Tải bản đầy đủ (.pdf) (78 trang)

(Luận Văn Thạc Sĩ) Thiết Kế Chế Tạo Ma Trận Thấu Kính Biên Dạng Tự Do Nhằm Tăng Hiệu Suất Trong Chiếu Sáng Cây Trồng.pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.04 MB, 78 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO

VIỆN HÀN LÂM
KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
-----------------------------

Kiều Ngọc Minh

THIẾT KẾ CHẾ TẠO MA TRẬN THẤU KÍNH
BIÊN DẠNG TỰ DO NHẰM TĂNG HIỆU SUẤT
TRONG CHIẾU SÁNG CÂY TRỒNG

LUẬN VĂN THẠC SĨ
NGÀNH VẬT LÝ

Hà Nội – Tháng 9 năm 2021


BỘ GIÁO DỤC VÀ ĐÀO TẠO

VIỆN HÀN LÂM
KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
-----------------------------

Kiều Ngọc Minh

THIẾT KẾ CHẾ TẠO MA TRẬN THẤU KÍNH


BIÊN DẠNG TỰ DO NHẰM TĂNG HIỆU SUẤT
TRONG CHIẾU SÁNG CÂY TRỒNG
Chuyên ngành:
Mã số:

Vật lý kỹ thuật
8520401

LUẬN VĂN THẠC SĨ
NGÀNH VẬT LÝ
CÁN BỘ HƯỚNG DẪN KHOA HỌC:
TS. Tống Quang Công

Hà Nội – Tháng 9 năm 2021


LỜI CAM ĐOAN
Tôi xin cam đoan đề tài nghiên cứu trong luận văn này là cơng trình nghiên
cứu của tơi dựa trên những tài liệu, số liệu do chính tơi tự tìm hiểu và nghiên cứu.
Chính vì vậy, các kết quả nghiên cứu đảm bảo trung thực và khách quan nhất.
Đồng thời, kết quả này chưa từng xuất hiện trong bất cứ một nghiên cứu nào. Các
số liệu, kết quả nêu trong luận văn là trung thực nếu sai tôi hoàn chịu trách nhiệm.
Người làm luận văn

Kiều Ngọc Minh


LỜI CẢM ƠN
Luận văn này được thực hiện tại Phòng Laser bán dẫn – Viện Khoa học vật
liệu – Viện Hàn lâm Khoa học & Công nghệ Việt Nam.

Trước tiên, tôi xin gửi lời cảm ơn tới Tiến Sĩ Tống Quang Công, PGS. TS.
Trần Quốc Tiến những người thầy đã hướng dẫn, giúp đỡ và cho tôi một không
gian làm việc chuyên nghiệp trong suốt quá trình thực hiện luận văn.
Tơi xin bày tỏ lịng biết ơn đến TS. Vũ Ngọc Hải, NCS. Vũ Hoàng cùng các
cán bộ nhân viên Phòng Laser bán dẫn – Viện Khoa học vật liệu đã tận tình chỉ
bảo và hỗ trợ tơi trong q trình nghiên cứu thực hiện đề tài.
Tơi xin bày tỏ lời cảm ơn sâu sắc đến những thầy cô giáo đã giảng dạy tôi
trong hơn một năm qua cùng ban Lãnh đạo, phòng Đào tạo, các phòng chức năng
của Học viện Khoa học và Công nghệ đã giúp đỡ, chỉ bảo tôi trong thời gian tôi
học tập tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học & Công
nghệ Việt Nam.
Cuối cùng tôi xin gửi lời cảm ơn đến gia đình, bạn bè và những người thân
đã hỗtrợ và giúp đỡ trong suốt quá trình học tập cũng như trong thời gian thực
hiện khóa luận này.
Tơi xin chân thành cảm ơn!
Hà Nội, tháng 9 năm 2021

Kiều Ngọc Minh


MỤC LỤC
DANH MỤC VIẾT TẮT ................................................................................ 3
DANH MỤC BẢNG BIỂU ............................................................................. 4
DANH MỤC HÌNH ẢNH ............................................................................... 4
MỞ ĐẦU .......................................................................................................... 7
CHƯƠNG 1. TỔNG QUAN ........................................................................... 8
1.1. Nguồn sáng LED cho chiếu sáng cây trồng ...................................... 8
1.1.1. Nguồn sáng dải.......................................................................................... 8
1.1.2. Nguồn sáng điểm (LED Spotlight) ......................................................... 9
1.2. Các thông số cơ bản của nguồn đèn điểm trong chiếu sáng cây

trồng ............................................................................................................ 10
1.2.1. Cường độ chiếu sáng .............................................................................. 10
1.2.2. Bước sóng ánh sáng ................................................................................ 11
1.2.3. Phân bố ánh sáng..................................................................................... 13
1.2.4. Cường độ bức xạ ..................................................................................... 14
1.3. Tối ưu phân bố quang của nguồn sáng điểm sử dụng kỹ thuật
quang học không tạo ảnh .......................................................................... 15
1.3.1. Khái niệm quang học không tạo ảnh..................................................... 15
1.3.2. Linh kiện quang học trong quang học không tạo ảnh ......................... 17
1.3.3. Ứng dụng kỹ thuật quang học không tạo ảnh....................................... 18
1.3.4. Cơng cụ tính tốn mơ phỏng (Mathlab, Light tools) ........................... 19
CHƯƠNG 2. KỸ THUẬT THỰC NGHIỆM ............................................. 24
2.1. Tính tốn, mơ phỏng nguồn sáng, linh kiện quang học ................ 24
2.1.1. Tính tốn, thiết kế biên dạng của thấu kính .......................................... 24
2.1.2. Mơ phỏng hình dạng và quang trình của thấu kính biên dạng tự do .. 30
2.2. Chế tạo mẫu thấu kính biên dạng tự do ......................................... 32
2.2.1. Phương pháp chế tạo thấu kính.............................................................. 32
2.2.2. Gia cơng và hồn thiện mẫu thấu kính biên dạng tự do ...................... 36
2.3. Kỹ thuật đo đạc ................................................................................. 37
2.3.1. Xây dựng hệ đo phân bố ánh sáng ........................................................ 37
2.3.2. Lắp ráp và hoàn thiện hệ đo ................................................................... 38
1


