MỞ ĐẦU
I/ LÝ DO CHỌN ĐỀ TÀI
1/ Cơ sở thực tiễn
SỞ GIÁO DỤC ĐÀO TẠO BÌNH ĐỊNH
SÁNG KIẾN KINH NGHIỆM- TỔNG KẾT KINH NGHIỆM
ĐỀ TÀI
MỘT SỐ KỸ THUẬT
GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY
Người thực hiện: NGUYỄN THÁI QUANG
Đơn vị: SỞ GIÁO DỤC- ĐÀO TẠO BÌNH ĐỊNH
Tháng 5 năm 2011
1
MỘT SỐ KỸ THUẬT
GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY
Tác giả: Nguyễn Thái Quang, TP.TrH, Sở GD-ĐT Bình Định
MỤC LỤC
Phần 1: MỞ ĐẦU……………………………………………………… 2
Phần 2: NỘI DUNG ĐỀ TÀI…………………………………………… 5
A/ Thực trạng 5
B/ Một số kinh nghiệm trong việc sử dụng máy tính cầm tay để giải toán 6
I/ Các kỹ thuật giúp HS tránh những lỗi thông thường khi giải toán trên MTCT.6
II/ Các bài toán sử dụng kỹ năng bấm máy………………………………… 9
III/ Các bài toán cần tận dụng ưu thế của từng loại máy tính để giải toán…… 11
IV/ Các bài toán tính toán có nhiều hướng để giải quyết…………………… 15
V/ Các bài toán vận dụng tư duy để tìm ra công thức chính xác và lập trình bấm
phím hiệu quả………………………………………………………………………… 21
Phần 3: KẾT LUẬN……………………………………………………………… 36
TÀI LIỆU THAM KHẢO………………………………………………………… 37
Phần 1: MỞ ĐẦU
I/ LÝ DO CHỌN ĐỀ TÀI
1/ Cơ sở thực tiễn
a/ Trong những năm học gần đây, trong phân phối chương trình cấp trung học cơ sở
(THCS), cấp trung học phổ thông (THPT), Bộ Giáo dục và Đào tạo (GD-ĐT) đã bố trí một
số tiết học để giáo viên (GV) dạy cho học sinh (HS) sử dụng máy tính cầm tay và cho phép
HS sử dụng máy tính cầm tay (không có thẻ nhớ) để hỗ trợ cho khi làm bài kiểm tra thường
xuyên, định kỳ, thi học kỳ các môn học ở bậc trung học, trong các kỳ thi tuyển sinh vào 10,
thi tốt nghiệp THPT, thi tuyển sinh Đại học, Cao đẳng, Trung cấp chuyên nghiệp (chỉ trừ
thi HS giỏi môn toán). Điều này cho thấy tầm quan trọng của máy tính cầm tay trong việc
giúp HS giải nhanh, chính xác các nội dung của bài thi, đặc biệt là các bài có yêu cầu kỹ
năng tính toán. Tuy nhiên thực tế vẫn còn nhiều bất cập, đó là:
+ Mặc dù có bố trí một số tiết dạy sử dụng máy tính cầm tay, nhưng nội dung giảng dạy,
cũng như sách vở để hướng dẫn tổ chức dạy và học không có nên mỗi GV, mỗi trường gần
như tự thực hiện các tiết dạy này.
2
+ Từ những bất cập nêu trên, một số không ít GV, đặc biệt là những GV lâu năm trong
nghề thường bảo thủ, ngại khó, ít đầu tư nghiên cứu nên không có nhiều kỹ năng sử dụng
máy (thậm chí có GV dạy toán nhưng chưa trang bị một máy tính cầm tay nào) dẫn đến một
hệ quả tất yếu là HS ở những lớp này thiếu nhiều kỹ năng cần thiết để sử dụng máy, vì vậy
kết quả làm bài của các em chắc chắn sẽ thiệt thòi hơn những HS được GV hướng dẫn
thành thạo những kỹ năng sử dụng máy. Vấn đề này ảnh hưởng không nhỏ đến kết quả
kiểm tra, thi cử của tỉnh ta; đặc biệt là trong các kỳ thi tuyển sinh đại học, cao đẳng, TCCN.
b/ Qua các kỳ thi HS giỏi máy tính cầm tay cấp tỉnh, cấp quốc gia trong 2 năm học
2009-2010; 2010-2011, bên cạnh những kết quả đạt được đáng khích lệ, đội tuyển Bình
Định còn bộc lộ những hạn chế, thiếu sót đáng quan tâm. Nguyên nhân của vấn đề này có
cả GV và HS.
+ Về phía GV, đa số chúng ta còn thiếu nhiều kinh nghiệm đối với sân chơi này. Điều
này cũng dễ hiểu vì tỉnh ta mới tham gia trong 2 năm học gần đây; trong khi nhiều tỉnh,
thành trong khu vực đã tham gia 11 năm; thêm vào đó, sách, vở chính thống viết về nội
dung này gần như không có, người dạy phải tự tìm tài liệu để nghiên cứu nên chắc chắn với
thời gian có hạn, kinh nghiệm để bồi dưỡng của GV còn nhiều hạn chế là điều tất yếu.
+ Về phía HS cũng có nhiều vấn đề cần phải rút ra các bài học kinh nghiệm như thiếu
bình tĩnh, chủ quan, thiếu kỹ năng tính toán, trình bày…nên đã không thể làm bài đúng với
khả năng thực có của các em; thậm chí có những trường hợp cho kết quả ngược lại (nhiều
HS trình độ tốt hơn lại có kết quả thấp hơn).
Vì vậy việc đầu tư, nghiên cứu để giúp cho thầy và trò tỉnh ta có thêm một số kỹ năng
sử dụng máy tính cầm tay nhằm giúp cho việc dạy và học đạt hiệu quả cao hơn , thiết nghĩ
là một điều cần thiết.
2/ Cơ sở khoa học:
Cách đây khoảng vài ba thập kỷ; người học sẽ gặp nhiều khó khăn khi giải một số bài
toán phổ thông như: giải phương trình bậc 3 một ẩn; tìm nghiệm gần đúng của phương trình
bậc cao, tìm nghiệm của hệ 3,4,5… phương trình bậc nhất 3,4,5 ẩn, tính nhanh những giá
trị logarit, lũy thừa của một số khá lớn, tính tích phân xác định của một hàm số bất kỳ tại
một giá trị x trong tập xác định của hàm số Ngày nay, với sự ra đời của các máy tính cầm
tay đã giúp người học giải quyết các vấn đề trên hết sức nhanh chóng và chính xác. Vì vậy,
ngoại trừ yêu cầu phát triển tư duy toán học đối với một số ít người có khả năng nghiên cứu
chuyên sâu nhằm giúp cho tư duy toán học nâng lên những tầm cao mới (như thi tuyển
chọn HS giỏi toán các cấp, Bộ GD-ĐT không cho HS sử dụng máy tính cầm tay); còn lại
3
các đề thi khác đều được ra dưới dạng ứng dụng những thành quả máy tính cầm tay để trợ
giúp cho HS giải được các bài toán phổ thông mà trước đây không lâu, người học khó có
thể hoàn thành được. Vì vậy việc nghiên cứu, tìm hiểu các kỹ năng để khai thác tốt ứng
dụng của các loại máy tính cầm tay vào việc giải các bài toán là một yêu cầu không thể
thiếu đối với những người quan tâm đến lĩnh vực toán học trong giai đoạn hiện nay.
