P – Protection functions ..................................................................153
5.3.8 Group R – Protection related functions ......................................................154
5.3.9 Group S – Supervision and monitoring.......................................................164
5.3.10 Group X – Switchgear................................................................................ 164
5.3.11 Group E – Thermal power plant specific logical nodes (“Enthalpy”) ............131
5.3.12 Group G – Logical nodes for general purposes ..........................................142
5.3.13 Group T – Transducers and instrument transformers .................................164
5.4 Automatic control logical nodes LN group A .........................................................164
5.4.1 Modelling remarks ..................................................................................... 164
5.4.2 LN: Control mode selection Name: ACTM ..............................................174
5.4.3 LN: Joint control Name: AJCL..............................................................175
5.4.4 LN: PSS 4B filter function Name: APSF ...............................................175
5.4.5 LN: PSS control, common information Name: APSS ...............................197
5.4.6 LN: PSS 2A/B filter function Name: APST.............................................2108
5.13 Logical nodes for thermal power LN group E .......................................................2108
5.13.1 LN: Block coordination function Name: EBCF .......................................2108
5.13.2 LN: Fuel Control Valve Name: EFCV ...................................................2119
5.13.3 LN Gas turbine unit Name: EGTU .......................................................2129
5.13.4 LN: Steam Control Valve Name: ESCV ................................................220
5.13.5 LN: Speed monitoring Name: ESPD......................................................231
5.13.6 LN Steam turbine unit Name: ESTU ......................................................241
5.5 Logical nodes for functional blocks LN Group F ....................................................242
5.5.1 Modelling remarks ..................................................................................... 242
5.5.2 LN: Functional heartbeat Name: FHBT .................................................264
5.5.3 LN: Scheduler Name: FSCH ................................................................264
5.5.4 LN: Functional priority status Name: FXPS ............................................264
5.5.5 LN: Deadband filter Name: FDBF ........................................................242
5.5.6 LN: Trip Matrix Name: FMTX ...............................................................253
5.6 Hydropower specific logical nodes LN group H .....................................................275
5.6.1 Modelling remarks ..................................................................................... 275
5.6.2 LN: Turbine – generator shaft bearing Name: HBRG ..............................275
BS EN 61850-7-410:2013+A1:2016 – 6 –
61850-7-410 © IEC:2012+A1:2015
IEC 61850-7-410:2012+AMD1:2015 CSV – 3 –
IEC 2015
5.6.3 LN: Combinator Name: HCOM ............................................................. 286
5.6.4 LN: Hydropower dam Name: HDAM ......................................................286
5.6.5 LN: Deflector control Name: HDFL .......................................................286
5.6.6 LN: Dam leakage supervision Name: HDLS ...........................................297
5.6.7 LN: Electrical brake Name: HEBR........................................................297
5.6.8 LN: Governor control mode Name: HGOV..............................................297
5.6.9 LN: Gate position indicator Name: HGPI ................................................3208
5.6.10 LN: Dam gate Name: HGTE................................................................. 3208
5.6.11 LN: Intake gate Name: HITG ............................................................... 3219
5.6.12 LN: Joint control Name: HJCL ............................................................. 3219
5.6.13 LN: Leakage supervision Name: HLKG .................................................320
5.6.14 LN: Water level indicator Name: HLVL..................................................320
5.6.15 LN: Mechanical brake Name: HMBR .....................................................331
5.6.16 LN: Needle control Name: HNDL .........................................................331
5.6.17 LN: Water net head data Name: HNHD.................................................342
5.6.18 LN: Dam over-topping protection Name: HOTP......................................342
5.6.19 LN: Hydropower / water reservoir Name: HRES .....................................353
5.6.20 LN: Hydropower unit sequencer Name: HSEQ .......................................353
5.6.21 LN: Speed monitoring Name: HSPD .....................................................353
5.6.22 LN: Surge shaft Name: HSST .............................................................364
5.6.23 LN: Guide vanes (wicket gate) Name: HTGV ........................................375
5.6.24 LN: Runner blades Name: HTRB .........................................................375
5.6.25 LN: Trash rack Name: HTRK ............................................................... 386
5.6.26 LN: Turbine Name: HTUR ................................................................... 386
5.6.27 Logical nodes for general purposes LN group G ....................................397
5.6.28 LN: Valve (butterfly valve, ball valve) Name: HVLV.................................4319
5.6.29 LN: Water control Name: HWCL ..........................................................420
5.7 Logical nodes for interface and archiving LN group I .............................................431
5.7.1 Modelling remarks ..................................................................................... 431
5.7.2 LN: Fire detection and alarm Name: IFIR ..............................................431
5.7.3 LN: Hand interface Name: IHND .........................................................431
5.8 Logical nodes for mechanical and non-electric primary equipment
LN group K ............................................................................................................ 442
5.8.1 Modelling remarks ..................................................................................... 442
5.8.2 LN: Heater, cubicle heater Name: KHTR ..............................................442
5.9 Logical nodes for protection functions LN group P ................................................442
5.9.1 Modelling remarks ..................................................................................... 442
5.9.2 LN: Detection of under impedance Name: PTUI . .......................................443
5.10 Logical nodes for protection related functions LN group R ....................................453
5.10.1 Modelling remarks ..................................................................................... 453
5.10.2 LN: Field breaker configuration Name: RFBC ........................................453
5.11 Logical nodes for supervision and monitoring LN group S....................................453
5.11.1 Modelling remarks ..................................................................................... 453
5.11.2 LN: Supervision of media flow Name: SFLW ..........................................464
5.11.3 LN: Supervision of media level Name: SLVL ..........................................475
5.11.4 LN: Supervision of the position of a device Name: SPOS.........................486
5.11.5 LN: Supervision media pressure Name: SPRS.......................................497
5.11.6 LN: Supervision of electrical conductivity in water Name: SECW ..............464
5.12 Logical nodes for switchgear LN group X.............................................................. 5408
– 7 – BS EN 61850-7-410:2013+A1:2016
61850-7-410 © IEC:2012+A1:2015
– 4 – IEC 61850-7-410:2012+AMD1:2015 CSV
IEC 2015
5.15 5.12.1 Modelling remarks ..................................................................................... 5408
5.12.2 LN: Switching control for field flashing Name: XFFL ...............................5418
Logical nodes for instrument transformers and sensors LN group T . .....................5419
6 5.15.1 LN: Measurement of electrical conductivity in water Name: TECW............5419
Data attribute semantics ................................................................................................. 5419
7 Common data classes .................................................................................................... 653
7.1 General ................................................................................................................. 653
7.2 Maintenance and operational tag (TAG) ................................................................ 653
7.3 Operational restriction (RST) ................................................................................. 663
8 Data attribute semantics ................................................................................................. 664
Bibliography.......................................................................................................................... 7608
Table 1 – Abbreviated terms ..................................................................................................1.08
Table 2 – List of logical node groups......................................................................................1.19
Table 3 – Interpretation of logical node tables....................................................................... 120
Table 4 – Logical nodes for automatic functions.................................................................... 131
Table 5 – Logical nodes representing functional blocks.........................................................132
Table 6 – Hydropower specific logical nodes......................................................................... 142
Table 7 – Logical nodes for interface and archiving .............................................................. 153
Table 8 – Logical nodes for mechanical and non-electric primary equipment.........................153
Table 9 – Logical nodes for protections................................................................................. 153
Table 10 – Logical nodes for protection related functions ......................................................154
Table 11 – Logical nodes for supervision and monitoring ......................................................164
Table 12 – Logical nodes for switchgear ............................................................................... 164
Table 13 – PSS filter comparison .......................................................................................... 197
Table 14 – Description of data .............................................................................................. 5429
Table 15 – Semantics of data attributes ................................................................................ 675
Table 16 – Logical nodes representing thermal power........................................................... 131
Table 17 – Logical nodes representing generic functions references .....................................142
Table 18 – Logical nodes for transducers. ............................................................................. 164
This page deliberately left blank
– 9 – BS EN 61850-7-410:2013+A1:2016
– 7 – 61850-7-410 © IEC:2012+A1:2015
BS EN 61850-7-410:2013
61850-7-410 IEC:2012
COMMUNICATION NETWORKS AND SYSTEMS
FOR POWER UTILITY AUTOMATION –
Part 7-410: Basic communication structure –
Hydroelectric power plants –
Communication for monitoring and control
1 Scope
This part of IEC 61850 specifies the additional common data classes, logical nodes and data
objects required for the use of IEC 61850 in a hydropower plant.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC/TS 61850-2, Communication networks and systems in substations – Part 2: Glossary
IEC 61850-7-1, Communication networks and systems for power utility automation – Part 7-1:
Basic communication structure – Principles and models
IEC 61850-7-2:2010, Communication networks and systems for power utility automation –
Part 7-2: Basic information and communication structure – Abstract communication service
interface (ACSI)
IEC 61850-7-3:2010, Communication networks and systems for power utility automation –
Part 7-3: Basic communication structure for substations and feeder equipment – Common
data classes
IEC 61850-7-4:2010, Communication networks and systems for power utility automation –
Part 7-4: Basic communication structure – Compatible logical node classes and data object
classes
3 Terms and definitions
For the purpose of this document, the terms and definitions given in IEC 61850-2 apply.
4 Abbreviated terms
The terms listed in Table 1 are used to build concatenated Data Object Names in this
document. IEC 61850-7-410 inherits all the abbreviated terms described in Clause 4 of
IEC 61850-7-4:2010.
