Tải bản đầy đủ (.pdf) (2 trang)

CƠ SỞ ĐIỀU KHIỂN TỰ ĐỘNG Dethi dap an dstt 2010 2011 ca1

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (87.38 KB, 2 trang )

ĐỀ THI HỌC KỲ I NĂM HỌC 2010-2011
Simpo PDF Merge and
Split
Version

n họUnregistered
c: Đại số tuyế
n tính.-
Thời gian làm bài: 90 phút. Đề thi gồm 8 câu.
Sinh viên không được sử dụng tài liệu.
HÌNH THỨC THI: TỰ LUẬN. CA 1
Câu 1 : Cho ma traän A =



1 +2 i 2 −i
1 +2 i 3 +2 i








1
−1 0
−2


Caâu 2 : Cho hai ma trận A = 


−1
2
1

B
=


 1
3
−3 1
3
T
Tìm ma trận X thỏa 2 I + AX = B .






Câu 3 : Giải hệ phương trình 




x1
2 x1
3 x1
5 x1



5
z.

. Đặt z =det( A) . Tính

+ x2
+ x2
+ x2
+ 3 x2

− x3
− 3 x3
− 5 x3
− 7 x3

3
−2
1

− 2 x4
− 5 x4
− 8 x4
− 1 2 x4

6
7




5 
.

=
=
=
=

0
0
0
0

Caâu 4 : Trong IR3 , cho tích vô hướng
( x, y) = ( ( x1 , x2 , x3 ) , ( y1 , y2 , y3 ) ) = 3 x1 y1 + 2 x1 y2 + 2 x2 y1 + 5 x2 y2 + x3 y3 .
Tìm độ dài của vécto u = ( 1 , 2 , −1 ) .

Caâu 5 : Cho ánh xạ tuyến tính f : IR3 −→ IR3 , bieát
f ( 1 , 1 , 1 ) = ( −6 , −3 , −3 ) , f( 1 , 1 , 0 ) = ( 6 , 5 , 2 ) , f( 1 , 0 , 1 ) = ( 6 , 2 , 5 ) .
Tìm tất cả các vécto riêng của f ứng với trị riêng λ1 = 3 .
Câu 6 : Cho ánh xạ tuyến tính f : IR3 −→ IR3 , bieát
f ( x) = f( x1 , x2 , x3 ) = ( 2 x1 + x2 − 3 x3 , x1 + 2 x2 + x3 , x1 − 2 x3 ) .
Tìm ma trận của f trong cơ sở E = {( 1 , 1 , 1 ) , ( 1 , 1 , 0 ) ; ( 1 , 0 , 0 ) }

Câu 7 : Đưa dạng toàn phương f ( x1 , x2 ) = 5 x21 − 4 x1 x2 + 8 x22 veà dạng chính tắc bằng biến đổi TRỰC
GIAO. Nêu rõ phép đổi biến.
Câu 8 : Cho ma trận vuông thực A cấp 3, X1 , X2 , X3 ∈ IR3 là 3 vécto cột, độc lập tuyến tính. Biết
A · X1 = X2 , A · X2 = X3 , A · X3 = X1 . Tìm tất cả trị riêng và vécto riêng của A3 .
CHỦ NHIỆM BỘ MÔN



Đáp án đề thi Đại số tuyến tính, năm 2010-2011, ca 1
Simpo
PDF điể
Merge

Thang
m: câand
u 1,Split
2, 5,Unregistered
6: 1.5 điểm. Version
Các câu -cò
n lại 1 điểm.
Nếu cách làm đúng mà đáp án sai, thì vẫn cho điểm tùy theo mức độ.

Câu 1. det ( A)
=
−5
+
5
i
=
5
2 ( c o s ( 3 π/4 + i s in 3 π/4 ) .



3
π/4
+

k2
π
3 π/4 + k2 π
5
z = zk = 10 5 0 c o s
, k = 0 , 1 , ..., 4 .
+ i s in
5
5




5
1 −1
−2 3 −4 1 1




1 −1 
−5
8 
Caâu 2. X = A−1 B T − 2 I , A−1 =  4
 Suy ra X =  −1 9

−3 0
1
1 8
2

−4
Câu 3. Đưa về bậc thang, giải ra được nghiệm tổng quát X = ( 2 α + 3 β, −α − β, α, β) .



Caâu 4. Độ dài vécto ||u|| = ( u, u) = 3 + 4 + 4 + 2 0 + 1 = 3 2

Câu 5. Có nhiều cách làm. Tìm f( 1 , 0 , 0 ) = ( 1 8 , 1 0 , 1 0 ) , f( 0 , 1 , 0 ) = ( −1 2 , 
−5 , −8 ) , f ( 0 , 0 , 1 ) =
1 8 −1 2 −1 2
−5
−8 
( −1 2 , −8 , −5 ) , suy ra ma trận của f trong chính tắc là A = 
 1 0

1 0
−8
−5
Ứng với trị riêng λ1 = 3 , giải hệ ( A − 3 I) X = 0 , ta có nghiệm X = ( 4 α, 5 α − β, β) T . Suy ra tất cả
các vécto riêng của f ứng với trị riêng λ1 = 3 laø X = ( 4 α, 5 α − β, β)

Caâu 6. f ( 1 , 1 , 1 ) = ( 0 , 4 , 1 ) , suy ra [f ( 1 , 1 , 1 ) ]E = ( −1 , 5 , −4 ) T ;
f ( 1 , 1 , 0 ) = ( 3 , 3 , 1 ) , suy ra [f( 1 , 1 , 0 ) ]E = ( 1 , 2 , 0 )

T






−1 1 1

T
2 0 
f ( 1 , 0 , 0 ) = ( 2 , 1 , 1 ) , suy ra [f( 1 , 0 , 0 ) ]E = ( 1 , 0 , 1 ) . Ma trận cần tìm: A =  5

−4
0
1


5
−2
Câu 7. Ma trận của dạng toàn phương: A =
. Chéo hóa trực giao A = P DP T , trong
−2
8


1
2


√ 
 √
9 0

5
5 
đó D =

, P =  −2
.
1

0 4

√ 
5
5
Dạng chính tắc cần tìm: f ( y1 , y2 ) = 9 y12 + 4 y22 . Phép đổi biến X = P Y .
Câu 8. Ta coù A3 ( X1 ) = A( A( AX1 ) ) = A( AX2 ) = AX3 = X1 . Suy ra X1 là vécto riêng của A3 ứng
với trị riêng λ1 = 1 .
Tương tự 2 vécto X2 , X3 đều là vécto riêng của A3 ứng với trị riêng λ1 = 1 .
Vì X1 , X2 , X3 độc lập tuyến tính nên Bội hình học của λ1 bằng 3. Suy ra A3 chỉ có một trị riêng
và A3 = I.

1



×