II/ NHIỆM VỤ CỦA ĐỀ TÀI
Với cơ sở thực tiễn và cơ sở khoa học như đã nêu, chúng tôi mong muốn đề tài này sẽ là
một tư liệu giúp người dạy cũng như người học có thêm một số kỹ năng sử dụng máy tính
cầm tay để:
+ Trong quá trình tổ chức dạy và học tại các trường THCS, THPT trong toàn tỉnh, GV
có điều kiện nghiên cứu sâu hơn việc sử dụng các chức năng của máy tính cầm tay nhằm
giúp cho HS ngày càng đáp ứng tốt yêu cầu kiểm tra, thi cử (đặc biệt trong các kỳ thi tuyển
sinh vì chỉ cần sự trợ giúp của máy tính trong những trường hợp cần thiết sẽ giúp cho học
sinh giải quyết bài toán nhanh hơn, chính xác hơn, điều đó chắc chắn sẽ là một trong những
điều kiện để nâng cao tỉ lệ đậu Đại học, Cao đẳng, TCCN của tỉnh ta ).
+ Giúp HS trong các đội tuyển HS giỏi các cấp có thêm nhiều kỹ năng và kinh nghiệm
cần thiết để làm tốt hơn bài thi, nhằm nâng cao thành tích của các trường, các Phòng GD-
ĐT và đặc biệt là đội tuyển của tỉnh nhà trong các kỳ thi HSG Quốc gia trong những năm
học sắp đến.
III/ PHƯƠNG PHÁP VÀ THỜI GIAN TIẾN HÀNH
Từ những thành công và thất bại trong quá trình tham gia bồi dưỡng và tổ chức cho các
em trong đội tuyển HSG của tỉnh tham gia dự thi HSG giải toán trên máy tinh cầm tay cấp
Quốc gia trong 2 năm học 2009-2010; 2010-2011; chúng tôi đã tiếp tục tìm tòi, nghiên cứu
sách, vở, những kinh nghiệm của một số tỉnh, thành phố để rút ra những bài học kinh
nghiệm cần thiết, từ đó giúp cho những người quan tâm đến việc sử dụng máy tính cầm tay
để hỗ trợ trong việc giải toán có thêm kỹ năng nhằm đạt được hiệu quả tốt hơn trong việc
dạy và học trong giai đoạn mới.
Phần 2: NỘI DUNG ĐỀ TÀI
A/ THỰC TRẠNG
Như đã đề cập ở phần cơ sở thực tiễn, vì nhiều lý do khách quan và chủ quan nên việc
đầu tư nghiên cứu kỹ thuật sử dụng máy tính của GV toán nói riêng và GV các bộ môn
thuộc lĩnh vực khoa học tự nhiên khác nói chung của tỉnh ta còn nhiều hạn chế. Điều này đã
4
được minh chứng trong đợt bồi dưỡng kỹ năng sử dụng máy tính cầm tay của Công ty Cổ
phần Xuất nhập khẩu Bình Tây năm 2009 cho các GV cốt cán của các trường THCS, THPT
toàn tỉnh. Nhiều GV còn rất bỡ ngỡ trong việc sử dụng các chức năng của máy tính để tính
các phép tính thông dụng. Đây sẽ là một thiệt thòi lớn cho HS tỉnh ta trong kiểm tra, thi cử
ở giai đoạn hiện nay.
Qua việc chấm các bài thi HSG cấp tỉnh và tham gia bồi dư
ỡng các đội HSG
thi HSG Quốc gia giải toán trên máy tính cầm tay, bên cạnh những thành tích đạt được
đáng khích lệ, chúng tôi đã phát hiện nhiều sai sót rất đáng tiếc của các em, mà phần lớn là
do thiếu kỹ năng sử dụng máy. Qua tổng hợp, có thể chia ra một số hạn chế mà các em
thường mắc sai lầm khi sử dụng máy tính cầm tay để giải như sau
I/ CÁC DẠNG TOÁN CHỈ CẦN SỬ DỤNG MÁY ĐỂ TÍNH TOÁN
1/ Các bài toán chỉ đơn thuần bấm máy để tính toán: Nếu biểu thức cần tính khá dài
và nhiều phép tính, qua kiểm tra, hầu hết HS cho các kết quả khác nhau và thường là kết
quả sai!
2/ Các bài toán sử dụng kỹ thuật bấm máy để tính toán, nhưng do thiếu kỹ năng sử
dụng máy nên đã thực hiện các quy trình bấm phím không tối ưu, vì vậy vừa mất nhiều
thời gian, công sức, vừa không chính xác.
3/ Mỗi máy tính có những thế mạnh khác nhau, đặc biệt là các máy tính đời mới, vì
vậy nếu không tiếp cận được nhiều loại máy tính mà chỉ sử dụng một loại quen thuộc thì
sẽ bị nhiều thiệt thòi hơn những em biết sử dụng nhiều loại máy.
II/ CÁC DẠNG TOÁN CẦN TƯ DUY TOÁN HỌC VÀ LẬP TRÌNH BẤM MÁY
1/ Các bài toán tính toán nhưng có nhiều hướng giải quyết: Nhiều HS do định
hướng chưa tốt nên thường cho kết quả sai hoặc nếu có làm đúng cũng lại mất quá nhiều
thời gian, công sức, vì vậy đã không còn thời gian để làm các câu khác.
2/ Các bài toán vận dụng tư duy để tìm ra lập trình bấm máy: nhiều HS làm lập trình
không đúng nên cho kết quả sai, hoặc làm đúng nhưng lập trình dài dòng nên mất nhiều
thời gian và hiệu quả thấp.
Để phần nào giúp cho người dạy và học tỉnh ta hạn chế những thiếu sót vừa kể trên,
chúng tôi xin trình bày:
B/ MỘT SỐ KINH NGHIỆM CỤ THỂ TRONG VIỆC SỬ DỤNG MÁY TÍNH
CẦM TAY ĐỂ GIẢI MỘT SỐ DẠNG TOÁN THƯỜNG GẶP TRONG CÁC KỲ THI
Để người đọc dễ dàng nghiên cứu các dạng toán cụ thể được trình bày trong bài viết
này, chúng tôi có một số quy ước như sau:
5
+ Các kỹ thuật sử dụng máy tính cầm tay xem như người đọc đã nắm vững, vì vậy
trong việc trình bày, chúng tôi chỉ trình bày ngắn gọn nhất, không giới thiệu chi tiết các yêu
cầu bấm máy.