NOTE Data Object Names in the logical nodes representing PSS filter functions follow names in IEEE 421.5 as
closely as possible. These names are not included in Table 1.
BS EN 61850-7-410:2013+A1:2016 – 10 –
61850-7-410 © IEC:2012+A1:2015
– 8––8 – IECIE6C1865108-570--471-04:1200:1220+1A2M+ADM1D:210:12501C5SCVSV
IECIE2C0125015
TabTlaeb1le–1A–bAbrbebvrieavteiadtetdertmersms
TerTmerm DesDcerispctriiopntion TerTmerm DesDcerispctriiopntion
Act Act ActiAocnt,ioanc,tiavcittyiv, iatyc,tiavcet,ivaec,tiavcatievaatea
Atr Atr LkgLkg LeaLkeaagkeage
BG BG ActuAacttourator
Lo Lo a a
BefoBreefoGreaiGn ain
LowL,olwow, elorw(epros(pitoiosnit)ion)
LoPLroePssressLowLopwrespsreusresure
BrgBrg BeaBrienagring LubLub LubLriucbarticoantion
BoilBoil BoilBeor iler ManMan ManMuaanl u(-alo(p-eorapteiorantisoenlescetleedc)ted)
Brk Brk BraBkerake Mft Mft MaiMn afuinelfutreipl trip
Bt Bt HeaHrtebaeratbt eat MntMnt MaiMntaeinnatenncaence
BtBBtB
CamCam BacBka-tcok--Btoa-cBkack MskMsk Ma sMka s k
CapCap MtxMtx MatMrixatrix
CamC,aem.g, .er.ogt.artointagtinnognn-coinrc-cuilracrudlaisr kdisk
Ndl Ndl NeeNdeleed(ulese(udsiendPienltPoenlttounrbtiunrebsin) es)
a a
CapCaacpitayc, ictya,pcaabpilaitbyility
CbrCbr CaliCbaralitbiorantion NhdNhd NetNheetahdead
Cff Cff CoeCffoiceifefinctient NrmNrm NorNmoarlmal
CmCm CenCtiemnetitmreestres NxtNxt NexNt ext
CmpClmpl ComCpolmetpelde,tecdo,mcpolmetpiolent,iocno,mcpolmetpelete Off Off D e vDi ceev idcies edni sgeanggeadg(e=d o(f=f ) o f f )
On On DevDiceeviacpepalipepdli(e=do(n=) on)
CmpCrmpr ComCpormespsreosr sor
CndCnd ConCdoenndseenr,sseyr,nscyhnrocnhorounsocuosmcpoemnpseantosratorOpeOrapteerateOpeOrapteeraotredeor dtoeratnoyadneyvdiceevice
CndCtcndtc ElecEtlreiccatrlicaolncdouncdtiuvcittyiv[iSty] [S] OpnOpn OpeOnp, eonp,eonpeedn, eodp,eonpinegnainga
Crl Crl CorCreolarrteiolantion Pe Pe ElecEtlreicctpriocwpeorwer
CrpCrp CreCepreinegp,insglo, wslomwovmeomveenmt ent PmpPmp PumPpump
PolyPtor lytr PolyPtorolyptircopic
Ctl Ctl ConCtroonl trol
CwbCwb CroCwrboawr bar PrePc rec PrePcorencdoitniodnit,ioinni,tiianlitsiatal tsutsatus
De De RemRoevmeove Prt Prt PrioPrirtiyority
DegDeg DegDreegsre, efosr, afonrgalenginlediicnadtiicoantiionn˚ in ˚ PskPsk PenPsetoncsktock
Dfl Dfl DefDleecftloerc(tourse(udsiendPienltPoenlttounrbtiunrebsin) es) PssPss PSSP,SpSo,wpeorwseyrstseymstesmtabsitlaisbeilrisfuenr cfutinocntion
DiaDia DiapDhiarapghmragm Qu Qu QueQuueeue
DithDith DithDeirther Rb Rb RunRnuenr nbelar dbelade
Dn Dn DowDno,wbne,lobwe,lodwo,wdnoswtrnesatmre,almow, eloswt est RegReg RegRuelagtuiolantion
DrtbDrtb DraDftrtaufbt etube ReqReq ReqRueeqsuteedsted
DroDoproop DroDoproop
DtcDtc DetDecettieocntion Rh Rh Re-Rhea-ht eat
Rlf Rlf ReliReef lief
DvcDvc DevDiceevice RngRng RanRgaenge
Dw Dw DeltDaeOltamOegmaega RptRpt RepReeapt,eraetp, eretiptieotnition
EnaEna RtgRtg RatRinagt,inragt,erdated
a a
EnaEbnlea,balell,oawllowpeorapteiorantion
Fa Fa “Fir“eFairlel” aslel”qsueeqnucen(ctoe t(htoyrtihsytorirsst)ors) RwyRwy RunRauwnaayw, aey.g, .ei.ng.ruinnaruwnaaywsapyesepdeed
FbcFbc FielFdieblrdeabkreear kceorncfiognufriagtuiorantion SafSaf SafeStayfety
Fir Fir FireFire Sft Sft SoftS(oafst (ianssionftssotfat rst)tart)
FlmFlm FlamFleame ShftShft ShaSfthaft
FlshFlsh FlasFhlainsghi(neg.g(.ef.ige.ldfieflladsfhlainsgh)ing) Sld Sld SoliSdoitlyidity
Flt Flt FauFltault SM SM SerSvoe,rvsoe,rvsoe-rmvoo-tmorotor
FlwFlw FlowF,lofwlo,wfilnogwing SNLSNL SpeSepde-neod-lnooa-dlo, acdo,ncnoencnteedctbeudt bnuott ngoetngeeranteinragting
Fst Fst FasFt ast SpirSpir SpirSapl iral
GdvGdv GuiGdeuivdaenveasnes
Src Src SouSrcoeurce
GrdGrd GraGdireandtient SrvSrv SerSviecrevice
GteGte GatGe,adtea,mdagmategate Stl Stl StillS, tnilol,t nmoot vminogving
Hd Hd HeaHdead StmStm S t e aSmt e a m
HiPHreiPs res HighHipgrhespsreusresure StndStnd StanSdta, nsdta, nsdtainngding
HwtHwt HeaHdewaadtwera,twera,tweraltevr elel vaet linattaiknetake SynSyn SynScyhnrocnhorounso, ussy,nscyhnrocnhirsomnism
HysHys HysHteyrsetseirsesis Tp Tp TesTt ePsotinPtoint
I I InteIrnmteerdmiaetdeiate TrgTrg TrigTgreigr ger
Icp Icp InteIrncteeprct ept TrbTurbrTur TurbTiunrebine
Ign Ign IgniItgionnition TwtTwt TailTwaaitlwera,twera,tweraltevr elel vaet loauttloeut tlet
InerIner InerItniaertia UntUnt UnitU, npirto, dpurocdtiuocntiuonnitunit
InleItnlet InleItn(lteot t(utorbtiunreb)ine) Up Up Up,Uapb,oavbeo, vuep,sutrpesatmre,aump,puepr per
Ip Ip InteIrnmteerdmiaetdeiaptreespsreusresure Va Va V a rVi aabrliea b l e
Jnt Jnt JoinJtoint Vsi Vsi VoltVaogletasgteabsitlaizbeilrizinepr uint put
Lft Lft LiftiLnigft,inligft, lift Vst Vst VoltVaogletasgteabsitlaizbeilriztermteinrmalin(oaul t(pouutt)put)
LkdLkd LocLkoecdked
a EaxteEnxdteendddeedsdcerispctiroipntioofnIEofCIE6C1865108-75-04-7-4
J Joint Vsi Voltage stabilizer input
Vst
Lft Lifting, lift Voltage stabilizer terminal (output)
– 11 –
Lo Low, lower (position) a BS EN 61850-7-410:2013+A1:2016
61850-7-410 © IEC:2012+A1:2015
Lkd Locked
a Extended description of IEC 61850-7-4
5 Logical node classes
5.1 Logical node groups
BS EN 61850-7-410:2013
Logical nodes are grouped together with nodes of similar or related functions having the same
6fir1s8t5l0e-t7te-r4.1T0ableIE2C:s2h0o1w2s presently assigne–d 9le–tters, letters marked “reserved” may be used
in future extensions to the standard series. Names of logical nodes shall start with the letter of
the group to which the LN belongs. E.g. most of the logical nodes, defined in this document,
are specific for hydropower use and thus have names that start with the letter H.
Table 2 – List of logical node groups
A Automatic control functions
B Reserved
C Control functions
D Functions specific to distributed energy resources (DER)
E Reserved
F Logical nodes representing functional blocks
G Generic references
H Functions specific to hydropower plants
I Interface and archiving functions
J Reserved
K Kinetic energy, mechanical devices and equipment
L Physical devices and common logical nodes
M Metering and measurement
N Reserved
O Reserved
P Electrical protections
Q Power quality
R Protection related functions
S Supervision and monitoring
T Sensors and transmitters (including instrument transformers)
U Reserved
V Reserved
W Functions specific to wind power plants
X Switchgear
Y Power transformers
Z Power system equipment
5.2 Interpretation of logical node tables
The interpretation of the headings for the logical node tables is presented in Table 3.
BS EN 61850-7-410:2013+A1:2016 – 12 –
61850-7-410 © IEC:2012+A1:2015 – 10 –
BS EN 61850-7-410:2013
61850-7-410 IEC:2012
Data Object Name Table 3 – Interpretation of logical node tables
Common Data Class
Explanation Function of the Data Object
T
Common Data Class that defines the structure of the Data Object. See IEC 61850-7-3.