2.3.3. Xây dựng hệ đo thông số truyền qua của thấu kính biên dạng tự do . 40
2.4. Lắp ráp đèn LED điểm hoàn chỉnh................................................. 42
CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ............................................... 44
3.1. Kết quả đo thông số nguồn sáng điểm (chip LED) ........................ 44
3.1.1. Kết quả đo thông số quang điện của chip LED .................................... 44
3.1.2. Kết quả đo phổ chip LED....................................................................... 44

3.2. Kết quả chế tạo và mơ phỏng phân bố quang lối ra của hệ thấu
kính biên dạng tự do .................................................................................. 45
3.2.1. Kết quả mô phỏng, chế tạo thấu kính dạng kép.................................... 45
3.2.2. Kết quả mơ phỏng, chế tạo thấu kính dạng ma trận ............................. 47
3.2.3. Kết quả mô phỏng khác.......................................................................... 48
3.3. Kết quả đo thông số thấu kính......................................................... 50
3.3.1. Kết quả đo độ truyền qua của thấu kính ............................................... 50
3.3.2. Kết quả đo phân bố ánh sáng tạo bởi nguồn sáng và hệ thấu kính biên
dạng tự do............................................................................................................... 51
3.3.3. Phân bố ánh sáng phụ thuộc vào góc nghiêng giữa thấu kính biên dạng
tự do và thấu kính chuẩn trực ............................................................................... 54
3.3.4. Phân bố ánh sáng phụ thuộc vào vị trí đặt chip LED .......................... 56
KẾT LUẬN VÀ KIẾN NGHỊ ...................................................................... 58
TÀI LIỆU THAM KHẢO ............................................................................ 59
CƠNG TRÌNH ĐÃ CƠNG BỐ .................................................................... 61

2


DANH MỤC VIẾT TẮT
COB: Chips On Board
CNC: Computer Numerical Control
CRI: Color Rendering Index
LASER: Light Amplification by Stimulated Emission of Radiation
LCD: Liquid-crystal Display
LED: Light-Emitting Diode
PAR: Photosynthetically Active Radiation
PE: Photon Efficacy
PMMA: Poly Methyl Methacrylate
PPF: Photosynthetic Photon Flux

PPFD: Photosynthetic Photon Flux Density
SMD: Surface-Mount Device

3


DANH MỤC BẢNG BIỂU
Bảng 2.1: Thông số thiết kế thấu kính dạng kép
Bảng 2.2: Thơng số thiết kế thấu kính dạng ma trận
Bảng 2.3: Thông số phép đo phân bố ánh sáng

DANH MỤC HÌNH ẢNH
Trang
Hình 1.1: Đèn LED dạng thanh ứng dụng chiếu sáng cây trồng

9

Hình 1.2: Đèn LED sử dụng trong chiếu sáng điều khiển sự ra hoa
của cây hoa cúc

10

Hình 1.3: Sự khác nhau giữa Lux và lumen

11

Hình 1.4: Hình ảnh thể hiện định nghĩa của bước sóng

12


Hình 1.5: Sự khác nhau giữa quang học tạo ảnh và quang học khơng
tạo ảnh

17

Hình 1.6: Tính tốn, mơ phỏng và vẽ đồ thị trên phần mềm matlab

20

Hình 1.7: Mơ hình được thiết kế trên phần mềm Light Tools

22

Hình 2.1: Sơ đồ khối thiết kế đèn LED tăng độ đồng đều phân bố

24

Hình 2.2: Thấu kính chuẩn trực sử dụng trong chế tạo bộ đèn

25

Hình 2.3: Nguyên tắc thiết kế thấu kính dựa trên quang hình tự do[3]

25

Hình 2.4: Quy trình tính tốn thấu kính biên dạng tự do dạng kép

27

Hình 2.5: Quy trình thiết kế thấu kính biên dạng tự do dạng kép


28

Hình 2.6: Quy trình thiết kế thấu kính biên dạng tự do dạng ma trận

30

Hình 2.7: Cấu hình chiếu sáng của đèn LED với hệ thấu kính

31

Hình 2.8: Cấu trúc phân tích mất mát và phân tích tia

32

Hình 2.9: Máy CNC 3004001000mm dùng chế tạo biên dạng

33

thấu kính
Hình 2.10: Mũi V-bit và mũi phay 3mm sử dụng chế tạo thấu kính
4

33


Hình 2.11: Thiết kế thấu kính trên phần mềm Auto CAD

34


Hình 2.12: Mơ phỏng đường đi của mũi khoan trong cơng đoạn tạo
biên dạng bề mặt thấu kính

34

Hình 2.13: Máy CNC đang chế tạo thấu kính biên dạng tự do dạng
kép

35

Hình 2.14: Máy CNC đang chế tạo thấu kính biên dạng tự do dạng
ma trận

35

Hình 2.15: Các cơng cụ xử lý bề mặt thấu kính

36

Hình 2.16: Sơ đồ hệ đo phân bố quang cho thấu kính

37

Hình 2.17: Hình ảnh của hệ dịch chuyển hai chiều

38

Hình 2.18: Nguồn Thorlabs ITC 4005

39


Hình 2.19: Arduino R3 và photodiode sử dụng trong phép đo

39

Hình 2.20: Sơ đồ hệ đo độ truyền qua của thấu kính

40

Hình 2.21: Thiết bị đo cơng suất quang MELLES GRIOT

41

Hình 2.22: Laser diode 650nm cơng suất 200mW

41

Hình 2.23: Thấu kính biên dạng tự do và thấu kính chuẩn trực
sau khi được ghép nối

42

Hình 2.24: Linh kiện của đèn LED được lắp ráp

42

Hình 3.1: Đồ thị sự đáp ứng cơng suất phụ thuộc vào dịng ni của
LED 635nm

44


Hình 3.2: Kết quả đo phổ ánh sáng của đèn LED sử dụng trong
thiết kế và phép đo

45

Hình 3.3: Thấu kính biên dạng tự do dạng kép

45

Hình 3.4: Kết quả mơ phỏng phân bố chiếu sáng của thấu kính biên
dạng tự do dạng kép.