Ví dụ: Trong bài viết chỉ ghi Gán 1 cho A
Hay
Trong bài viết chỉ ghi x
2
Trong bài chỉ ghi :
Trong bài chỉ ghi là A
+ Các dạng toán sử dụng máy tính cầm tay cho từng chuyên đề khá đa dạng; trong đề
tài này chúng tôi không có tham vọng giới thiệu đầy đủ các dạng toán mà chỉ giới thiệu một
số dạng toán thường gặp trong các kỳ thi giải toán trên máy tính cầm tay trong thời gian
gần đây có nhiều liên quan đến kỹ năng sử dụng các loại máy tính hoặc sử dụng nhiều
thuật toán khác nhau để giải. Từ đó người đọc có thể tự rút ra một số kinh nghiệm cho
bản thân nhằm giúp cho việc giải một số dạng toán trong đề tài này nhanh chóng, chính
xác; ngoài ra, bằng suy luận toán học, người viết hy vọng người đọc có thể phát triển
thêm để giải nhiều dạng toán khác.
Sau đây là một số chuyên đề được giới thiệu
I/ CÁC KỸ THUẬT GIÚP HS TRÁNH NHỮNG LỖI THÔNG THƯỜNG KHI
GIẢI TOÁN TRÊN MTCT
Trong thực tế khi ra đề thi HSG cấp tỉnh và kiểm tra kỹ năng của đội tuyển HSG tỉnh
bồi dưỡng để tham gia kỳ thi HSG cấp Quốc gia, chúng tôi thường ra một vài bài toán tính
giá trị của một biểu thức có khá nhiều dữ liệu, trong đó có nhiều hàm số khác nhau như
hàm mũ, lũy thừa, logarit, hàm số lượng giác…và sử dụng nhiều phép tính +, -,
,
,…
Kết quả kiểm tra đã cho thấy, hầu hết các em đều cho kết quả khác nhau và đa số là
sai! Có nhiều nguyên nhân dẫn đến sai sót của các em như: để chế độ máy tính ban đầu
không phù hợp với yêu cầu bài toán, quy trình bấm máy thiếu chính xác, không làm đúng
yêu cầu bài toán, trình bày bài làm vừa mất thời gian, vừa không đạt yêu cầu….
Để giúp người đọc có thể tránh được những thiếu sót đáng tiếc ở các dạng toán này,
chúng ta cần thực hiện tốt một số yêu cầu sau:
+ Cài chế độ máy ban đầu phù hợp với yêu cầu của bài toán.
1
shift
sto
A
A
lph
a
x
x
2
A
lp
ha
:
Alpha
A
6
+ Nếu biếu thức quá dài, cần phải chia các biểu thức cần tính thành tổng, hiệu,
tích, thương các biểu thức nhỏ; sau đó tính giá trị từng biểu thức nhỏ và gán giá trị các
biểu thức nhỏ vào A, B, C, D,,, Khi đó giá trị biểu thức cần tính là tổng, hiệu, tích, thương
các giá trị đã gán A,B,C,D,,,
Làm điều này sẽ có giúp ta tránh nhiều sai sót vì:
Nếu bấm máy một lần để tính giá trị biểu thức thì dễ xảy ra những thiếu sót trong việc
thực hiện các quy định bấm máy (vì để có phép tính đúng cho một biểu thức dài, trong quy
trình bấm máy ta sẽ sử dụng rất nhiều dấu ngoặt, do đó nếu không cẩn thận sẽ dẫn đến kết
quả sai. Đặc biệt khi sai thì việc kiểm tra lại các phép bấm phím để sửa chữa rất khó khăn
vì quá nhiều phép tính nên khó xác định vị trí bấm sai hay thiếu sót để sửa chữa! Đó là
chưa nói đến khả năng số phép tính vượt quá khả năng mà máy có thể tính được, khi đó
máy sẽ báo lỗi). Trong khi nếu chia nhỏ biểu thức cần tính thành các biểu thức nhỏ A, B, C,
D khi có sai sót chúng ta dễ kiểm tra lại hơn vì chỉ kiểm tra việc sai sót trên từng biểu thức
nhỏ A,B,C,D…nên dễ phát hiện do ít phép tính, ít dấu ngoặt
+ Trong quá trình làm các phép toán trung gian, ta luôn cài chế độ máy với tất cả
số thập phân có thể hiện được trên máy. Chỉ làm tròn số theo yêu cầu của bài toán (nếu
có) ở phép toán cuối cùng.
Chính vì chủ quan, không cẩn thận nên nhiều HS của tỉnh ta tuy đã thực hiện đầy đủ,
chính xác các bước tính toán nhưng chỉ vì sơ xuất như:
+ Quên không làm tròn số theo yêu cầu của bài toán ở phép tính cuối cùng;
+ Để chế độ làm tròn 4 chữ số từ ban đầu, vì vậy máy đã thực hiện việc làm tròn số
ngay các phép tính trung gian nên kết quả cuối cùng không đúng với đáp số.
Tất cả lỗi này đều bị trừ điểm rất nặng (ít nhất trừ 50% số điểm, thậm chí có khi trừ
100% số điểm!). Đây thực sự là điều hết sức đáng tiếc đã xảy ra cho nhiều HS trong đội
tuyển Bình Định trong 2 kỳ thi Quốc gia vừa qua.
+ Sử dụng máy tính có nhiều chức năng tính toán hơn, quy trình ấn phím đơn giản,
dễ kiểm tra hơn để giúp cho việc nhập dữ liệu được chính xác và nhanh chóng (thông
thường cấu tạo các loại máy tính cầm tay fx 570ES; fx 500 plus sẽ giúp ta có quy trình
bấm đơn giản và dễ kiểm tra hơn, vì trong cấu hình của các máy này các phép chia, lũy
thừa, phép tính tích phân, đạo hàm…được hiển thị rõ ràng, giúp người thực hiện ít sai sót).
+ Trình bày tóm tắt các bước đi không nên đi chi tiết quy trình bấm máy, vừa mất
thời gian, vừa không đạt hiệu quả. Chẳng hạn:
Chỉ cần ghi: Gán 1 cho A, thay vì phải viết
1
sto
shift
A
7
Đây cũng là một lỗi khá phổ biến ở những học sinh tham gia dự thi cấp tỉnh. Chính vì
trình bày quá chi tiết quy trình bấm phím (điều này không cần thiết khi giải một bài toán
máy tính cầm tay) nên học sinh không còn thời gian để thực hiện các bài toán tiếp theo!
+ Cần kiểm tra kết quả trước khi làm bài khác.
Sau đây là một ví dụ cụ thể
Ví dụ 1:(Đề thi Quốc gia THCS năm 2007)
Cho x= 25
0
30’; y = 57
0
30’. Tính giá trị của biểu thức:
M =
)cos1)(sin1()cos1)(sin1()coscot1)(sintan1(
22332222
yxyxxyyx
(phép tính được làm tròn với 4 chữ số thập phân).
Giải
Để làm tốt bài này, chúng ta cần thực hiện tốt các yêu cầu sau:
+ Để chế độ màn hình ban đầu trước khi tính toán là chế độ độ và chế độ làm tròn
đến chữ số thập phân cuối cùng có thể hiện được trong máy tính.