M/O
Short explanation of the data and how it is used.
Transient Data – the status of data with this designation is momentary and shall be logged
or reported to provide evidence of their momentary state. Some T may be only valid on a
modelling level. The TRANSIENT property of DATA only applies to BOOLEAN process
data attributes (FC=ST) of that DATA. Transient DATA is identical to normal DATA, except
that for the process state change from TRUE to FALSE no event may be generated for
reporting and for logging.
This column defines whether data, data sets, control blocks or services are mandatory (M)
or optional (O) for the instantiation of a specific logical node.
In some cases a data object can be instantiated; this is marked by “multi”, i.e. Omulti or
Mmulti. Instantiation shall be made by numbers 01 to 99, added directly after the data
object name. The part of the data object that is instatiated is marked by {inst} in the data
object explanation
The attributes for data that are instantiated may also be mandatory or optional based on
the CDC (Attribute Type) definition in IEC 61850-7-3.
Where the letter C is used for “conditional”, at least one of the items of data labelled with
C shall be used from each category where C occurs.
All data object names are listed alphabetically in Clause 8. Despite some overlapping, the
data in the logical node classes are grouped for the convenience of the reader into some of
the following categories.
Common logical node information
Common logical node information is information independent of the dedicated function
represented by the LN class. Mandatory data (M) are common to all LN classes; optional data
(O) are valid for a reasonable subset of LN classes.
Status information
Status information is data which shows either the status of the process or of the function
allocated to the LN class. This information is produced locally and cannot be changed
remotely unless substitution is applicable. Data such as “start” or “trip” are listed in this
category. Most of these data are mandatory. The data can only be read and not set from an
external source.
Settings
Settings are data which are needed for the function to operate. Since many settings are
dependent on the implementation of the function, only a commonly agreed minimum is
standardised. They may be changed remotely, but normally not very often. The setting can
not always be read back; whether it is possible or not depends on the data class used for the
setting.
Measured values
Measured values are analogue data measured from the process or calculated in the functions
such as currents, voltages, power, etc. This information is produced locally and cannot be
changed remotely unless substitution is applicable.
Controls
Controls are data which are changed by commands such as switchgear state (ON/OFF), tap
changer position or reset-able counters. They are typically changed remotely, and are
changed during operation much more than settings. Data objects under controls cannot be
read back.
– 13 – BS EN 61850-7-410:2013+A1:2016
61850-7-410 © IEC:2012+A1:2015
BS EN 61850-7-410:2013 – 11 –
6IE1C85601-875-401-70-41I0E:2C0:21021+2AMD1:2015 CSV
IEC 2015
5.3 SSuumSmummmaamryrayoroyf floolofggliocicgaailclnanolodndeoesdsteoggrboroeuupupssetdotoibnbeehuyusdseredodpinionwhpyeodrwrpoelparnoptwlsaenrtps lants
5.3.1 GGenenerearlal
This document specifies the compatible logical node classes to be used in hydropower plants
listed in Tables 4 to 12. For other logical node classes that might be of use also in
hydropower plants, see IEC 61850-7-4.
5.3.2 GGroruouppAA– –AAuutotommataitcicfufuncntcitoinons s
Table 4 – Logical nodes for automatic functions
LN Class Description
ACTM Control mode selection. Overall LN for controllers with different possible modes.
AJCL Joint control function, to balance total power from different sources.
APSS PSS Control. Common information of a PSS function.
APST PSS 2A/B filter. Represents a filter according to IEEE 421.5-2005.
APSF PSS 4B filter. Represents a filter according to IEEE 421.5-2005.
Generic control action sequencer
ASEQ
5.3.3 Group F – Functional blocks
BS EN 61850-7-410:2013
5.3.11 Group E – Thermal power plant specific logical nodes (“Enthalpy”)
61850-7-410 IETCa:2b0le125 – Logical nodes r–ep11re–senting functional blocks
Table 16 – Logical nodes representing thermal power
LN Class Description
5.3 Summary of logical nodes to be used in hydropower plants
LFNHBCTlass Heart-beat. This LN represents the heart-beatDfeusncrtiiopntiofna controlling device. I.e. the function used
5E.3B.C1F Gentoeernaslure that a specific device or program in a device is running.
Block control function. This LN will represent one physical device that coordinates the control
FSCH Schoefduthler.thTehrmis aLlNprreespsruerseenotfsthaetasstekasmchgeednuelerar ttohraat nwdillthpeerefloercmtripcraeldpeofiwnerdrteagsuklsataiot ngiovfetnurtibminees./
This document gsepneercaitfoier ssytshteemc. ompatible logical node classes to be used in hydropower plants
listeFdXPiSn TaFbulnecstio4nal tporio1ri2ty. stFatours. oThthiseLrN liosguisceadl tonsopdeecifycilnaswsheicsh otrhdaert dmeviigcehst shboeuldobf e ustsaertedalosro in
EFCV activFauteeldc. ontrol valve. This LN will represent the physical device of fuel control valve related to the
hydropower plagnatss,tusrbeieneIEinCa t6h1er8m5a0l -p7o-w4e.r plant.
EGTU Gas turbine production unit. This LN represents the physical device of the GT and the
55..33..24 GGrroouuppgeHAne––raHAtouyr dtcoormmopbaiontaiwctieofnruisnnpcaetitchoeinfrimscallopgowicear lplnanotd. Iet sis intended as an extended rating plate that
allows settings of data. It also acts as a placeholder for the current operating conditions of the
unit. TaTbalbele4 6– –LoHgyidcarol pnoowdeesr sfoprecaiufticomloagtiiccaflunnocdtieosns
ESCV Steam control valve. This LN will represent the physical device of inlet control valve of the
LLNN CCllaassss DDeessscctrreiiappmttiiootnnurbine in a thermal power plant.
ESHAPCBDRTMG CTuornbStirnpoeel em–dogmdeeonnesiretaoletrocinrtigso.hnTa. hfOtisbveeLraNarlilinsLgdN. eTfrhoivirsecdLoNnfrtorhomollldeHsrSsdPwaDitta.h pdeifrfteariennintgptoossbiebalerinmgosd, essu.ch as temperatures
ESATUJCL JaonidnStlutceboarnimctraottuliorfbnuinnoceitl ipoflrono,wdtsuo.cbtiaolnanucneit.totTahl ipsoLwNerefproremsedniftfsertehnet pshoyusricceasl.device of the ST and the
Comgbeinneartaotro(r3cDo-mCAbiMnaotiro2nDin-CaAtMhe),rmopatlimpoisweesr tphleanret.laIttioisninbteetnwdeeedn ansetanheeaxdte, ngdueidderavatinnegspalantde that
HACPOSSM PSSalCloownstrosel.ttCinogmsmoof ndaintafo. rImt aaltsioonaocftsa aPsSaSpfluanccethioonld. er for the current operating conditions of the
runner blades. It is used in power plants with Kaplan turbines with moveable runner blades. The
APST cPoSmSubn2iniAta./tBorfyiltfeurn. cRtieopnrewsiellnatslsoa ufislteerthaeccFoCrdSiDngLtNo tIoEEhEold42th1e.5r-e2l0a0ti5o.n curves for different net heads.
EUHANDPTASMF HPSydSTroh4peBormwfileaterl rud. naRimteo.pprAeeslroeagntiitncsgaalmnfooiltddeeer.tahTcahcteoirspdruienssgeedtnottoIsEtraEetEpurs4eo2sef1n.t5ht -et2hp0er0op5dh.uycstiicoanl uanspite. cts of the dam.
HDFL
– 12 – IEC 61850-7-410:2012+AMD1:2015 CSV
Deflector control. This logical node represents the deflector control of a Pelton turbine IEC 2015
5.3.H3DLSGGroruoDupapmFFle–a–FkaFugnuecnstcuiptoienorvnaislaiobl nbl.olRcoekcpskressents a device that will supervise and give alarm in case of dam
leakage. The actual measurement can be based on water flow.
HEBR ElectricTalabbrlaeke5. T–hiLs ologgiiccaal lnnodoedreepsrerseepnrtsesanenelteicntrgicaful bnrcaktieosnyastlembloofcaktsurbine.
HGPI Gate position indicator. A device that provides the position of a dam gate. The position is given
LN Class eDiethsecrriapstiaonn angular displacement in case of sector gates or as distance from fully closed position
FHDBTF in case of straight gates. For aperture gates and valves where the position is given as percent of
HFGHOBTV fHDuellaordtp-beaneniandtg. ,fTilehteiitsrh.eLTrNhthirseepLHNreVsrLeVpnrtosersttehhneetshSeaPaOsrteS-bttelaoabgtleicfuafnilltcnetoirodfnoersodfaearaecdro-enbctaornomdllm.inegnddeevdi.ce. I.e. the function used
FSCH
to ensure that a specific device or program in a device is running.
GHeoavertr-nboeratc.oTnhtriosl.LAN lroegpirceaslennotds ethtehahteraerpt-rbeeseant tfsunthcteioonveorfaall ccoonnttrroolllinogf adetuvribcien.eI.geo. vtheernfournacntidonthuesed
Svtoacrehioneusdsurlceor.tnhTtarhot ilsamLsoNpdeercesifp.icredseevnitcseaotrapsrkogscrahmediunlear dtheavticweililspreurnfonrinmg.predefined tasks at given times.