46

Hình 3.5: Mơ phỏng, thiết kế thấu kính biên dạng tự do dạng ma
trận

47

5


Hình 3.6: Thấu kính biên dạng tự do a) trước và b) sau khi xử lý bề
mặt

47

Hình 3.7: Kết quả mơ phỏng phân bố chiếu sáng của thấu kính biên
dạng tự do dạng ma trận


48

Hình 3.8: Phân bố ánh sáng trên mặt thu có (a) d = 2 °; (b) d =

49

3 °; (c) d = 4 °; (d) Hiệu suất và độ đồng đều phụ thuộc vào góc lệch
chuẩn trực.
Hình 3.9: Đồ thị đo hiệu suất truyền qua của 2 dạng thấu kính
trước khi được xử lý bề mặt

50

Hình 3.10: Đồ thị đo hiệu suất truyền qua của 2 dạng thấu kính
sau khi được xử lý bề mặt

51

Hình 3.11: Phân bố ánh sáng của thấu kính biên dạng tự do dạng
kép
a) Kết quả đo phân bố ánh sáng; b) Hình ảnh thực tế của phân bố;
c) Mặt cắt của phân bố ánh sáng

52

Hình 3.12: Phân bố cường độ ánh sáng của thấu kính biên dạng tự
do dạng ma trận tại bề mặt cách nguồn sáng 70cm.
a) Kết quả đo phân bố ánh sáng; b) Hình ảnh thực tế của phân bố;
c) Mặt cắt của phân bố ánh sáng


53

Hình 3.13: Phân bố ánh sáng tại các góc lệch khác nhau giữa thấu
kính chuẩn trực và thấu kính biên dạng tự do.

55

Hình 3.14: Phân bố ánh sáng tại các giá trị góc mở của thấu kính
chuẩn trực.a) 14O; b) 30O; c) 43O; d) 54O.

56

6


MỞ ĐẦU
Từ xưa đến nay, ánh sáng là một yếu tố quan trọng đối với sự sống, đặc
biệt đối với sự sinh trưởng và phát triển của thực vật. Tuy nhiên, đối với mỗi
loại thực vật khác nhau và từng giai đoạn phát triển khác nhau, nhu cầu về ánh
sáng là khác nhau. Việc kiểm soát độ sáng đối với các giai đoạn phát triển của
thực vật được cho là bước tiến rất quan trọng trong ứng dụng khoa học kỹ thuật
vào sản xuất nông nghiệp.
Trong những năm gần đây, việc sử dụng điốt phát sáng (LED) để chiếu
sáng trong nơng nghiệp đã trở nên phổ biến hơn vì tiết kiệm năng lượng, tuổi
thọ dài, khối lượng nhỏ gọn, chỉ số hồn màu cao và lợi ích mơi trường [1,2].
Mặc dù các nhà sản xuất LED và các nhà cung cấp hàng đầu đã đề cao những
lợi thế của đèn LED trong các ấn phẩm công nghiệp và danh mục của họ [3],
nhưng phân bố dạng Lambert của đèn LED là một nhược điểm khiến chúng
hiếm khi được sử dụng trực tiếp cho mục đích chiếu sáng địi hỏi tính đồng nhất

cao. Ánh sáng phát ra từ đèn LED có tính định hướng cao nhưng phân bố dạng
Lambert gây ra sự chênh lệch lớn về độ sáng giữa các vùng được chiếu sáng.
Vậy nên, nếu như thuần tuý sử dụng đèn LED trong việc chiếu sáng phục vụ
quá trình sinh trưởng và phát triển của thực vật, lượng ánh sáng thực nhận được
giữa các vùng chiếu sáng là khác nhau, dẫn đến kết quả thực vật phát triển
không đồng đều. Hiện nay, đèn LED tuýp cũng đã được ứng dụng trong chiết
sáng cây trồng, độ đồng đều chiếu sáng cao hơn đèn LED thường, tuy nhiên,
đèn LED tuýp bị giới hạn trong lĩnh vực chiếu sáng cây trồng trong nhà, khơng
thể đưa ra ngồi trời do gặp vấn đề về kỹ thuật lắp đặt.
Chính vì thế, chúng tơi chọn đề tài ‘‘Thiết kế chế tạo ma trận thấu kính
biên dạng tự do nhằm tăng hiệu suất trong chiếu sáng cây trồng” với mục tiêu
chế tạo linh kiện quang học thứ cấp cho đèn LED nhằm đạt phân bố có dạng
hình vuông và độ đồng đều chiếu sáng cao tại bề mặt chiếu sáng.

7


CHƯƠNG 1. TỔNG QUAN
1.1. Nguồn sáng LED cho chiếu sáng cây trồng
Ngày nay, với sự phát triển nhanh chóng của chiếu sáng LED trong cuộc
sống, chiếu sáng bằng đèn LED cũng dần được áp dụng trong lĩnh vực nông
nghiệp. Các hãng sản suất nổi tiếng về đèn chiếu sáng như Philips, Panasonic,
Rạng Đông,… cũng bắt đầu sản suất những loại đèn đặc biệt cho mục đích này.
Đèn LED cho ứng dụng nơng nghiệp hiện nay gồm hai loại chính là đèn LED
dạng thanh và đèn LED dạng điểm, mỗi loại có đặc điểm, thơng số kỹ thuật
khác nhau phù hợp với mục đích chiếu sáng nơng nghiệp khác nhau.
Bóng đèn led chiếu sáng được dùng trong nhiều ngành nông nghiệp cho
thấy được những ưu việt tuyệt vời của nó. Với những đặc điểm nổi trội hơn hẳn
các loại đèn chiếu sáng khác về cả hiệu quả, tính năng…, đèn LED hiện nay đã
dần thay thế hoàn toàn được các loại đèn chiếu sáng thơng thường trước đây.