+ Chia biểu thức M thành các biểu thức nhỏ:
)coscot1)(sintan1(
2222
xyyx
gán cho A (Kết quả: A= 1,545969541)
)cos1)(sin1(
33
yx
gán cho B (Kết quả: B= 0,777472302)
)cos1)(sin1(
22
yx gán cho C (Kết quả: C= 1,235935569)
Khi đó giá trị M = (A+B)C
2,871624416
+ Làm tròn đến 4 chữ số thập phân ta có kết quả: M = (A+B)C = 2,8716
+ Chú ý cách trình bày cũng chỉ nêu các bước tóm tắt cách giải và kết quả như trên
(không cần nêu kỹ thuật ấn phím).
Một số bài tập giới thiệu
Bài 1 (đề thi Quốc gia THCS năm 2005)
Tính: M=
2 0 3 0 2 0 3 0
3 0 3 0
3
4
sin 35 os 20 15tan 40 tan 25
sin 42 :0,5cot 20
c
Đáp số: M
-36,82283811
Bài 2 ( đề thi Quốc gia THCS năm 2008)
Tính M=
0 0 0 0
0 0 0 0 0
3sin15 25' 4cos12 12'.sin 42 20' os36 15'
2cos15 25' 3cos65 13'.sin15 12' os31 33'.sin18
20'
c
c
Đáp số: Tử số: 4, 236888649; Mẫu số: 2,525805876
M
1,677440333
Bài 3 (đề thi Quốc gia THCS năm 2009)
8
Tính M=
3 0 2 2 0 3 2 0 3
3 0 2 2 0 3 2 0 3
(1 sin 17 34') (1 tan 25 30') (1 os 50 13')
(1 os 35 25') (1 cot 25 30') (1 sin 50 13')
c
c
(Kết quả làm tròn đến 4 chữ số thập phân)
Đáp số: M
0,0157
Bài 4 (đề thi HSG THCS Bình Định 2011)
Cho
0 ' 0 '
43 15 ; 31 20
a b
. Tính giá tri gần đúng của biểu thức:
P =
2 2 2 2 2
(1 tan )(1 os ) (1 cot )(1 sin ) (2cos 1)sin cos
a c b a b a b b
Đáp số: P
0,339838638.
II. CÁC BÀI TOÁN CẦN SỬ DỤNG KỸ NĂNG BẤM MÁY
Đối với các bài toán này ngoài những yêu cầu cần phải có như phần I, chúng ta còn
phải thành thạo kỹ năng sử dụng máy tính cầm tay thì bài toán mới được giải quyết nhanh
chóng, chính xác.
1. Dạng 1: (Tính giá trị x, y ở đầu liên phân số)
Ví dụ 2: ( thi HSG tỉnh Bình Định năm 2011)
Tính các giá tri x biểu thức sau:
2011 1
2 1
3 2
5 1
4 3
7 1
6 4
1
8
5
6
x
Giải
Với bài toán này, đương nhiên ta phải tính:
2011
2
3
5
4
7
6
8
gán vào A ;
1
1
2
1
3
1
4
1
5
6
gán vào B
Tuy nhiên để tính A, B như thế nào cho nhanh chóng, chính xác thì phải sử dụng kỹ
thuật bấm máy, nếu không việc tính toán sẽ trở nên phức tạp, mất thời gian.
Cách 1 :
+ Đầu tiên tính 6 +
8
7
=
8
55
; tiếp theo tính: 4 +
8
55
5
= 4 +
55
40
=
55
260
… để tìm được A.
+ Tiếp tục cách tính như thế để tìm B
+ Sau đó giải phương trình Ax = B để tính x.
9
Cách làm này không sai nhưng quy trình bấm máy sẽ rất dài, mất nhiều thời gian và
dễ sai sót.
Cách 2: Nếu nắm vững kỹ thuật bấm máy, ta sẽ có cách bấm nhanh chóng, liên tục,
gọn gàng và cho ngay kết quả, cụ thể:
+ Để tính A ta chỉ việc bấm máy liên tục theo cách sau:
Bấm 8, bấm x
-1
, bấm
7, bấm +6, bấm =, bấm x
-1
, bấm
5, bấm + 4, bấm =, bấm
x
-1
, bấm
2, bấm +3, bấm =, bấm x
-1
, bấm
2011, bấm =
Ta có ngay kết quả
89
52286
. Sau đó gán vào A
Tương tự ta có
972
421
gán vào B, từ đó ta có:
52286 421 37469
89 972 50821992
x
x
Một số bài tập giới thiệu
Bài 5 (đề thi HSG THCS Bình Định 2010): Tính giá trị của x, y:
4+
1 1
1 4
1 1
2 3
1 1
3 2
4 2
x x
; 2009+
2
2010
9 3
1 9
8 4
2 8
7 5
3 7
6 6
4 6
5 5
y y
Bài 6 (đề thi HSG Quốc gia THCS năm 2011) Tìm x thỏa mãn đẳng thức sau:
4
2011 6
1993 63
2010 3
1994 11
2009
2011
1995
2008
1996
2007
1997
2006
1998
2005
1999
2004
2000
2003
2001
2002
x
Gợi ý cách bấm máy:
Bấm 2001, bấm -, bấm
2002
2003
, bấm =, bấm x
-1
, bấm
2004, bấm + 2000, bấm shift,
sto, A, bấm 1999, bấm -
A
2005
, bấm =, bấm x
-1
, bấm
2006 +1998, bấm shift, sto, B
2. Dạng 2 ( Tính giá trị x, y ở cuối liên phân số)
Ví dụ 3 (đề thi HSG THCS Bình Định 2011): Tính x,y của biểu thức:
10
2003 783173
2
1315
3
4
5
8
x
y
GIẢI
Để giải bài toán này, ta lại biến đổi
783173
1315
thành dạng liên phân số:
783173
1315
=
2003 2003
2 2
3 3
4 4
5 5
8 8
7
9
x
y
Từ đó suy ra: x = 7; y = 9
Một số bài tập đề xuất
Bài 7: Tìm các số a, b, c, d; biết
2003 1
7
1
273
2
1
1
1
a
b
c
d
Bài 8: Tìm x biết:
3 381978
3
382007
8
3
8
3
8
3
8
3
8
3
8
3
8
3
8
1
8
1 x
III/ CÁC BÀI TOÁN CẦN TẬN DỤNG ƯU THỂ CỦA TỪNG LOẠI
MÁY TÍNH ĐỂ GIẢI TOÁN
Như đã giới thiệu phần đầu, mỗi loại máy tính trên thị trường hiện nay đều có những
thế mạnh riêng của nó và dĩ nhiên các máy đời sau bao giờ cũng có nhiều chức năng hơn
11
máy đời trước. Vì vậy đối với những HS đi thi HSG máy tính cầm tay cần phải biết sử dụng
và tận dụng ưu thế của từng loại máy tính trong các trường hợp cụ thể này.