HFMGXPTTSXE DFTurainpmcmtgioaanttreai.xl .TpThrihiosirsiLtyLNNsitsareitnuptsree.nsTdehenidstsLtoaNhmiosaldtursiixnefdfoortromliasnptkieoincngifayvbaionruiowtuhtshicethrigpoarftdueen. rcIttdicoeanvnsicateolsseosqhpuoriueplsmdeenbntetasthtcaaartltcesudhlaaoltlrebde
watrciapttipevear dtfeloodwr. ctohnrotruogllhedthdeugriantge,ainfawuhlti.ch case the FCSD LN shall be included in the same logical
FSCH dSecvhiecdeu, lteor.pTrohvisidLeNthreeprerelasteionntss.aNtaostek tshcahteidnutlheirs tLhNat twheillppoesriftoiormn sperte-dpeofiinnteids ltiasstekds autndgeivreCnotnimtreosls.
instead of Settings. The normal way of controlling a gate is to send a position set-point.
FXPS Functional priority status. This LN is used to specify in which order devices should be started or
5.3.4 GroauctpivaHted–. Hydropower specific logical nodes
5.3.12 Group G – LogiTcaabl lneo6de–sHfyodr rgoepnoewraelr psuprepcoifsiceslogical nodes
LN Class TDaebslceri1pt7io–n Logical nodes representing generic functions references
ACTM Control mode selection. Overall LN for controllers with different possible modes.
APSF ttPooSeeSnnss4uuBrreefiltthheaar.tt Raaesspppreeeccsiieffiincctsddeeavvfiiccileeteroorracppcrroooggrdrraainmmg iitnno aaIEddEeeEvviicc4ee21iiss.5rr-uu2nn0nn0ii5nn.gg..
AJCL Joint control function, to balance total power from different sources.
FFMMTTXX TTrriipp mmaattrriixx.. TThhiiss LLNN rreepprreesseennttss aa mmaattrriixx ffoorr lliinnkkiinngg vvaarriioouuss ttrriipp ffuunnccttiioonnss ttoo eeqquuiippmmeenntt tthhaatt sshhaallll bbee
BS AEPNS6S1850ttPrr-iiS7ppS-pp4eeC1ddo0oon:2rrtr0ccooo1l.nn3Ctt+rrooAmllll1eemdd:2odd0nuu1irrn6iinnfoggrmaa affaatiuuollntt.. of a PSS function.
61850-7-410 © IEC:2012+A1:2015 – 14 –
5.3.FFA3SSPCCSHHT GroSSPuccShhpSeedd2FuuAll–/eeBrrF..fiTTulthheniirssc. LLRtiNNeopnrrreeeappslrreeebnssteelsonnattcsskfiaalstettaar ssakkccssocchhrdeeiddnuuglleetorr ttIhhEaaEttEww4iilll2l p1p.ee5rr-ffoo2rr0mm05pp.rreeddeeffiinneedd ttaasskkss aatt ggiivveenn ttiimmeess..
FFAXXPPPSSSF FFPuuSnnScctt4iiooBTnnfaaailltbepplrrre.iiooRrr5iiettyyp–rsseLttsaaoettuungsstsi..cTTaahhfliiissltneLLorNNadiicssecsuuossrdreeeiddnpgttoorteosssppIEeeeccEniiEfftyyi4niinn2g1ww.f5hhu-iicc2nhh0c0oot5rri.ddoeenrr addeel vvbiiccleeosscsskhhsoouulldd bbee ssttaarrtteedd oorr
aaccttiivvaatteedd..
55..L33N..11C22laGGssrroouuDppesGGcri––ptLLiooonggiiccaall nnooddeess ffoorr ggeenneerraall ppuurrppoosseess
5.3.3 Group F – Functional blocks
FHBT Heart-beat. This LN represents the heart-beat function of a controlling device. I.e. the function used
TTtaaobbellneesu11re77 t––haLLt oaoggspiiccecaaifllicnndooeddvieecsse orrreeppprrroeegsrsaeemnnittniinnaggdeggveeicnneeeisrriirccunffnuuinnngcc. ttiioonnss rreeffeerreenncceess
Table 5 – Logical nodes representing functional blocks
FSCH Scheduler. This LN represents a task scheduler that will perform predefined tasks at given times.
LLNN CCllaassss DDeessccrriippttiioonn
LNFXCPlaSss FDuenscctrioipntaiol npriority status. This LN is used to specify in which order devices should be started or
GGUUNNTT activPParrtooeddduu.ccttiioonn uunniitt ooppeerraattiinngg mmooddee.. TThhee pprreesseenntt ssttaattuuss ooff tthhee pprroodduuccttiioonn uunniitt..
FHBT Heart-beat. This LN represents the heart-beat function of a controlling device. I.e. the function used
to ensure that a specific device or program in a device is running.
55..33..F44SCHGGGrrooruuoSppuchpHHedH––ul–eHHr.HyyTddyhrrdisoorppLoNoopwworeweeprrreerssseppsneeptscceaiicfftiiafccisckllooslggochiigcceidaacullalennlroonthddoaeedt ssewsill perform predefined tasks at given times.
FXPS Functional priority status. This LN is used to specify in which order devices should be started or
activated. TTaabbllee 66 –– HHyyddrrooppoowweerr ssppeecciiffiicc llooggiiccaall nnooddeess
LLNN CCllaassss DDeessccrriippttiioonn
5 .3HH.A4BSSEREQQG GroSSTuuttaarpbrrttiHn// ess–tt–ooppHgessyneedeqqruuraoeetnnopccroeeswrrh..aeAAftrssbiismmepapprellieencgLLi.fNNiTctthhhilsaaottLgooNnnicllhyyaopplldrreensssodeeadnntttaessspwwehhraatattintthhineegssteeoqquubeennaccrieenrrgiisss, ddsoouiicnnhgga((siinntaaeccmttiipvveer––atures
AASSEEQQ ssattnaadrrttliiunnbggr––icassttioooppnppoiinnilggf))loaawnnsdd. iinn ccaassee iitt iiss aaccttiivvee,, wwhhaatt sstteepp iitt iiss pprreesseennttllyy wwoorrkkiinngg oonn..
Table 6 – Hydropower specific logical nodes
HGHHCUUONNMTT HHCyyoddmrrbooippnooawwtoeerrr (pp3rrDoo-ddCuuAccttMiioonnoruu2nnDiitt..-CTTAhhMiiss)LL, NNoprrteeimpprrieesesseesnnttthssetthhreeelappthhioyynssiibcceaatllwddeeeevvniicceeneootffhttehhaeedtt,uugrrbbuiiinndeee aavnnaddneggseennaeenrrdaattoorr
GGUUNNTT ccruoonmmnbbeiirnnbaalttaiioodnnesiinn. Iaat hihsyydudsrrooeppdooiwwneeprroppwllaaennr ttp.. lIIattniisstsiinnwttieethnnddKeeaddpaalassnaatnnureebxxintteeennsddweeiddthrraamttiionnvggeppallbaaltteee rttuhhnaantt eaarllllboolwwassdetteesmm. Tpphooerraarryy
LN Class sscDeeoettmsttiicbnnriggnisspattooiooffrnddyaafttuaan..cIItttioaanllsswoo iaallccattsslsoaassuaasepptllaahcceeeFhhCoollSddDeerrLffNoorrtttohheehoccluudrrtrrheeennttreoolppaeetirroaanttiinncggurccvooennsddfiiottiiroonndssiffooeffretthhneet nuuenntiitth.. eads.
HHDBBRRAMGG TTHuuyrrdbbriionnpeeo––weggreenndeeamrraa.ttooArr lssohhgaaicffttabbl eenaaorrdiinneggt..hTTahht iiss LLuNNsehhdootlloddssreddpaartteaasppeeentrrtttaahiineniinnpgghyttsooicbbaeelaaarrsiinnpggessc,,tssuuoccfhhthaaess dtteeammpp. eerraattuurreess
HDFL aanndd lluubbrriiccaattiioonn ooiill fflloowwss..
HHCCOOMM Deflector control. This logical node represents the deflector control of a Pelton turbine
HDLS CCoommbbiinnaattoorr ((33DD--CCAAMM oorr 22DD--CCAAMM)),, ooppttiimmiisseess tthhee rreellaattiioonn bbeettwweeeenn nneett hheeaadd,, gguuiiddee vvaanneess aanndd
rrDuuannmnneelrreabbkllaaaddgeeess..suIIttpiiessrvuuissseeioddnii.nnRppeoopwwreesrr eppnllaatsnnttass dwweiittvhhicKKeaatpphllaaatnnwttiuullrrbbsiiunnpeeessrvwwisiittehh ammnoodvveegaaivbbelleealrrauurnnmnneeinrr bbcllaaasddeeesso..f TTdhhaeem
ccleooammkabbgiinneaa.ttooTrrhyyeffuuannccctuttiiaoolnnmwweiiallllsaaullrsseoomuuessneet ttchhaeenFFbCCeSSbDDasLLeNNd ttooonhhwoolladdtetthhr eeflorreewll.aattiioonn ccuurrvveess ffoorr ddiiffffeerreenntt nneett hheeaaddss..
HHDDEAABMMR HHElyyeddcrrtoorippcooawwl beerraddkaaemm. T.. hAAislloolggoiigcciaacllannl oonddoeedetthhraaettpiirssesuuessneetdds ttaoonrreeepplerrceetssreeicnnattl ttbhhreeakppehhyysssyiiccsaatellmaassoppfeeacctttssuroobffintthheee. ddaamm..