Đây chính là sản phẩm chiếu sáng hàng đầu trong các ngành công nghiệp hay
nông nghiệp chiếu sáng hiện đại. Tại thời điểm hiện tại, đèn LED có khá nhiều
các loại đèn khác nhau như đèn LED dây, đèn led tuýp hay các loại đèn âm
trần, điều này là đặc biệt phù hợp đối với các nhu cầu sử dụng khác nhau của
con người trong nhiều lĩnh vực khác nhau[1].
Đèn LED sử dụng trong nơng nghiệp có đặc điểm riêng về bước sóng,
để có hiệu ứng tốt hơn với cây trồng con người đã tiến hành nghiên cứu và phát
hiện ra cây trồng có phản ứng tích cực với vùng bước sóng 450-470 nm và 630670 nm.[8]
Chính vì thế các loại LED sử dụng trong nơng nghiệp chủ yếu sử dụng 2
loại bước sóng này. Tùy thuộc vào từng loại cây và mục đích khác nhau mà tỷ
lệ giữa 2 loại bước sóng này cũng khác nhau.
1.1.1. Nguồn sáng dải
Đèn LED dạng thanh ứng dụng chiếu sáng nông nghiệp trong nhà được
thiết kế với một dãy các chip LED gần nhau. Chính vì vậy, đèn LED dạng thanh
có thể đạt độ đồng đều chiếu sáng cao ở một khoảng cách gần, khiến cho các
cây nhận được lượng ánh sáng như nhau ở vị trí khác nhau, phù hợp với nuôi
cấy cây trồng ở khoảng cách thấp. Tuy nhiên, khi đưa ra chiếu sáng ngoài trời
với diện tích và độ cao lớn, đèn LED dạng thanh gây mất mát lượng lớn ánh
8


sáng khơng thể chiếu đến cây. Hình 1.1 đưa ra một loại đèn nông nghiệp dạng
thanh trong lĩnh vực chiếu sáng nơng nghiệp trong nhà.

Hình 1.1: Đèn LED dạng thanh ứng dụng chiếu sáng cây trồng
1.1.2. Nguồn sáng điểm (LED Spotlight)
Nguồn sáng LED chiếu sáng điểm (LED spotlight) hay còn được biết
đến với cái tên khác là led buld, là một loại đèn có hình dạng tương đối giống
với những loại đèn sợi tóc cổ điển. Điều đặc biệt ở đèn LED Spotlight là ở góc
mở của chùm ánh sáng, cấu tạo của đèn LED Spotlight thường bao gồm nguồn

nuôi và các chip LED được hàn trên bảng mạch (có thể là chip luxeon, chip dán
SMD, hoặc chip dạng COB). Tùy vào mục đích chiếu sáng mà nhà sản xuất có
thể thay đổi góc chiếu của đèn từ 5o cho đến 120o. Hiện nay, trong sản xuất
nơng nghiệp, ví dụ ứng dụng đèn LED trong chiếu sáng phá đêm kiểm sốt sự
ra hoa hoặc nhằm mục đích cho cây tăng trưởng tốt hơn tại các nhà vườn, trang
trại người ta thường sử dụng đèn LED buld với góc chiếu khoảng 120 o kết hợp
với các loại chụp đèn để giảm góc chiếu. Vùng diện tích được chiếu sáng tập
trung hơn so với sử dụng đèn LED dạng thanh. Tuy nhiên, đèn LED buld có
phân bố cường độ ánh sáng dạng Lambert dẫn đến hiện tượng cây trồng không
nhận được lượng ánh sáng đồng nhất tại các vị trí khác nhau. So với đèn LED
thanh, đèn LED buld có giá thành rẻ hơn và dễ dang sử dụng với các loại cây
9


trồng ngồi trời. Cụ thể cây càng gần hình chiếu vng góc của đèn trên mặt
phẳng chiếu, cường độ ánh sáng càng lớn và ngược lại, càng xa thì cường độ
sáng càng nhỏ. Hình 1.2 đưa ra đèn LED Spotlight dùng trong chiếu sáng cây
hoa cúc và sự phát triển khơng đồng đều giữa các vùng cây được chiếu sáng.

Hình 1.2: Đèn LED sử dụng trong chiếu sáng điều khiển sự ra hoa
của cây hoa cúc
1.2. Các thông số cơ bản của nguồn đèn điểm trong chiếu sáng cây trồng
1.2.1. Cường độ chiếu sáng
Cường độ ánh sáng:
Cường độ ánh sáng của đèn LED là năng lượng của đèn được phát ra theo
một hướng nhất định[5]. Đơn vị đo cường độ sáng là candela (cd). Đèn led có
cường độ ánh sáng 1 cd sẽ phát ra 1 lm trên diện tích 1 m2 theo một hướng. Dựa
vào cường độ ánh sáng để chọn đèn led phù hợp với mục đích chiếu sáng, diện
tích khơng gian cần chiếu sáng.
Độ rọi:


10


Độ rọi hay còn được biết đến là độ tập trung ánh sáng tại một điểm. Là đại
lượng đặc trưng cho thông lượng ánh sáng phát ra đo được trên một đơn vị diện
tích[5]. Đơn vị đo độ rọi được ký hiệu là Lux. Cơng thức tính độ rọi: 1lx=1lm/m2.
Độ rọi được biết đến là mức độ của ánh sáng khi chiếu trên bề mặt mà người
dùng cảm nhận được theo độ mạnh hay yếu. Vì vậy giá trị của độ rọi có thể
thay đổi theo khoảng cách, khơng gian, thành phần bước sóng và nhiệt độ màu
của ánh sáng. Độ rọi là tổng lượng quang thông trên một đơn vị diện tích. Để
tính được độ rọi, ta cần biết quang thơng của nguồn sáng. Hình 1.3 thể hiện sự
khác nhau giữa Lux và lumen, Lux đặc trưng cho thông lượng ánh sáng theo
khoảng cách còn lumen đặc trưng cho thơng lượng ánh sáng theo góc khối.