Qua nghiên cứu các loại máy tính trên thị trường được Bộ GD-ĐT cho phép sử dụng
trong các kỳ thi, chúng tôi có thể rút ra một số ưu điểm của từng loại máy như sau:
+ Đối với máy Vinacal 570MS: Dòng máy này có một số chức năng mới như:
Tìm số dư của phép chia các số nguyên dương, tìm UCLN, BCNN của các số nguyên
dương, giải hệ 4 phương trình bậc nhất 4 ẩn số nên nếu các số được tìm nằm trong khả
năng mà máy tính có thể tính toán chính xác được, khi đó chúng ta chỉ cần ấn phím đúng,
máy sẽ cho ta ngay kết quả. Trong khi dùng các dòng máy khác chúng ta phải thực hành
nhiều phép tính toán, vừa mất thời gian và nếu không cẩn thận chưa chắc đã cho ta kết quả
đúng. Đây chính là một trong những nguyên nhân mà nhiều HS tỉnh ta đã không đủ thời
gian để làm bài vì chỉ sử dụng một máy tính cầm tay!
+ Đối với các dòng máy tính fx 570 ES; fx 500 plus: Với cách cấu tạo phân số, số
mũ của lũy thừa, tìm tích phân, đạo hàm của một hàm số được hiển thị khá rõ ràng nên
trong khi nhập dữ liệu vào máy sẽ ít bị sai sót. Vì vậy trong khi thực hiện các phép tính
toán thông thường, dòng máy này có ưu điểm hơn các dòng máy fx 500 MS, fx 570 MS,
Vinacal 570 MS.
Sau đây là một số minh họa trong việc sử dụng các loại máy tính để giải các bài toán
thường gặp:
1. Tìm số dư của phép chia số nguyên
1.1. Nếu sử dụng các máy tính cầm tay fx 500MS, fx 500plus, fx 570MS, fx 570 ES:
1.1.1. Khi đề cho số bé hơn 10 chữ số:
Số bị chia = số chia . thương + số dư (a = bq + r) (0 < r < b)
Suy ra r = a – b . q
Ví dụ 4: Tìm số dư trong các phép chia sau:
1) 9124565217 cho 123456
55.713
r
2) 987896854 cho 698521
188.160
r
1.1.2. Khi đề cho số lớn hơn 10 chữ số:
Phương pháp:
Tìm số dư của A khi chia cho B ( A là số có nhiều hơn 10 chữ số)
- Cắt ra thành 2 nhóm , nhóm đầu có chín chữ số (kể từ bên trái). Tìm số dư phần đầu
khi chia cho B.
12
- Viết liên tiếp sau số dư phần còn lại (tối đa đủ 9 chữ số) rồi tìm số dư lần hai. Nếu
còn nữa tính liên tiếp như vậy.
Ví dụ 5: Tìm số dư của phép chia 2345678901234 cho 4567.
Ta tìm số dư của phép chia 234567890 cho 4567: Được kết quả số dư là : 2203
Tìm tiếp số dư của phép chia 22031234 cho 4567.
Kết quả số dư cuối cùng là 26.
1.1.3. Dùng kiến thức về đồng dư để tìm số dư.
Ví dụ 6: Tìm số dư của phép chia 12
6
cho 19
Giải:
2
3
6 2 3
12 144 11(mod19)
12 12 11 1(mod19)
Vậy số dư của phép chia 12
6
cho 19 là 1
Ví dụ 7: Tìm số dư của phép chia 2004
376
cho 1975
Giải:
Biết 376 = 62 . 6 + 4. Khi đó ta có:
2 4 2
12 3 48 4
2004 841(mod1975); 2004 841 231(mod1975)
2004 231 416(mod1975); 2004 416 536(mod1975)
Vậy
60
62
62.3 3
62.6 2
62.6 4
2004 416.536 1776(mod1975)
2004 1776.841 516(mod1975)
2004 513 1171(mod1975)
2004 1171 591(mod1975)
2004 591.231 246(mod1975)
Kết quả: Số dư của phép chia 2004
376
cho 1975 là 246
Rõ ràng cách làm này cần nhiều kỹ năng bấm máy và dễ sai sót, nếu không cẩn thận.
1.2. Sử dụng máy tính cầm tay Vinacal 570 MS New
+ Nếu số các chữ số của a, b nằm trong vùng máy tính có thể kiểm soát được:
Ta chỉ cần ấn mode 4 lần, ấn 1 máy hiện lên Mod (nhập tiếp a,b), ấn = ta có ngay số
dư của phép chia a cho b. Việc làm này vừa đơn giản, vừa có độ chính xác cao.
Ví dụ 8: Tìm số dư của phép chia 5069874568999 cho 69874557
Giải
Ấn mode 4 lần, ấn 1 máy hiện lên Mod (nhập tiếp 5069874568999, 69874557), ấn = ta
có ngay số dư của phép chia 5069874568999: 69874557 là 56211307 .
13
+ Nếu số các chữ số của a, b không nằm trong vùng máy tính có thể kiểm soát
được:
Ta thực hiện trình tự như trong ví dụ 7 và dùng máy tính hiệu Vinacal 570 MS New để
tìm số dư từng phần một (kết quả tìm các số dư này sẽ nhanh hơn nhiều, vì nếu không dùng
máy Vinacal 570 MS New , ta phải sử dụng phép chia để tìm số dư từng phần một, vừa tốn
nhiều thời gian, vừa có thể dẫn đến sai sót, nếu ta không cẩn thận).
Một số bài tập đề nghị:
Bài tập 9: Tìm số dư của các phép chia:
a) 983637955 cho 9604325
b) 903566896235 cho 37869.
c) 1234567890987654321 : 123456
Bài tập 10: Tìm số dư của phép chia :
a) 13
8
cho 27
b) 25
14
cho 65
c) 1978
38
cho 3878.
d) 2005
9
cho 2007
e) 7
15
cho 2001
2. Các bài toán tìm USLN; BSN
2.1. Nếu sử dụng các máy tính cầm tay fx 500MS, fx 500plus, fx 570MS, fx 570 ES.
Ta bấm phím để rút gọn phân số
A
B
thành phân số tối giản
a
b
. Khi đó UCLN (A;B) =
A:a và BCNN (A:B) = A.b.
Nếu tìm UCNN và BCNN của 3 số A,B,C ta tìm UCNN, BCNN của 2 số A, B. Sau
đó UCNN(A;B;C) = UCLN(UCLN(A;B);C) và BCNN(BCNN(A;B);C).
Ví dụ 9: Tìm UCLN và BCNN của 2419580247 và 3802197531
HD: Ghi vào màn hình :
2419580247
3802197531
và ấn =, màn hình hiện
7
11
UCLN: 2419580247 : 7 = 345654321
BCNN: 2419580247 . 11 = 2.661538272 . 10
10
(tràn màn hình)
Cách tính đúng: Đưa con trỏ lên dòng biểu thức xoá số 2 để chỉ còn 419580247 . 11
Kết quả : BCNN: 4615382717 + 2.10
9
. 11 = 26615382717
Ví dụ 10: Tìm UCLN của 40096920 ; 9474372 và 51135438
Giải: Ấn 9474372 40096920 = ta được : 6987 29570.
14
UCLN của 9474372 và 40096920 là 9474372 : 6987 = 1356.
Ta đã biết UCLN(a; b; c) = UCLN(UCLN(a ; b); c)
Do đó chỉ cần tìm UCLN(1356 ; 51135438).