HHDDGFFPLLI DDGeeafftlleeeccpttooosrritccioonnttirrnoodll..icTTahhtiiossr.llooAggiidcceaavll inncooeddteeharreet pprreeossveeidnnettss tthhee ddpoeesffllieeticcottnoorroccf ooannttdrraoomll oogff aaatePP.eellTttoohnne ttpuuorrbbsiinntieeon is given
HHDDLLSS either as an angular displacement in case of sector gates or as distance from fully closed position
DDinaacmmaslleeaaokkfaasggteerassiguuhppteegrrvvaiitsseiioosnn. ..FRRoreepparrpeeessreetunnrttess gaaaddteesvviiacceendtthhvaaattlvwweiisllll sswuuhppeeerrrevviitssheee aapnnoddsiggtiiiovvnee iaasllaagrrivmmeniinnaccsaapsseerooceff nddtaammof
llfeeuaallkkoaapggeeen..iTTnghh,eeeaaitcchtteuuaar llthmmeeeHaassVuuLrrVeemmoreennthtt eccaaSnnPbbOeeSbblaaossgeeicddaloonnowwdaaettseerrarffelloowwre..commended.
HHGEEBBORRV EEGlloeevccettrrriinccoaarll bbcorraankktreeo..l.TTAhhiisslollgooiggciiacclaanll onndooeddeethrraeetpprrreeepssreeennsttessnaatsnn teehlleeccottrrviieccraaall lbbl rrcaaokkneetrssoyyl ssottfeeammtuoorffbaaintteuurrgbboiinnveee..rnor and the
HHGGPPII
HGTE Gvaartieoupsosciotinotnroilnmdiocdaetosr.. A A ddeevviiccee tthhaatt pprroovviiddeess tthhee ppoossiittiioonn ooff a a ddaamm ggaattee.. TThhee ppoossiittiioonn iiss ggiivveenn
Gate position indicator.
HHGGOOVV eeDiiatthhmeerrgaassteaa. nnThaainnsggLuuNllaarrisddiiinsstppellanaccdeemmd eetonntthiionnldccaainssfeeoroomff assteeioccttnooarr bggoaautteet ssthooerr gaaasstedd.iissItttaacnnaccnee affrrloosommpffruuellllsyyeccnlltooasseecddalppcoousslaiitttiieoodnn
HHGGTTEE iiwnnaccteaarsseeflooowff ssttthrrraaoiigguhhgtthggtaahtteeessg..aFFteoo,rrinaappweehrrtticuuhrreecggaaastteeessthaaennFddCvvSaaDllvveeLssNwwshhheearrleel bttehheeinppcoolussdiitteiioodnniniisstgghiievveesnnamaasse pploeegrriccceeannl tt ooff
LN Class ffduuellllvioocppeee, nntoiinngpg,,roeeviittidhheerrthtthheeereHHlVVatLLioVVnoosrr. ttNhhoeeteSSPPthOOaSSt inllootgghiiccisaallLnnNootddheeesspaaorrseeitrrieeoccnoosmmemmt-peeonniddneet ddis.. listed under Controls
HHHIIITTTGGG
Ginosvteeardnoorf cSoentttrionlg. sA. Tlohgeicnaol rnmoadlewtahyatorfecporenstreonlltisngthae goavteeraisll tcoosnetrnodl oaf paotsuitriboinnesegto-pvoeirnnto. r and the
HHHJJJCCCLLL Governor control. A logical node that represents the overall control of a turbine governor and the
vvaarriioouuss ccoonnttrrooll mmooddeess.. BS EN 61850-7-410:2013
HLKG
DDaamm ggaattee.. TThhiiss LLNN iiss iinntteennddeedd ttoo hhoolldd iinn–ffoo1rrmm2 aa–ttiioonn aabboouutt tthhee ggaattee.. IItt ccaa6nn1aa8llss5oo0pp-rr7ee-ss4ee1nntt0aaccaaIllccEuuCllaa:tt2eedd012
wwaatteerr ffllooww tthhrroouugghh tthhee ggaattee,, iinn wwhhiicchh ccaassee tthhee FFCCSSDD LLNN sshhaallll bbee iinncclluuddeedd iinn tthhee ssaammee llooggiiccaall
ddeevviiccee,, ttoo pprroovviiddee tthhee rreellaattiioonnss.. NNoottee tthhaatt iinn tthhiiss LLNN tthhee ppoossiittiioonn sseett--ppooiinntt iiss lliisstteedd uunnddeerr CCoonnttrroollss
iiDnnessstteecaarddipootiffoSSneettttiinnggss.. TThhee nnoorrmmaall wwaayy ooff ccoonnttrroolllliinngg aa ggaattee iiss ttoo sseenndd aa ppoossiittiioonn sseett--ppooiinntt..
IIInnntttaaakkkeee gggaaattteee... TTThhhiiisss LLLNNN cccaaannn bbbeee uuussseeeddd tttooo rrreeeppprrreeessseeennnttt iiinnntttaaakkkeee gggaaattteeesss... TTThhheee gggaaattteeesss wwwiiillllll aaalllmmmooosssttt nnneeevvveeerrr bbbeee ppplllaaaccceeeddd
iiinnn aaannnyyy ooottthhheeerrr pppooosssiiitttiiiooonnn ttthhhaaannn fffuuullllllyyy ccclllooossseeeddd ooorrr fffuuullllllyyy ooopppeeennn... HHHooowwweeevvveeerrr tttooo cccaaattteeerrr fffooorrr sssttteeeppp---wwwiiissseee ooorrr ooottthhheeerrr
cccooonnntttrrrooolllsss,,, ttthhheee gggaaattteee iiisss nnnooorrrmmmaaallllllyyy ppprrrooovvviiidddeeeddd wwwiiittthhh aaa nnnuuummmbbbeeerrr ooofff pppooosssiiitttiiiooonnn ssswwwiiitttccchhheeesss...
PPPooowwweeerrr ppplllaaannnttt jjjoooiiinnnttt cccooonnntttrrrooolll fffuuunnnccctttiiiooonnn... IIInnn ppplllaaannntttsss wwwiiittthhh mmmooorrreee ttthhhaaannn ooonnneee gggaaattteee ooorrr ssseeevvveeerrraaalll tttuuurrrbbbiiinnneeesss,,, ttthhhiiisss LLLNNN wwwiiillllll
rrreeeppprrreeessseeennnttt ttthhheee jjjoooiiinnnttt cccooonnntttrrrooolll fffuuunnnccctttiiiooonnn ttthhhaaattt iiisss uuussseeeddd tttooo sssuuupppeeerrrvvviiissseee ttthhheee tttoootttaaalll wwwaaattteeerrr ffflllooowww ooorrr tttooo mmmaaaiiinnntttaaaiiinnn aaa
cccooonnnssstttaaannnttt wwwaaattteeerrr llleeevvveeelll... TTThhheee LLLNNN ssshhhaaallllll bbbeee iiinnnssstttaaannntttiiiaaattteeeddd tttooo ppprrrooovvviiidddeee ooonnneee iiinnnssstttaaannnccceee fffooorrr eeeaaaccchhh gggaaattteee aaannnddd eeeaaaccchhh
tttuuurrrbbbiiinnneee tttooo bbbeee sssuuupppeeerrrvvviiissseeeddd...
Leakage supervision. This LN can be used to measure any leakage in the plant, it is more generic
than HDLS
HLVL Water level indicator. The LN represents the water level sensing device. The output is a distance
including an offset from a base level (commonly the distance above sea).
HMBR Mechanical brake for the generator shaft. This is a LN for the brake control. The brake is used for
stopping the unit during shut-down and to hold the shaft still, once the unit is stopped.
HNDL Needle control. A specialised LN that represents the control of needles in Pelton turbines.
HNHD Net head data. A LN that can be used to present the calculated net head data (difference between
upper and lower water levels) in a hydropower plant.
HOTP Dam overtopping protection. A protection function that will act by opening one or more gates in
case of a risk for overtopping the dam. The protection will sometimes include its own water
measurement device; hence an optional measured value for water level.
HRES Water reservoir. A logical node that is used to represent the logical function of a reservoir. If the
content is to be calculated, the FSCD LN shall be used to provide the relation between water level
and content.
HSEQ Start / stop sequencer. A simple LN that only presents what the sequencer is doing (inactive –
starting – stopping) and in case it is active, what step it is presently working on.
HSPD Speed monitoring. This LN is normally located in a stand-alone logical device, separated from but
monitoring the turbine governor. It will also act as a placeholder for various speed limits and set-
mupepaesruarenmd elonwt edrevwicaete; rhleenvceelsa) ninoapthioyndarol pmoewaesrupreladnvt.alue for water level.
HORETSP DWaamterovreesrteorpvpoinr.gAplroogteiccatilonno. dAe ptrhoatteicstiuosnefduntoctrioenprtehsaetnwt itlhl eacltogbiycaolpfeunnicntgioonnoef oar rmesoerervgoairt.eIsf tinhe
HSREQS caosneteonft ais rtioskbfeorcaolvceurltaotpepdi,ntghethFeSdCaDm.LNThsehparllobteecutisoendwtioll psrooBmvSiedteiEmtNehse6irn1ec8lalu5tid0oe-n7ibt-s4eto1ww0en:e2nw0a1wt3ae+treAr 1le:2ve0l16
manedascuornetmenetn. t device; hence an optiona–l m1e5as–ured value for w6a1te8r5l0ev-7el-.410 © IEC:2012+A1:2015
HSPD
HSEQ WStatret r/ rsetoseprsveoqiru. eAnlcoegri.cAal sniomdpelethLaNt itshautsoendlytoprreepsreenstesnwt hthaet tlhoegisceaql ufuennccBteioSrnisEoNdf oai6nr1eg8s(e5inr0va-oc7itri-.v4eI1f –0th:e2013
LN Class csotanrtteinngt i–s stotobpepicnagl)caunladteind,ctahseeFiSt iCsDacLtNives,hwalhl abtesutespedit tios proevsiednetltyheworerklaintigononb.etween water level
– 12 – 61850-7-410 IEC:2012
and content.