Hình 1.3: Sự khác nhau giữa Lux và lumen
Độ rọi quyết định mức độ ánh sáng mạnh hay yếu theo cảm nhận của con
người. Khi khu vực làm việc có độ rọi cao hoặc thấp sẽ gây khó chịu cho mắt
người sử dụng, ngược lại với độ rọi hợp lý sẽ giúp tăng khả năng tập trung. Độ
rọi và diện tích cần chiếu sáng chính là tiêu chí để xác định số lượng bóng đèn
cần sử dụng, tiết kiệm tối đa chi phí cho người sử dụng
1.2.2. Bước sóng ánh sáng
Để giải thích nguồn gốc của màu sắc, Robert Hooke (1635–1703) đã phát
triển một "lý thuyết xung" và so sánh sự lan truyền của ánh sáng với sự lan
truyền của sóng trong nước trong tác phẩm năm 1665 của ông
là Micrographia ("Quan sát IX"). Năm 1672, Hooke cho rằng dao động của
ánh sáng có thể vng góc với hướng truyền. Christiaan Huygens (1629–1695)
đã đưa ra lý thuyết sóng tốn học của ánh sáng vào năm 1678, và xuất bản nó
trong cuốn luận thuyết về ánh sáng vào năm 1690. Ông đề xuất rằng ánh sáng
11



được phát ra theo mọi hướng dưới dạng một chuỗi sóng trong một mơi trường
được gọi là Luminiferous ether. Vì sóng khơng bị ảnh hưởng bởi lực hấp dẫn,
nên người ta cho rằng chúng chậm lại khi đi vào một mơi trường dày đặc hơn.[13]

Hình 1.4: Hình ảnh thể hiện định nghĩa của bước sóng
Sóng ánh sáng (hoặc một số loại sóng điện từ khác) khi đi vào các mơi
trường khác mơi trường chân khơng bước sóng của chúng bị giảm do vận tốc
giảm trong khi tần số sóng khơng đổi.
Trong môi trường truyền ánh sáng, vận tốc giảm đi n lần với n là chiết
suất của môi trường
𝑣=

𝑐

𝑛

(1)

Với c là bước sóng ánh sáng truyền trong mơi trường chân không, n là
chiết suất của môi trường.
LED được chế tạo từ vật liệu bán dẫn. Do đó, các điện tử nằm trong một
vùng năng lượng chứ không phải ở một mức năng lượng. Các điện tử khi
chuyển từ các mức năng lượng Ej trong vùng dẫn xuống mức năng lượng Ei
trong vùng hóa trị sẽ tạo ra photon có bước sóng . Do có nhiều mức năng
lượng khác nhau trong các vùng năng lượng nên sẽ có nhiều bước sóng ánh
sáng được tạo ra. Phân bố mật độ điện tử trong vùng dẫn và vùng hóa trị khơng
đều nhau, dẫn đến cơng suất phát quang tại các bước sóng khơng đều nhau. Độ
bán rộng của phổ quang được định nghĩa là khoảng bước sóng do nguồn LED

phát ra có cơng xuất bằng 0,5 lần công xuất đỉnh (hay giảm 3dB). Độ bán rộng
phổ của LED phụ thuộc vào loại vật liệu chế tạo nguồn sáng. Ví dụ: ánh sáng
có bước sóng 1,3 µm do LED chế tạo bằng vật liệu bán dẫn InGaAsP có độ
rộng phổ từ 50-60 nm cịn LED được chế tạo bằng bán dẫn GaAs phát ra ánh

12


sáng có độ rộng phổ hẹp hơn 1,7 lần so với LED được chế tạo bằng vật liệu bán
dẫn InGaAsP.
Thực vật có nhu cầu về quang phổ chọn lọc trong quá trình tăng trưởng
của chúng. Trong quá trình quang hợp, cây có thể hấp thụ khoảng 60% các
bước sóng trong phạm vi quang phổ nhìn thấy (380-760 nm). Hai khu vực đỉnh
hấp thụ, đèn đỏ và cam với bước sóng từ 610-720 nm (đỉnh = 660 nm) và đèn
xanh và tím trong khoảng 400-510 nm (đỉnh = 450 nm), đã trở thành nhu cầu
không thể thiếu của thực vật. Cây hấp thụ ít hơn ở cùng phổ ánh sáng 510610nm (đèn vàng và xanh lá cây). Các nguồn sáng nhân tạo có thể được phát
triển cho 2 dải bức xạ này (400-510 nm và 610-720 nm) làm tăng hiệu quả sử
dụng năng lượng ánh sáng trong chiếu sáng cây trồng.
Ngoài ra, thực vật có nhu cầu về bức xạ ánh sáng khác nhau ở các giai
đoạn tăng trưởng khác nhau. Ví dụ, ánh sáng xanh với bước sóng khoảng
450nm có thể giúp nảy mầm và ánh sáng đỏ khoảng 630nm có thể tạo điều kiện
cho q trình quang hợp, nảy mầm, ra hoa và đậu quả. Dựa trên đặc điểm này,
các loại thực vật khác nhau có nhu cầu về bức xạ ánh sáng khác nhau. Ví dụ,
thực vật mọng nước và thân rễ có nhu cầu cao hơn về ánh sáng xanh trong khi
thực vật mà hoa và quả thích ánh sáng đỏ. Các loại cây cân bằng khác đòi hỏi
cả bức xạ đỏ và xanh.
1.2.3. Phân bố ánh sáng
Góc chiếu sáng là góc nằm giữa hai mặt phẳng có cường độ sáng tối thiểu
bằng 50% cường độ sáng mạnh nhất ở vùng sáng trung tâm. Phương pháp nhận
diện góc chiếu đơn giản nhất bằng việc dùng bộ đèn chiếu sáng lên tường, sẽ

nhìn thấy các vùng chiếu sáng lớn, nhỏ, mạnh yếu khác nhau. Các nguồn sáng
tuy giống nhau những khi góc chiếu khác nhau, sẽ cho kết quả khác nhau. Góc
chiếu sáng càng lớn cường độ sáng vùng trung tâm càng nhỏ và vùng sáng càng
rộng[3].
Phân bố quang của mỗi LED khác nhau sẽ khác nhau tùy vào cấu trúc của
LED cũng như cửa sổ phát sáng hay quy cách đóng vỏ. Có 3 loại góc chiếu
sáng cơ bản phù hợp với tùy mục đích sử dụng: Góc chiếu hẹp, góc chiếu trung
bình, góc chiếu rộng