Thực hiện như trên ta tìm được:
UCLN của 40096920 ; 9474372 và 51135438 là : 678
2.2. Nếu sử dụng máy tính Vinacal 570MS – New
+ Nếu số các chữ số của các số nằm trong vùng máy tính có thể kiểm soát được:
Máy tính cầm tay Vinacal 570MS New đã cài sẵn chương trình tìm UCLN; BCNN.
Vì vậy chúng ta chỉ cần bấm máy cho đúng thì kết quả sẽ hiện ngay trên máy tính. Việc làm
này hết sức dễ dàng và có độ chính xác cao.
Ví dụ 11: Tìm UCLN và BCNN của 3 số 36125, 5525, 72675
Ta chỉ cần ấn mode 4 lần, ấn 2 máy hiện GCD (nhập tiếp 36125, 5525, 72675 ) bấm ta
được ngay kết quả UCLN (36125, 5525, 72675) = 425
Tương tự ấn mode 4 lần, ấn 3 máy hiện LCM (nhập tiếp 36125, 5525, 72675 ) bấm =
ta được ngay kết quả BCNN (36125, 5525, 72675 ) = 80305875.
+ Nếu số các chữ số của các số vượt qua vùng máy tính có thể kiểm soát được:
Ta phải sử dụng phương pháp đã giới thiệu trong ví dụ 9.
Ghi chú: Máy tính cầm tay Vinacal 570 MS còn thuận tiện trong việc giải hệ 4
phương trình bậc nhất 4 ẩn, tính định thức cấp 4… người đọc có thể tham khảo thêm.
Một số bài tập đề nghị
Bài 11: Cho 3 số 1939938; 68102034; 510510.
a) Hãy tìm UCLN của 1939938; 68102034.
b) Hãy tìm BCNN của 68102034; 510510.
c) Gọi B là BCNN của 1939938 và 68102034. Tính giá trị đúng của B
2
.
IV/ CÁC BÀI TOÁN TÍNH TOÁN CÓ NHIỀU HƯỚNG ĐỂ GIẢI QUYẾT
Trong bài viết này chúng tôi chỉ giới thiệu một chuyên đề toán thuộc dạng này đó là
đa thức, từ đó người đọc có thể nắm vững cách giải quyết và vận dụng sáng tạo vào các
dạng toán khác.
Các bài toán về Đa thức:
Các bài toán Đa thức thường gặp trong các kỳ thi máy tính cầm tay đó là tìm các hệ số
a,b,c,d,e,f, của đa thức bậc n một ẩn số khi biết trước một số điều kiện cho trước. Thông
thường để giải các bài toán này, ta dựa vào các điều kiện cho trước để lập hệ n phương trình
15
bậc nhất với n ẩn a,b,c,d,e,f để giải. Vì vậy các bài toán về đa thức chúng tôi giới thiệu ở
đây hầu hết là những bài toán sẽ đưa về việc giải hệ n phương trình bậc nhất với n ẩn.
Trước khi đi vào các kỹ thuật để giải các dạng toán chuyên đề này, chúng tôi xin giới
thiệu:
Một số kiến thức cần nhớ về đa thức:
Định lý Bezout
Số dư trong phép chia f(x) cho nhị thức x – a chính là f(a)
Hệ quả: Nếu a là nghiệm của f(x) thì f(x) chia hết cho x – a
Sơ đồ Hornơ
Ta có thể dùng sơ đồ Hor nơ để tìm kết quả của phép chia đa thức f(x) cho nhị thức x – a.
Ví dụ:
Thực hiện phép chia (x
3
– 5x
2
+ 8x – 4) cho x – 2 bằng cách dùng sơ đồ Hor nơ.
Bước 1: Đặt các hệ số của đa thức bị chia theo thứ tự vào các cột của dòng trên.
Bước 2: Trong 4 cột để trống ở dòng dưới, ba cột đầu cho ta các hệ số của đa thức
thương, cột cuối cùng cho ta số dư.
- Số thứ nhất của dòng dưới = số tương ứng ở dòng trên
- Kể từ cột thứ hai, mỗi số ở dòng dưới được xác định bằng cách lấy a nhân với số
cùng dòng liền trước rồi cộng với số cùng cột ở dòng trên
Vậy (x
3
– 5x
2
+ 8x – 4) = (x – 2)(x
2
– 3x + 2) + 0
* Nếu đa thức bị chia là a
0
x
3
+ a
1
x
2
+ a
2
x + a
3
, đa thức chia là x – a, ta được thương là
b
0
x
2
+ b
1
x + b
2
dư là r. Theo sơ đồ Hornơ ta có:
Sau đây là một số phương pháp giải
1.1. Nếu n = 2, 3 thì máy tính nào cũng có chương trình giải: ta chỉ cần nhập dữ liệu
chính xác, máy sẽ cho kết quả đúng.
Ví dụ 12 (đề thi Quốc gia THCS năm 2006)
a = 2
-5
8
-4
1
a = 2
-5
8
-4
1
1
-3
2
0
a
a
1
a
2
a
3
a
0
b
0
r
b
1
b
2
a
0
ab
0
+ a
1
ab
1
+ a
2
ab
2
+ a
3
16
Cho đa thức P(x) = x
3
+ax
2
+bx+c
Tìm a,b,c khi biết P(1,2) = 1994,728; P(2,5)= 2060,625; P(3,7)= 2173,635.
Giải
Ta có: P(1,2) = 1994,728 = (1,2)
3
+ a.(1,2)
2
+ b.(1,2) + c (1)
P(2,5) = 2060,625 = (2,5)
3
+ a(2,5)
2
+ b((2,5) + c (2)
P(3,7) = 2173,635 = (3,7)
3
+ a(3,7)
2
+ b(3,7) + c (3)
Từ (1), (2), (3) ta chuyển vế để đưa về dạng hệ 3 phương trình bậc nhất với 3 ẩn a,b,c.
Sau đó vào mode 3 lần, bấm 1 (EQN), bấm 3 để vào chương trình giải hệ 3 phương trình
bậc nhất 3 ẩn; nhập số liệu, máy sẽ cho kết quả a,b, c.
Đáp số: a= 10; b=3; c=1975.
Một số bài tập đề nghị
Bài 12: Cho f(x) = x
3
+ ax
2
+ bx + c . Biết : f
3
1
=
108
7
; f
2
1
=
5
3
; f
5
1
=
500
89
. Tính giá trị đúng và gần đúng của f
3
2
.
Bài 13: Xác định các hệ số a, b, c của đa thức:
P(x) = ax
3
+ bx
2
+ cx – 2007 để sao cho P(x) chia cho (x – 13) có số dư là 1, chia cho
(x – 3) có số dư là là 2, và chia cho (x – 14) có số dư là 3
(Kết quả lấy với hai chữ số ở hàng thập phân)
2.2. Nếu n=4: ta nên sử dụng máy tính cầm tay Vinacal 570MS New để giải (vì
máy đã cài sẵn chương trình giải)
Ví dụ 12: ( đề thi Quốc gia THCS năm 2005)
Cho đa thức P(x) = x
5
+ ax
4
+ bx
3
+ cx
2
+ dx+ 132005
Biết P(1) = 8; P(2) = 11; P(3) = 14; P(4) = 17
Tính P(11); P(12); P(13); P(14); P(15).