Speed monitoring. This LN is normally located in a stand-alone logical device, separated from but
mStoanrtit/orsitnogp tsheeqtuuerbnicneer.gAovseimrnpolre. LItNwtihll aatlsoonlaycpt raesseanptslawcehhaot ltdheer sfoeqr uveanricoeursispdeoeindglim(initascatinved s–et-
psDtoeaisnrtctisnrigups–tieosdntobpyptihneg)satanrdt sineqcuaesneciet risaancdtiovteh,ewr hcaotntsrtoelpfuitnicstiporness.ently working on.
HHSITPSGDT SInputaergkeeed sgmhaoatenft.itoTorrhisinsugrL.gNTehctiaasnnLkNb. eAisufusnenodcrmttioanlrlyethplaoretcsaisetenudtsieinndtaatkosetmagniatidtge-aastl.eoTnphereelosgsgauitceraesl sdwueirlvlgiaeclsem,ionssetthpneaersavyteesrdtebfmero.pmlacbeudt
minoannityooritnhgerthpeotsuitriboinnethgaonvfeurlnlyorc.loItswedilloarlsfuollaycot paesna. Hploawcevheorldteorcfaotrevraforirousstespp-weeisdeliomr iotsthaenrd set-
HTGV pcGouniindttresolvusas, nethedesbg(ywattihceekiessttnagoratrtmese)a.qllTuyhepinsrcolevorigdaiecndadl wnoiothdeear rcneoupnmrterbsoeelrnfuotsnf cpthtoieosniptsiho.ynssicwailtcdheevsic. e of guide vanes in a
hydropower turbine.
HSJCSLT SPuorwgeer sphlaanftt ojor isnut rcgoentraonlkf.uAncftuionnc.tiIonnptlhaanttsiswuisthedmtooremtihtiagnatoenperegsasteuroerssuervgeersalintutrhbeinseyss,tethmis. LN will
HTRB Rreupnrenseer nbtlathdeesjo. iTnht icsolnotgrioclaflunnocdtieonretphraetsiesnutssetdhetopshuypsiecravlisdeevthiceetootfarluwnnaeterrbfllaodwesorintoem.ga. iantKaianpalan
HTGV Gtcuournbidsinetaevnwat nhweeasrtee(rwthliecevkreeult.ngnTaehtree)bL.laNTdhseihssalcollagbnicebaielnnscotoadnnettrioraeltlepedrde.tsoepntrsovthideepohnyesiicnasltadnecveicfeorofegacuhidegavtaenaensdineaach
htuyrdbrionpeotwo ebretusrubpineerv.ised.
HTRK Trash rack, used to prevent floating debris getting into the turbine.
HHTLKRGB RLeuanknaegreblsaudpeesr.vTishioisn.loTghicisalLnNocdaenrebpereusseendtstothmeepahsuysreicaanl dyeleviackeagoef riunntnheer pbllaandte, sitiins em.go.rea gKeanpelarinc
HTUR TttuhurarbnbiniHneeD.wLThSheirse ltohgeicraulnnnoedr eblhaodledss ceaxntebnedecdonratrtoinllgedp.late data for a turbine in a hydropower plant.
HHHUTLRVNKLT HTWryaadtsrehorprlaoecwvkee,lriunpsdreoicddauttocotrpi.orTnehvueenniLtt.NflTorhaeitpsinrLegNsderenebtpsrritsehsgeeenwtttasintetghreinletpvoheytlhsseicetanulsridbneignveidc.eevoicfet.hTe turbine and generator
HTUR he output is a distance
HHMUVNBLVRT combination in a hydropower plant. It is intended as an extended rating plate that allows temporary
sTineuctrltbuinidngiens.goTafhndisaotlfaofs.geIictt aafrllosnmoodaaectbshaoaslsedsaleepvxeltalec(necdhoeomdldmreaortnifnloygr tpthhleaetdeciusdrtaaretnanctefooarpbaeortavuetrinbsigenaec)oi.ndaitihoyndsroopf othweerunpilta.nt.
HNDL
HWCL HMV ayedlcvrheoa.pnToihcwiaeslrlboprgraoikcdeaulfcont iroodtnheeurngeipet .nreTeshreaisnt otLsr Nsahrlaeafprtgr. eeTshveiansltvsiset,aheeL. gNp.hafyosvriact hal veledbienrvaiakceepecoonf nsttthoreoclkt.u,Trbbhuient teberraaf lnkydeogirsebnuaesller atdyt opf orer
HHNVHLVD stopping the unit during shut-down and to hold the shaft still, once the unit is stopped.
cvaolmveb.ination in a hydropower plant. It is intended as an extended rating plate that allows temporary
sNeetetidnlgescoofndtraotla. . AIt saplseociaaclitsseadsLaNptlhaacterheopldreesrefnotrsththeeccuorrnetrnotl oopfenreaetidnlgescoinndPiteioltnosn otuf rtbhieneusn.it.
Water control function. This LN will represent one physical device that can modify the water flow
tVNhaeoltuvhege.haTtdheidsapltolaag.nicAt,aLel Ninthotedhreaatrecgpaanrteebsoeernutassetaudrlbtaoirngpeer.evIsnaelcvnaet s,tehee.ogcf. aaalcpvulaalalnvtteewdininthaetaphejeonaisndttodccoaknt,atbr(oudltitffeufernfrlceytnioocrneb, bathelletwtyHepJeeCnL
LvuaNplpvweeri.llapnrdovloidweerthweaftleorwlesveet-lsp)oiinntatohybderoupseodwebrypHlaWntC. L.
HHWOTCPL DWaamterovceornttorpopl ifnugncptrioonte. cTtihoins.LANpwroiltlercetpiorensfeunntcotinoen pthhaytswicialll adcetvbicyeotpheant icnagnomneodoirfymthoerewgaatteersflionw
cthaosuegohf taherispklafnotr, oevitehretor papginagtethoer adatumr.bTinhee. Ipnroctaescetioonf awiplllasnotmweittihmaesjoiinnctlucodnetritosl ofuwnnctwioant,erthe HJCL
5.3.5 GromLuNepawsiIullr–permIonevtnideterdfteahvecicefelo;awhnesdnecte-apraocninhot iptvotiiobnnegaul smeedabsyurHeWd vCaLl.ue for water level.
HRES Water resTeravobilre. A7lo–giLcaol gnoicdae lthnaot diseussefdotro irnepterersfeanctethaenlodgiacarlcfhunivctiinongof a reservoir. If the
5.3.5 GrocuonpteInt–isIntotebrefacaclceulaantedd,athrechFSivCiDngLN shall be used to provide the relation between water level
and content.
LN Class Description
HSEQ Start / stoTp asebqluee7nc–er.LAosgiimcpalel nLNodtheast ofnolyr pirnetseernftsacwehaat nthde saerqcuheinvcienr gis doing (inactive –
IFIR
Gsteanrteinrigc –firsetodpeptiencgti)oannadnidn aclaasremitfuisncatciotinv.e, what step it is presently working on.
BSLNHEIHSCNNPlaD6Ds1s850SGD-p7eeesn-4eced1rrii0cpm:tp2oiohn0nyi1tso3icrianlgh. uTmhiasnL–Nmisanchoirnmeailnlytelorfcaactee.dEi.ng.aastpaunsdh--abloutnteonloogricaanlodtehevircpeh, ysseipcaarl adteevdicfreomthabtut
mcaonnbiteoruinsgedthaestuinrbpiuntetogoavceornnotrro. llIet rw. ill also act as a placeholder for various speed limits and set-
6185IF0IR-7-410GeneIrEicCf:ir2e0d1e2tection and alarm functio–n.13 –
points used by the start sequencer and other control functions.
BS EN 61850-7-410:2013
IHND Generic physical human – machine interface. E.g. a push-button or another physical device that
HSST Surge shaft or surge tank. A function that is used to mitigate pressure surges in the system.
56.138.560-7-G41ro0cuanpbIKEe Cu–s:e2Md0ea1cs2hinapnutictoaal aconndtronlloern. -el–ec1t3ri–cal primary equipment
HTGV Guide vanes (wicket gate). This logical node represents the physical device of guide vanes in a
Tablehy8dr–opLoowgerictuarlbinneo.des for mechanical and non-electric primary equipment
5.3.6 Group K – Mechanical and non-electrical primary equipment
HTRB Runner blades. This logical node represents the physical device of runner blades in e.g. a Kaplan
LN ClaTsasbleDtu8erbs–icnreiLpwotihgoenirceathl enroudnneesr blades can be controlled. non-electric primary equipment
for mechanical and
KHHTRTRK HTreaastherr.aTchke, uLsNedretporpesreevnetsntaflhoeaatitnegr,dceubbriicslegehtetiantgerinotroathney otuthrbeirneh.eater that can be controlled.
LNHTCUlaRss DTuersbcinriep.tiTohnis logical node holds extended rating plate data for a turbine in a hydropower plant.