13


+) Góc chiếu hẹp: 3o-8o: Các loại đèn có góc chiếu hẹp như trên thường được
thiết kế chuyên dụng cho chiếu sáng cột, tạo điểm nhấn.
+) Góc chiếu trung bình: 10o-60o: Các góc chiếu này là các góc chiếu thơng
dụng đối với các loại đèn rọi (spotlight).
+) Góc chiếu rộng: trên 60o: Góc chiếu này tạo ánh sáng tỏa đều với vùng sáng
rộng, vì vậy các loại đèn này phù hợp khi lắp đặt tại các khơng gian u cầu
góc chiếu sáng rộng để chiếu sáng cho một vùng không gian lớn.
Khi đèn led có góc chiếu càng nhỏ ánh sáng sẽ tập trung tại một khu vực. Góc
chiếu sáng rộng ánh sáng sẽ phân tán đồng đều rộng ra xung quanh.
1.2.4. Cường độ bức xạ
Thực vật và con người có sự cảm nhận đối với ánh sáng khác nhau. Con
người và nhiều động vật khác sử dụng cảm quan của mắt trong điều kiện ánh
sáng tốt để cảm nhận màu sắc và ánh sáng. Mắt con người nhạy cảm với ánh
sáng màu xanh lá cây hơn ánh sáng xanh hoặc đỏ.
Các loại máy đo Lux và cường độ ánh sáng(cd) thường được sử dụng đo
đạc cho các ứng dụng chiếu sáng thương mại với sự khác biệt giữa 2 đại lượng
này là đơn vị diện tích (Lux sử dụng lumen/m2 và cd sử dụng lumen/ft2). Sử
dụng các loại máy đo Lux và cd để đo cường độ ánh sáng của hệ thống chiếu

sáng nông nghiệp sẽ đưa ra kết quả khác nhau tùy thuộc vào phổ của nguồn
sáng, ngay cả khi đang đo cùng cường độ.
Vấn đề cơ bản với việc sử dụng máy đo Lux và cd khi đo cường độ ánh
sáng của hệ thống chiếu sáng trong nơng nghiệp là sự thiếu chính xác khi đo
bức xạ vùng ánh sáng màu xanh (400 - 500 nm) và đỏ (600 - 700 nm) trong
quang phổ vùng nhìn thấy. Con người có thể khơng nhạy cảm trong việc nhận
thức ánh sáng ở những khu vực này, nhưng thực vật rất nhạy cảm trong việc sử
dụng ánh sáng đỏ và xanh để thúc đẩy quang hợp. Đây là lý do tại sao lumens,
Lux và cd không được sử dụng làm số liệu cho ánh sáng sử dụng trong nông
nghiệp.
PAR (Photosynthetically Active Radiation)
PAR còn được biết đến với tên bức xạ hoạt động quang hợp thể hiện phạm
vi dải phổ của bức xạ mặt trời trong vùng 400-700nm mà thực vật có thể sử
dụng cho q trình quang hợp. Trong chiếu sáng nông nghiệp PAR là một trong
14


những thông số quan trong cần quan tâm. PAR được định lượng bởi các cảm
biến lượng tử.
PPF (Photosynthetic Photon Flux)
PPF được định nghĩa là thông lượng photon quang hợp. PPF đo tổng lượng
PAR mà nguồn sáng có thể cung cấp được mỗi giây. Phép đo này thường được
đo bằng quả cầu tích phân. Đơn vị của PPF là micromoles trên giây (μmol/s).
đây cũng là một thông số quan trọng cần quan tâm trong chiếu sáng nông
nghiệp. PPF không thể hiện lượng ánh sáng chiếu vào cây, nhưng đây là một
số liệu cần thiết để đánh giá hiệu quả của hệ thống chiếu sáng cây trồng.
PPFD (Photosynthetic Photon Flux Density)
PPFD là mật độ thông lượng quang hợp. PPFD đo lượng PAR thực sự đến
cây trồng, hoặc có thể nói: "số lượng photon hoạt động quang hợp rơi trên một
bề mặt nhất định mỗi giây". PPFD là một phép đo tại một vị trí cụ thể trên tán

cây của và nó được đo bằng micromoles trên một mét vuông mỗi giây (μmol /
m2/s)
PE (Photon Efficacy)
Photon Efficacy đề cập đến mức độ hiệu quả của một hệ thống chiếu sáng
nông nghiệp trong việc chuyển đổi năng lượng điện thành photon của PAR.
Nhiều nhà sản xuất chiếu sáng trong nông nghiệp sử dụng tổng công suất điện
làm số liệu để mô tả, đánh giá cường độ ánh sáng. Tuy nhiên, những số liệu
này thực sự khơng cho biết bất cứ điều gì vì watt là một phép đo công suất điện
tiêu thụ, không phải đầu ra ánh sáng. Nếu PPF của ánh sáng được biết đến cùng
với cơng suất đầu vào, có thể tính toán mức độ hiệu quả của hệ thống chiếu
sáng trong việc chuyển đổi năng lượng điện thành PAR
1.3. Tối ưu phân bố quang của nguồn sáng điểm sử dụng kỹ thuật quang
học không tạo ảnh
1.3.1. Khái niệm quang học không tạo ảnh
Hệ thống quang học có thể được chia thành hai loại: quang học tạo ảnh và
quang học không tạo ảnh. Các hệ thống, thiết bị quang học tảo ảnh phổ biến:
máy ảnh, kính hiển vi, kính thiên văn,.v.v. các hệ thống, thiết bị này truyền hình
ảnh rõ ràng của đối tượng tới cảm biến, màn hình hoặc người quan sát. Tuy