Giải
Trước đây khi chưa có phần mềm cài chương trình giải hệ 4 phương trình bậc nhất 4
ẩn của máy tính Vinacal 570 MS New, chúng ta có nhiều cách giải cho bài toán này (những
phương pháp này sẽ được trình bày trong phần 3.3. với các trường hợp n =5,6,7 trở đi),
nhưng khi đã có phần mềm này, ta chỉ cần vào đúng chương trình và nhập chính xác dữ liệu
vào máy tính, máy sẽ cho ngay kết quả.
Do đó ta sẽ giải bài toán này như sau:
Ta có: P(1) = 8 = 1
5
+a.1
4
+b.1
3
+c.1
2
+d.1+132005 (1)
17
P(2) = 11 = 2
5
+a.2
4
+b.2
3
+c.2
2
+d.2+132005 (2)
P(3) = 14 = 3
5
+a.3
4
+b.3
3
+c.3
2
+d.3+132005 (3)
P(4) = 17 = 4
5
+a.4
4
+b.4
3
+c.4
2
+d.4+132005 (4)
Từ (1), (2), (3), (4) ta chuyển vế để đưa về dạng hệ 4 phương trình bậc nhất với 4 ẩn a,
b, c, d. Sau đó vào mode 3 lần, bấm 1 (EQN), bấm 4 để vào chương trình giải hệ 4 phương
trình bậc nhất 4 ẩn; nhập số liệu, máy sẽ cho kết quả
Sau khi đã có các hệ số a, b, c, d; ta nhập P(x) với các hệ số bằng số cụ thể và ấn phím
calc, máy hỏi x; nhập 11, sau đó ấn phím = ta có kết quả: P(11)= 27775478
Tương tự: P(12)=43655081; P(13)= 65494484; P(14) = 94620287;
P(15) = 132492410
Một số bài tập đề nghị
Bài 14: Cho Q(x) = x
4
+ mx
3
+ nx
2
+ px + q . Biết Q(1) = 5, Q(2) = 7, Q(3) = 9, Q(4)
= 11. Tính các giá trị của Q(10) , Q(11) , Q(12) , Q(13).
Bài 15: Cho P(x) = x
4
+ ax
3
+ bx
2
+ cx + d. Có P(1) = 0,5 ; P(2) = 2 ; P(3) = 4,5 ; P(4)
= 8. Tính P(2002), P(2003)
Bài 16: Cho P(x) = x
4
+ ax
3
+ bx
2
+ cx + d. Biết P(1) = 5; P(2) = 14; P(3) = 29; P(4) =
50. Hãy tính P(5) , P(6) , P(7) , P(8)
Bài 17: Cho P(x) = x
4
+ ax
3
+ bx
2
+ cx + d. Biết P(1) = 0; P(2) = 4 ; P(3) = 18 ; P(4)
= 48. Tính P(2007).
Bài 18: (đề thi Quốc gia THCS năm 2007)
Xác định hệ số a, b, c, d và tính giá trị của đa thức:
P(x)=x
5
+ax
4
-bx
3
+cx
2
+dx-2007 biết:
P(1,15)=66,16; P(1,25)= 85,22; P(1,35)=94,92; P(1,45)= 94,66
Đáp số: a=-93,5; b=-870; c=-2972,5; d=421
3.3. Nếu n=5,6,7
Khi đó chúng tôi xin giới thiệu một số phương pháp giải sau:
Cách 1: Dùng kỹ thuật tính toán để đưa hệ 5,6,7 phương trình bậc nhất 5,6,7 ẩn về
hệ 4 phương trình bậc nhất 4 ẩn (đối với máy tính Vinacal 570MS New) hoặc về hệ 3
phương trình bậc nhất 3 ẩn đối với các máy tính khác . Sau đó nhập máy để giải như trong
3.1; 3.2.
Ghi chú: Cách này về mặt phương pháp không có gì khó hiểu, nhưng khi chuyển từ
hệ phương trình nhiều ẩn sang hệ phương trình ít ẩn hơn, không phải là chuyện dễ dàng, rất
18
mất thời gian và dễ sai sót. Nhiều HS thực hiện phương pháp này đã không còn đủ thời
gian để làm các bài toán khác.
Để khắc phục những hạn chế của cách 1, ta có thể sử dụng:
Cách 2: Tìm đa thức phụ R(x) để xác định nghiệm của đa thức Q(x)=P(x)-R(x)
Một số phương pháp tìm đa thức phụ
Phương pháp 1: Suy đoán được ngay đa thức phụ cần tìm: Dựa vào trực quan và sự
nhạy bén, người học có thể tìm được ngay đa thức phụ. Nếu làm được điều này thì việc giải
quyết bài toán sẽ trở nên nhanh chóng, dễ dàng.
Ví dụ 13: (đề thi HSG Quốc gia năm 2006)
Cho P(x) = x
5
+ax
4
+bx
3
+cx
2
+dx+e
Biết P(1) = 11; P(2) = 14; P(3) = 19; P(4) = 26; P(5) = 35
Tính P(11); P(12); P(13); P(14); P(15); P(16).
Tìm số dư r của phép chia P(x) cho 10x-3.
Giải:
Ta có P(1) = 11 = 1
2
+ 10; P(2) = 14 = 2
2
+ 10 ; P(3) = 19 = 3
2
+10; P(4) = 26 = 4
2
+10; P(5) = 35 = 5
2
+10
Vậy đa thức phụ ở đây là R(x) = x
2
+10
Xét đa thức Q(x) = P(x) – (x
2
+10)
Dễ thấy Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0.
Suy ra 1; 2; 3; 4; 5 là nghiệm của đa thức Q(x).
Vì hệ số của x
5
bằng 1 nên Q(x) có dạng:
Q(x) = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5).
Vậy P(x) = Q(x) + (x
2
+10) = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5) + (x
2
+10)
Nhập P(x) vào máy và dùng lệnh calc (đối với máy fx 570 ES), máy hỏi x, nhập 11 và
ấn phím = ta có:
P(11)= 30371; tương tự cho P(12)= 55594; P(13) = 95219; P(14) = 154646;
P(15)= 240475; P(16)= 360626.
Số dư của P(x) chia cho 10x-3 chính là P(3/10)
Phương pháp 2: Dựa vào một số kỹ thuật biến đổi để tìm đa thức phụ
Giải
a/ Sử dụng công cụ giải tích để tìm đa thức phụ
19
Ta thấy các số: 11, 14, 19, 26, 35 cách nhau lần lượt là 3, 5, 7, 9. Đây là số hạng của
một cấp số cộng có công sai là 2. Vì vậy các số hạng 11, 14, 19, 26, 35 là số hạng của cấp
số cộng-cộng U
1;
U
2;
; U
n
với U
2
= U
1
+d
1
; U
3
=U
2
+d
2;
U
n
=U
n-1
+d
n-1.
Với d
1,
d
2,
d
n-1
là một cấp số cộng có công sai d=2.