5.3.HK7HUTNRT GroHHueypdarteoPrp.o–TwhePerrLpoNrtoedrecupctrtieioosnnenuftnusitna. cThtheiiaostenLrNs, cruebpircelseehnetsattehreoprhaynsyicoatlhdeervhiceeatoefr tthheattucrabninbeeacnodngtreonlleerda.tor
combination in a hydropower plant. It is intended as an extended rating plate that allows temporary
NOTE Most soef tttihnegsloogficdaaltan. oItdeaslsothaacttsreapsreaspelnatcephrootledcetrivfeorftuhnectciounrrsenatroepdeerafitninegd cionntdhiteiosnusbosftathtieonunpita.rt of the
d5o.3cu.7ment sGerrioesu. p P – Protection functions
HVLV Valve. This logical node represents a large valve, e.g. a valve in a penstock, butterfly or ball type
NOTE Most voaflvthee. logical nodes that represent protective functions are defined in the substation part of the
Table 9 – Logical nodes for protections
docuHmWeCnLt serieWs.ater control function. This LN will represent one physical device that can modify the water flow
LN Class though the plant, either a gate or a turbine. In case of a plant with a joint control function, the HJCL
DLNeswcirlilpptrioovnide theTaflobwlese9t-–poLinot gtoicbealusneoddbeysHWfoCrLp. rotections
PRTR Rotor protection. Field short-circuit protection.
LN Class Description
5.3.P5TUR GroUuspedIfo–r Idnetteecrtfioancoef uanndderarerscihstiavnicneg, e.g. due to stator or rotor earth-faults.
PRTR Rotor protection. Field short-circuit protection.
5.3.8 Group R – Protection related functions
Table 7 – Logical nodes for interface and archiving
5.3.8 Group RTa–bPlero1t0ec–tiLoongrieclaaltnedodfeusncfotironpsrotection related functions
LN Class Description
LNIFCIlRass DGeesncerrTiicpatfibiorelnede1t0ec–tioLnoagndicaalalrnmofudnecstiofno. r protection related functions
RIHFNBDC FGieenlderbicrepahkyesriccaolnhfiugmuraantio–nm. achine interface. E.g. a push-button or another physical device that
LN Class Dcaenscbreiputsioend as input to a controller.
RFBC Field breaker configuration.
5.3.9 Group S – Supervision and monitoring
5.3.9 Group STa–bSleup1e1rv–isLioognicaanldnmodoensitfoorrinsgupervision and monitoring
LN Class DescrTipatibolne 11 – Logical nodes for supervision and monitoring
SFLW Media flow supervision. This logical node represents a generic media flow supervision system that
LN Class cDaenscprriopvtiidoenalarm and trip signals. In an application, the LN shall be instantiated with one instance
per flow being measured.
SFLW Media flow supervision. This logical node represents a generic media flow supervision system that
SLEV Mcaendpiarolevvideel saulapremrvaisniodnt.riTphsiisgnloaglsic.aIlnnaondeaprepplicreastieonnt,sthaegLeNnesrihcalel vbeel isnusptaenrvtiiastieond swyitshteomnethinast tcaannce
5.3.8 Group R – Protection related functions
5.3.7 Group P – Protection functions
B5.S3.E8N 61G85ro0-u7p-4R1T0a–:2bP0le1r3o1+t0eAc–1t:i2Lo0on1g6riecalaltnedodfeusncfotironpsrotection related functions
6N1O8T5E0-7M-4o1s0t o©f ItEheC:l2og0i1ca2l+nAo1d:e2s01th5at represent pr–ote1c6tiv–e functions are defined in the substation part of the
doLcNumCelnatsserieDse. scrTipatibolne 10 – Logical nodes for protection related functions
RFBC Field breaker configuration.
LN Class Description Table 9 – Logical nodes for protections
RFBC Field breaker configuration.
5.L3N.9ClassGroDuepscSrip–tioSnupervision and monitoring
PRTR Rotor protection. Field short-circuit protection.
5.3.9 Group STa–bSleup1e1rv–isLioognicaanldnmodoensitfoorrinsgupervision and monitoring
5.L3N.8ClassGroDuepscRrTipa–tiboPlnero1t1ec–tiLoongrieclaaltendodfuens cftoironssupervision and monitoring
SEFCLWW MSuepdeiarTvfilasoibwonlseoufp1e0lrev–cistriLiocona.lgTciohcniasdlulocngtoivcidatylenisnodwfeoatrreerpp. rrTeohsitesenlctosgtiaicoagnlennroeedrliecartmeepedrdeifasuefnnlotcswtasiousypnsestrevmisifoonr smyosnteitmoritnhgatof
LN Class cDealeenscctprrriciopavtliidoceonnadlaurcmtivaitnydintrwipasteigr.nals. In an application, the LN shall be instantiated with one instance
IEC 61850-7p-e4r1fl0o:w20be1i2ng/AmMeaDs1u:r2ed0.15 – 5 –
SFLW Media flow supervision. This logical node represents a generic media flow supervision system that
© LINECCla2s0s15 Description
cMaendpiarolevvideel saulapremrvaisniodnt.riTphsiisgnloaglsic.aIlnnaondeaprepplicreastieonnt,sthaegLeNnesrihcallel vbeel isnusptaenrvtiiastieond swyitshteomnethinast tcaannce
SLEV
RFBC ppFerieorlvdfildobTewreaabableaklireenmrgc1amo1nnedf–aitgsruLiuprroaestgdigo.inca.alsl. nInoadneasppfolicrastiounp, ethrevLisNioshnalal bnedinmstoanntiiatoterdinwgith one instance per
surface being measured.
SLEV Media level supervision. This logical node represents a generic level supervision system that can
SPOS pDreovviicdee paolasirtmionansduptreiprvsisigionna.lsT.hIins alongaicpapl lnicoadtieonre, pthreesLeNntsshaagllebneerinicstpaonstiitaiotendswuiptherovniseioinnsstyasntceemptehrat
A5.d3d.9the fGolrloscwuuarnpifnapgcSreocv–blidaeSeisnusgaplamaertemratvhsaiuensrdeibodtren.ipgaisningndnianmlgs.ooInnf aiTtnoaabrpilneplgi1ca1ti:on, the LN shall be instantiated with one device
SPOS being measured.
LN Class Device position supervision. This logical node represents a generic position supervision system that
SPRS
SECW Table 11 – Logical nodes for suDepsecrrvipitsioionn and monitoring
LN Class
SPRS Mcaendpiaropvriedsesuarlaersmupaenrdvitsriipons.igTnhaislsl.oIgnicaanl anpopdleicraetpiorne,sethnetsLaNgsehnaellribcepirnesstsaunrteiasteudpewrivtihsioonnesdyestveicme
tbheaintSgcuampneepravrsoisuvirioednde.oaflaerlmectarnicdaltrciponsdiguncatilvsi.tyIninanwaatpepr.licTahtiisonlo, gthicealLnNosdhearlel pbreesinesnttasnatiastyesdtewmithfoorne
iDnesstamcnrocipneittipooernirnpgreosf seulerectpriocianltcboenidnugcmtiveiatysuinrewda. ter.
Media pressure supervision. This logical node represents a generic pressure supervision system
SFLW tMheadt icaafnlopwrosvuidpe ravliasriomn.aTndhistrilpogsiicganlanlso.dIen raenpraepspelnictastaiong,entheericLNmsehdaiall fbloewinssutpaenrtivaisteiodnwsiythstoenme that
icnasntapnrcoevipderaplarermssuarnedptoriipntsbigenianlgs.mIneaasnuraepdp.lication, the LN shall be instantiated with one instance
A5.d3d.1, 0afteGr SroupuebrpcfllaXowu–sbeeSin5wg.i3tm.c9eha, gstuhereaedrf.ollowing new Subclause 5.3.13:
SLEV Media level supervision. This logical node represents a generic level supervision system that can
55..33..1130 GGrroopuurpopviTdXe––aTlaSrrwmaniatsncddThuatgrcbiepelaesrrisg1n2aanls–d. ILnionagsnitacrpuapmllicneaontidotnet,srtahfneosLrfNosswrhmiatlecl rbhsegiensatrantiated with one instance per
LN Class surface being measured.
SPOS
Description TTaabbllee1182––LLooggiiccaallnnooddeessffoorrtsrawnitscdhugceearrs
Device position supervision. This logical node represents a generic position supervision system that
XFFL cFaienldprfloavsidheinga.laArmloagnicdaltrnipodseigtnoarlse.pIrnesaennat pthpelicsawtiotcnh,inthgecLoNntsrohlaflol rbsetainrst teaxnctitaatteiodnw(iftihelodnfeladsehvinicge) of
LLNNCClalassss baDeegisnecgnremirpaettiaoosrn.ured.
Description
TESCXPFWRFLS MFieeMdldieafalpasrusehrseinsmgue.renAtsoluofpgeeiclreavclistnriioocnda.el Tcthooinsrdelupocrgeticsvaeitlnyntinothdweeasrtweeprit.rceThshienisngtlscooganictgraeolnlnefoordircesptrareerptsreseuxscreeitnasttsuiopanegr(vefiineseliodrnicflsadyseshvtieincmge) of
tahagfteoncr aemnraeptaorsoru.vriidneg athlaermcoanndducttrivpitsyiginnawlsa.teInr. an application, the LN shall be instantiated with one
5.4 Autominsattainccecopenrtprroelsslourgeipcoainl tnboeidneg smeasured. LN group A
A5.d4d.1, afAteuMrtoSomudbeacltliliacnugcsoerne5tmr.4oa,lrtklhosegifcoallol wnoindgensew SubclausLeN5g.1ro3:up A
5.3.10 Group X – Switchgear
L5o.4g.i1cal nModoedselilnintghirsemgraorukps are intended for automatic control functions of general use, i.e.