15


nhiên nhiều ứng dụng khơng u cầu tạo ra hình ảnh, thay vào đó ánh sáng
được truyền với mục đích xác định.
Quang học khơng tạo ảnh (cịn gọi là quang học anidolic) là nhánh quang
học liên quan đến sự truyền bức xạ tối ưu giữa nguồn sáng và đầu thu. Khơng
giống như quang hình truyền thống, quang học khơng tạo ảnh khơng cố tạo
thành hình ảnh của nguồn sáng, thay vì đó, một hệ thống quang học được thiết
kế để tối ưu hóa q trình truyền bức xạ từ nguồn sáng đến mặt phẳng chiếu
sáng một cách có chủ ý. Quang học không tạo ảnh được phát triển chủ yếu trong

khn khổ quang học hình học. Quang học khơng tạo ảnh bắt đầu phát triển
vào giữa những năm 1960 với ba các nhóm nghiên cứu độc lập khác nhau của
V. K. Baranov, M. Ploke, và R. Winston và dẫn đến sự phát triển độc lập của
các nhánh khác dựa trên quang học không tạo ảnh đầu tiên[7].
Các hệ thống quang học không tạo ảnh thay thế một đối tượng và một mặt
phẳng hình ảnh trong hệ thống quang học tạo ảnh bằng một nguồn sáng và một
diện tích thu tương ứng. Quang học khơng tạo ảnh có thể chuyển hiệu quả tổng
cơng suất phát sáng từ nguồn sang diện tích thu mà khơng cần hình thành hình
ảnh. Do đó, quang học không tạo ảnh phù hợp với các ứng dụng thu năng lượng
mặt trời và các ứng dụng chiếu sáng. Về mặt ứng dụng trong thu năng lượng
mặt trời, quang học không tạo ảnh quang học giúp cải thiện một số khía cạnh
của thiết kế hệ thống năng lượng mặt trời như góc giới hạn, tỷ lệ, phân bố ánh
sáng, v.v., mà không thể giải quyết bằng quang học tạo ảnh. Về mặt thiết kế
chiếu sáng như định hướng ánh sáng, đèn pha ơ tơ, chiếu sáng màn hình bảng
điều khiển, v.v., Quang học không tạo ảnh là sự lựa chọn tối ưu cho phương
pháp thiết kế. Hình 1.5 thể hiện một khía cạnh khác nhau giữa quang học tạo
ảnh và quang học không tạo ảnh. Quang học không tạo ảnh sẽ giúp giảm bớt
vật liệu chế tạo, các tính tốn tối ưu thấu kính dựa trên lý thuyết quang tia, chiết
suất giúp dễ dàng tính tốn và mơ phỏng chùm tia sau khi đi qua hệ thống quang
học.

16


Nguồn sáng

Hình 1.5: Sự khác nhau giữa quang học tạo ảnh và quang học không tạo ảnh
1.3.2. Linh kiện quang học trong quang học khơng tạo ảnh
Thấu kính:
Thấu kính là một khối vật chất trong suốt, được giới hạn bởi hai mặt cong

hoặc một mặt phẳng và một mặt cong. Trong quang học, một thấu kính là một
dụng cụ quang học dùng để hội tụ hay phân kỳ chùm ánh sáng, nhờ vào hiện
tượng khúc xạ, thường được cấu tạo bởi các mảnh thủy tinh được chế tạo với
hình dạng và chiết suất phù hợp. Khái niệm thấu kính cũng được mở rộng cho
các bức xạ điện từ khác, ví dụ, thấu kính cho vi sóng được làm bằng chất nến,
thấu kính dung trong mkinhs hiển vi được làm chủ yếu bằng thủy tinh. Trong
ngữ cảnh mở rộng, các thấu kính làm việc với ánh sáng và bằng kỹ thuật truyền
thống được gọi là thấu kính quang học[6].
Các loại thấu kính khác nhau sẽ cho đường đi của ánh sáng khác nhau tùy
thuộc vào cấu trúc của thấu kính nhưng chủ yếu được chia làm hai dạng như
sau:
+ Thấu kính hội tụ: là loại thấu kính thường có phần rìa thấu kính mỏng
hơn phần giữa. Khi một chùm tia tới song song với trục chính của thấu
kính hội tụ đi tới thấu kính sẽ cho chùm tia ló hội tụ tại tiêu điểm của
thấu kính.

17


+ Thấu kính phân kì: là loại thấu kính thường có phần rìa thấu kính dày
hơn phần giữa. Khi một chùm tia tới song song với trục chính của
thấu kính phân kì đi tới thấu kính sẽ cho chùm tia ló phân kì.
Thấu kính Fresnel
Thấu kính Fresnel là một loại thấu kính có bề mặt ghép lại từ các phần của
mặt cầu, làm giảm độ dày của thấu kính và do đó giảm trọng lượng, và độ tiêu
hao ánh sáng do sự hấp thụ của thủy tinh làm kính. Thấu kính này do AugustinJean Fresnel chế tạo, với ứng dụng ban đầu dành cho hải đăng [6].
Thấu kính Fresnel chia thấu kính thành một bộ các phần hình khun đồng
tâm. Một thấu kính Fresnel lý tưởng sẽ có vơ số phần. Trong mỗi phần, độ dày
tổng thể được giảm so với một thấu kính đơn giản tương đương. Điều này có
hiệu quả phân chia bề mặt liên tục của một thấu kính tiêu chuẩn thành một tập

hợp các bề mặt có cùng độ cong, với sự khơng liên tục từng bước giữa chúng.
Trong một số thấu kính, các bề mặt cong được thay thế bằng các bề mặt
phẳng, với một góc khác nhau trong mỗi phần. Một thấu kính như vậy có thể
được coi là một loạt các lăng kính được sắp xếp theo kiểu vịng trịn, với các
lăng kính dốc hơn ở các cạnh và một tâm phẳng hoặc hơi lồi. Trong các thấu
kính Fresnel đầu tiên, mỗi phần thực sự là một lăng kính riêng biệt. Thấu kính
Fresnel sau khi phát triển thành công đã được sản xuất rất rộng rãi: được sử
dụng cho đèn pha ô tô, thấu kính thu tín hiệu, v.v. Hiện nay, thiết bị gia cơng
cơ khí điều khiển bằng máy tính (CNC) có thể được sử dụng để sản xuất các
thấu kính phức tạp hơn.
1.3.3. Ứng dụng kỹ thuật quang học không tạo ảnh
Các hệ thống ứng dụng công nghệ quang học không tạo ảnh thường được
sử dụng trong lĩnh vực chiếu sáng có chủ đích, hoặc thu ánh sáng mà quang
học tạo ảnh không giải quyết được.
Tập trung năng lượng mặt trời: công nghệ quang học không tạo ảnh giải
quyết vấn đề tập trung năng lượng được áp dụng cho pin mặt trời. Đối với độ
tập trung ánh sáng nhất định, linh kiện quang học khơng tạo ảnh cung cấp các
góc chấp nhận rộng nhất có thể và phù hợp nhất để sử dụng cho các tấm pin
mặt trời. Ví dụ, trong ứng dụng tập trung năng lượng mặt trời cho pin mặt trời
hiệu suất cao [7].
18


Quang học chiếu sáng: các thiết bị, linh kiện quang học không tạo ảnh
bao gồm dẫn sáng quang học, phản xạ khơng tạo ảnh, thấu kính khơng tạo ảnh
hoặc kết hợp các linh kiện này. Các ứng dụng phổ biến của công nghệ quang
học không tạo ảnh trong lĩnh vực chiếu sáng: đèn pha ô tô, đèn nền LCD, chiếu
sáng bảng điều khiển,.v.v. Khi so sánh với kỹ thuật thiết kế truyền thống cơng
nghệ quang học khơng tạo ảnh có nhiều ưu điểm như: xử lý tốt hơn với loại
nguồn sáng có xu hướng mở rộng, hệ thống quang học nhỏ gọn, có khả năng

phân bố ánh sáng đến các nơi khác nhau, rất phù hợp để kết hợp với nguồn sáng
LED ngày càng phổ biến[7].
1.3.4. Cơng cụ tính tốn mơ phỏng (Mathlab, Light tools)
Phần mềm lập trình, tính tốn Mathlab
MATLAB (matrix laboratory) là một mơi trường tính tốn số học đa ngơn
ngữ và ngơn ngữ lập trình độc quyền được phát triển bởi MathWorks.
MATLAB cho phép thao tác ma trận, vẽ các hàm và dữ liệu, thực hiện thuật
toán, tạo giao diện người dùng và giao tiếp với các chương trình được viết bằng
các ngơn ngữ khác, bao gồm C, C ++, C #, Java, Fortran và Python.
MATLAB được sử dụng rộng rãi như cơng cụ tính tốn trong các lĩnh vực
khoa học và kỹ thuật, bao gồm các lĩnh vực vật lý, hóa học, tốn học và cơng
nghệ. MATLAB được sử dụng trong một loạt các ứng dụng bao gồm:
- Xử lý tín hiệu và truyền thơng.
- Xử lý hình ảnh và video.
- Hệ thống điều khiển.
- Kiểm tra và đo lường.
- Tính tốn tài chính.
- Tính tốn sinh học.

19


Hình 1.6: Tính tốn, mơ phỏng và vẽ đồ thị trên phần mềm matlab
Phần mềm mô phỏng ánh sáng Light Tools
Light Tools là một phần mềm thiết kế và kỹ thuật quang học 3D hỗ trợ tạo
mẫu ảo, mô phỏng, tối ưu hóa và trích xuất ảnh thực của các ứng dụng chiếu
sáng. Với khả năng phân tích và thiết kế độc đáo của Light Tools, kết hợp với
tính năng dễ sử dụng, hỗ trợ lặp lại thiết kế nhanh chóng và tối ưu hóa hệ thống
một cách tự động, giúp đảm bảo cung cấp các thiết kế chiếu sáng theo thông số
kỹ thuật và nhu cầu sử dụng.

Light Tools đã đi tiên phong trong việc sử dụng mơ hình rắn 3D để phân
tích quang học, cùng với cơng cụ mơ phỏng chùm tia có thể mơ phỏng chính
xác sự truyền hình học của ánh sáng qua mơ hình. Light Tools ra mắt với tính
năng mơ phỏng chùm tia “point-and-shoot” cho phép người dùng bắt đầu từ
một tia ở bất kỳ đâu trong mơ hình (ngay cả bên trong một vật thể) và xem cách
phân tán khi truyền qua mô hình.
Khi đèn LED ngày càng trở nên quan trọng trở thành một loại nguồn sáng
thông dụng, Light Tools đã được cải tiến để hỗ trợ các khía cạnh chính cần thiết
cho mơ hình LED. Điều này bao gồm sự phát triển của mơ và khả năng phân
tích đo màu.
Các tính năng của Light Tools

20


Light Tools mang lại khả năng thiết kế, phân tích chính xác và các tính
năng trực quan hóa sản phẩm được hỗ trợ cao sẽ giúp người dùng đưa hệ thống
chiếu sáng ra thị trường nhanh hơn.
Tạo mơ hình nhanh chóng với Light Tools
Các tính năng thiết kế mạnh mẽ của Light Tools giúp người dùng tạo và
sửa đổi thiết kế hệ thống chiếu sáng của mình một cách nhanh chóng và hiệu
quả, từ các giai đoạn ý tưởng ban đầu đến các lần lặp lại và cải tiến kỹ thuật
tiếp theo:
• Mơ hình tinh vi với độ chính xác quang học cao.
• Tốc độ mơ phỏng chùm tia nhanh chóng, với sự kiểm sốt hồn tồn của
người dùng về độ chính xác và u cầu độ phân giải.
• Tạo nguồn sáng từ bất kỳ mơ hình nào, để tạo nguồn tùy chỉnh linh hoạt
khơng giới hạn.
• Thư viện nguồn và các tài liệu phong phú, bao gồm cả đèn LED và các
phép đo BSDF.

• Hỗ trợ trao đổi dữ liệu với phần mềm Auto CAD.
• Liên kết, tương tác với SOLIDWORKS.
• Các phần linh kiện hồn tồn có thể tối ưu hóa để tạo ra các bộ phận ghép
LED hiệu quả, bộ tập trung năng lượng mặt trời và các bề mặt quang học phức
tạp khác.
• Kết cấu (2D, 3D và do người dùng xác định) với sự linh hoạt để thay đổi
hình dạng, kích thước và khoảng cách của các yếu tố kết cấu.
• Tính tốn chỉ số hoàn màu (CRI) trên bất kỳ bộ thu nào - lý tưởng cho
thiết kế đèn LED.
• Thu thập dữ liệu cường độ cho phép trao đổi dữ liệu với phần mềm thiết
kế chiếu sáng khác thông qua các định dạng dữ liệu IES và LD.

21


×