5.13 Logical nodes for thermal power LN group E
not for any specific area oTfatbelceh1n2ol–ogLyo. gTihceallongoidcaelsnfoodresswAitPcShgSe, aArPST and APSF below are
5Lin.ot1eg3nic.d1ael dnLfoNodr:euBssloeincinkthpcisoowogrerdor uisnpyastatieroemnifnsuteannbcditliiezodenrfo(Pr SaSu)tocmonatricolcfouNnatcrmtoiolenf:usEnuBcstCieodFnsfoor flagrgeenegreanl eursaeto, ris.e. .
noLtNfoCrlaassny sDpeesccriifpictioanrea of technology. The logical nodes APSS, APST and APSF below are
LinotgeXnicFdaFelLdnfoodreFuiesEledBfilCnasFphionswgh.eaArlllsobygeisctaeul msnoedsdetattoboirlecizpoeroersr(edPnintSathStee) scwtohitnecthriconogl nfcutornnoctlrtoioloffnorsthsuetasretthedexcfroimtaratliaol nrpg(rfeeiesgldseufnlareesrhaiontgfo)rtsohf.e
steam generaagtoernearantdort.he electrical power regulation of turbine / generator system.
5.4 Automatic control logical nodes EBCF class LN group A
Data Object Common Explanation T M/O/C
Name Data Class
5.4.1 Modelling remarks
LNName The name shall be composed of the class name, the LN-Prefix and
LN-Instance-ID according to IEC 61850-7-2:2010, Clause 22
Logical nodes in this group are intended for automatic control functions of general use, i.e.
nDoattafoOrbajencytsspecific area of technology. The logical nodes APSS, APST and APSF below are
inStteatnudseidnfoformr autsioenin power system stabilizer (PSS) control functions used for large generators.
GasTurUnt SPS Gas turbine generation unit {inst} contributing [True = contributing] Omulti
StmTurUnt SPS Steam turbine generation unit {inst} contributing [True = Omulti
contributing]
BoilUnt SPS Boiler unit {inst} contributing [True = contributing] Omulti
BlkOpSt ENS Status of the block. M
Operational condition Value
Undefined 0
Coordinated 1
Boiler Follow 2
Steam Follow 3
Gas Follow 4
GasTurErr MV Gas turbine generation unit {inst} error. Omulti
StmTurErr MV Steam turbine generation unit {inst} error. Omulti
BoilErr MV Boiler unit {inst} error. Omulti
JntCtlTag TAG Joint control maintenance tag affixed to the equipment O
– 17 – BS EN 61850-7-410:2013+A1:2016
– 14 – 61850-7-410 © IEC:2012+A1:2015
BS EN 61850-7-410:2013
61850-7-410 IEC:2012
5.4.2 LN: Control mode selection Name: ACTM
Logical node ACTM shall be used to present information about different control modes of any
control or regulating system. One logical node ACTM must be created for each available
control mode.
Data Object Common ACTM class T M/O
Name Data Class Explanation
LNName The name shall be composed of the class name, the LN-Prefix
and LN-Instance-ID according to Clause 22 of IEC 61850-7-
2:2010.
Data Objects
Status information
LocKey SPS Local or remote key O
Local control behaviour O
Loc SPS Fault in the controller {inst} Mmulti
Flt SPS Remote control blocked O
If TRUE this mode is active M
Controls
LocSta SPC
ModAct SPC
5.4.3 LN: Joint control Name: AJCL
The joint control logical node is used to co-ordinate the power production of a power plant
with more than one production unit. The joint control function will normally try to optimise the
power production between units already in operation. In this control mode, the power plant
can be controlled as a single unit. The data attributes shall be instantiated to provide one
instance per generating unit to be included in the joint control. Compare also with the HJCL
logical node, which can be used to control water flow through a single object of a hydropower
plant. Instantiated parts shall be defined in the extended private parts.
AJCL class
Data Object Common Explanation T M/O
Name Data Class
LNName The name shall be composed of the class name, the LN-Prefix
and LN-Instance-ID according to Clause 22 of IEC 61850-7-
2:2010.
Data Objects SPS Local or remote key O
Status information SPS Local control behaviour O
LocKey SPS Generation unit {inst} contributing (true = contributing) Omulti
Loc SPS Raise set-point in IED for unit {inst} T Omulti
Unt SPS Lower set-point in IED for unit {inst} T Omulti
RSpt
LSpt MV Contributing power output of the plant (included in the joint O
Measured values
PwrOut MV control)
PwrOutTot SPC Total power output of the plant O
Controls TAG
LocSta APC Remote control blocked O
JCtlTag SPC Joint Control Maintenance tag affixed to the equipment O
UntSpt SPC Set-point for unit {inst} Omulti
UntStr TAG Generation unit {inst} start Omulti
UntStop SPC Generation unit {inst} stop Omulti
UntTag Maintenance tag affixed to the unit {inst} Omulti
CmdBlk Block operation O
NOTE When both active power set-point (DA:AJCL.UntSpt) in logical node AJCL and active power setpoint
(DA:HJCL.ClcPwrSpt) in logical node HJCL are used for power control, only one of the data attributes can be
active the other has to be in tracking mode. Use prefixes W for active power and Var for reactive power control.
E.g. W_AJCL and Var_AJCL.
5.4.4 LN: PSS 4B filter function Name: APSF
This logical node shall be used to represent a PSS 4B filter as given by the IEEE 421.5-2005.
It is possible to use the generic filter function FFIL of IEC 61850-7-4 as an alternative,
BS EN 61850-7-410:2013+A1:2016 – 18 –
61850-7-410 © IEC:2012+A1:2015 – 15 –
BS EN 61850-7-410:2013
61850-7-410 IEC:2012
however the data object names will then not match the names of variables in the IEEE
document. See reference [5]1 for more details on PSS functions.
APSF class
Data Object Common Explanation T M/O/
Name Data Class C
LNName The name shall be composed of the class name, the LN-Prefix and LN-
Instance-ID according to Clause 22 of IEC 61850-7-2:2010.
Data Objects
Controls
InputLIHz APC Test Input Low- and intermediate frequency O
InputHHz APC Test Input high frequency O
Status Information
HiLim SPS High limit reached, PSS - filter output O
LoLim SPS Low limit reached, PSS - filter output O
LHiLim SPS High limit reached, LF output O
LLoLim SPS Low limit reached, LF output O
IHiLim SPS High limit reached, IF output O
ILoLim SPS Low limit reached, IF output O
HHiLim SPS High limit reached, HF output O
HLoLim SPS Low limit reached, HF output O
Measured values
Out MV Output of PSS - filter O
OutL MV Output of Low Frequency part O
OutI MV Output of Intermediate Frequency part O
OutH MV Output of High Frequency part O
OutLBG MV Output of Low Frequency part before gain O
OutIBG MV Output of Intermediate Frequency part before gain O
OutHBG MV Output of High Frequency part before gain O
ErrTerm MV Error term O
Settings
KL ASG Proportional gain LF (Low Frequency) M
KL1 ASG Proportional gain LF positive M
KL2 ASG Proportional gain LF negative M
KL11 ASG Lead gain LF positive M
KL17 ASG Lead gain LF negative M
TL1Tms ING Time constant TL1 (low frequency positive) M
TL2Tms ING Time constant TL2 (low frequency positive) M
TL3Tms ING Time constant TL3 (low frequency positive) M
TL4Tms ING Time constant TL4 (low frequency positive) M
TL5Tms ING Time constant TL5 (low frequency positive) M
TL6Tms ING Time constant TL6 (low frequency positive) M
TL7Tms ING Time constant TL7 (low frequency negative) M
TL8Tms ING Time constant TL8 (low frequency negative) M
TL9Tms ING Time constant TL9 (low frequency negative) M
TL10Tms ING Time constant TL10 (low frequency negative) M
TL11Tms ING Time constant TL11 (low frequency negative) M
TL12Tms ING Time constant TL12 (low frequency negative) M
VLMax ASG Maximum limit set-point LF M
VLMin ASG Minimum limit set-point LF M
KI ASG Proportional gain IF (Intermediate Frequency) M
KI1 ASG Proportional gain IF positive M
KI2 ASG Proportional gain IF negative M
KI11 ASG Lead gain IF positive M
KI17 ASG Lead gain IF negative M
TI1Tms ING Time constant TI1 (intermediate frequency positive) M
TI2Tms ING Time constant TI2 (intermediate frequency positive) M
TI3Tms ING Time constant TI3 (intermediate frequency positive) M
TI4Tms ING Time constant TI4 (intermediate frequency positive) M
TI5Tms ING Time constant TI5 (intermediate frequency positive) M
TI6Tms ING Time constant TI6 (intermediate frequency positive) M
TI7Tms ING Time constant TI7 (intermediate frequency negative) M
TI8Tms ING Time constant TI8 (intermediate frequency negative) M
TI9Tms ING Time constant TI9 (intermediate frequency negative) M
TI10Tms ING Time constant TI10 (intermediate frequency negative) M
TI11Tms ING Time constant TI11 (intermediate frequency negative) M
___________
1 Numbers in square brackets refer to the Bibliography.