Sử dụng , công thức tính số hạng U
n
và tổng n số hạng đầu tiên của cấp số cộng ta có:
d
k
=d
1
+(k-1)d; và U
n
= U
1
+d
1
+d
2
+ +d
n-1
= U
1
+(n-1)d
1
+
( 1)( 2)
2
n n d
Vậy U
n
= U
1
+(n-1)d
1
+
( 1)( 2)
2
n n d
Với d
1
=3 và d=2 thế vào công thức trên, ta có: U
n
= n
2
+10.
Vậy đa thức phụ R(x) = x
2
+10
Khi đó đặt Q(x) = P(x) – (x
2
+10) (1)
thì 1, 2, 3, 4, 5 lần lượt là các nghiệm của Q(x)
Do đó ta có: Q(x)= (x-1)(x-2)(x-3)(x-4)(x-5) (2)
Từ (1) và (2) ta có:
P(x) = (x-1)(x-2)(x-3)(x-4)(x-5) + x
2
+10
Đến đây ta sẽ tiếp tục giải bài toán như trong phương pháp 1.
b/ Sử dụng công cụ hình học để tìm đa thức phụ:
Với P(1) = 11; P(2) = 14; P(3) = 19; P(4) = 26; P(5) = 35; ta biểu diễn các điểm
(1;11); (2;14); (3;19); (4;26); (5;35) lên trên hệ trục tọa độ Oxy; và vẽ đường cong nối các
điểm đó. Bằng trực quan, ta dự đoán các điểm này có thể nằm trên đồ thị của hàm số bậc 2;
từ đó cho ta ý tưởng đi tìm hàm số bậc 2 đi qua 5 điểm nói trên.
Để làm điều này, ta giả sử hàm số Q(x) = P(x) - (ax
2
+bx+c) có 3 nghiệm là 1,2,3.
Khi đó ta có: Q(1) = P(1) –(a+b+c) = 0
a+b+c = 11
Tương tự Q(2) = P(2) – (4a+2b+c)
4a+2b+c = 14
Q(3) = P(3) – (9a+3b+c)
9a+3b+c = 19
Từ 3 hệ phương trình trên, sử dụng máy tính ta giải được a =1, b = 0; c =10
Vậy Q(x) = P(x) –(x
2
+10) có 3 nghiệm là 1, 2, 3.
Thế 4 và 5 vào Q(x() ta thấy Q(4)=Q(5)=0 nên Q(x) có 5 nghiệm là 1,2,3,4,5.
Từ đó ta đưa về cách giải như a/.
Ghi chú:
Ở đây chúng tôi chỉ mới giới thiệu đa thức phụ là các đa thức bậc 2. Nếu đa thức phụ
bậc cao hơn, ta cũng có thể thực hiện một trong các phương pháp đã giới thiệu trên.
20
c/ Sử dụng công cụ đại số để tìm đa thức phụ
Vì P(x) = x
5
+ax
4
+bx
3
+cx
2
+dx+e nên ta có:
P(x) = (x-1)(x-2)(x-3)(x-4)(x-5) + m(x-1)(x-2)(x-3)(x-4) + n(x-1)(x-2)(x-3) +
p(x-1)(x-2) +q(x-1) +r.
Ta có P(1) = 11 = r
P(2) = 14 = q+r. Suy ra q = 3
P(3) = 19 = 2p+2q+r. Suy ra: p = 1
Tương tự ta tính được m=n=0
Vậy p(x) = (x-1)(x-2)(x-3)(x-4)(x-5) + x
2
+10.
Một số bài tập đề nghị
Bài 19 : Cho P(x) = x
5
+ ax
4
+ bx
3
+ cx
2
+ dx + e .
Biết P(1) = 3 , P(2) = 9 , P(3) = 19 , P(4) = 33 , P(5) = 51 . Tính P(6) , P(7) , P(8) ,
P(9) , P(10) , P(11) .
Bài 20: (đề thi Quốc gia THCS năm 2009)
Cho đa thức P(x)=x
6
+ax
5
+bx
4
+cx
3
+dx
2
+ex+f
Biết: P(1)=3; P(2)=0; P(3)=3; P(4)=12; P(5)=27; P(6)=48.
a/ Tính a, b, c, d, e, f của P(x).
b/ Tính P(11); P(12); P(13); P(14); P(20).
Đáp số:a/ a= -21; b= 175; c = -735; d = 1627; e = -1776; f = 732.
b/ P(11) = 151443; P(12) = 332940; P(20) = 19536012.
Bài 21: (đề thi THCS tỉnh Bình Định 2011)
Cho đa thức P(x)= x
5
+ ax
4
+ bx
3
+ cx
2
+ dx +e
Biết P(1) = 9; P(2) = 12; P(3) = 17; P(4) = 24; P(5) = 33
a/ Tính P(10); P(15); P(20).
b/ Tìm số dư r trong phép chia P(x) cho 5x+6.
Đáp số: a/ P(10) = 15288; P(15) = 240473; P(20) = 1395768
b/ r = P(-6/5)
-943,83232.
V/ CÁC BÀI TOÁN VẬN DỤNG TƯ DUY ĐỂ TÌM RA CÔNG THỨC CHÍNH
XÁC, LẬP TRÌNH ẤN PHÍM HIỆU QUẢ
Đây là các dạng toán đòi hỏi tư duy toán học cũng như tư duy tìm ra các lập trình đúng
để sử dụng máy tính cầm tay nhằm giải quyết các vấn đề bài toán đặt ra. Vì vậy, gặp các
dạng toán này người nghiên cứu phải đầu tư nhiều thì mới có thể giải quyết tốt vấn đề.
21
Trong bài viết này, chung tôi chỉ đi sâu vào 2 chuyên đề đó là dãy số và lãi kép là
những nội dung thường ra trong nhiều kỳ thi chọn HSG máy tính cầm tay để người đọc
tham khảo. Hy vọng từ những kỹ năng rút ra từ 2 chuyên đề này, người đọc có thể vận
dụng một cách sáng tạo để giải tốt một số dạng toán khác mà vì thời gian và khuôn khổ
trình bày, người viết không có điều kiện đề cập.
1. Các bài toán về dãy số
Các dạng toán thường ra ở loại này là các bài toán: Tính một số số hạng của dãy số
khi biết một số điều kiện cho trước; Lập công thức truy hồi tính số hạng thứ n theo các số
hạng thứ n-1, n-2, n-3, ; Tính tổng một số số hạng của dãy số.
Để giải các bài toán loại này, đòi hỏi ta phải lập quy trình bấm phím chính xác, khoa
học. Tùy theo cấu tạo của từng loại máy tính, chúng ta có thể lập quy trình khác nhau. Vì
vậy việc xác định các mấu chốt của bài toán và từ đó lập quy trình bấm phím hiệu quả nhất
là việc làm không dễ thực hiện. Nó đòi hỏi người thực hiện phải có thời gian nghiên cứu,
tích lũy nhiều kinh nghiệm; đồng thời phải có những sáng tạo trong việc thay đổi lập trình
để phù hợp với từng dạng toán cụ thể.
Sau đây là một số ví dụ minh họa.
Ví dụ 14: (QG 2005 THCS)
Cho dãy số U
n
=
22
)23()23(
nn
với n = 1,2,3,
a/ Tính U
1
, U
2
, U
3
, U
4,
U
5
.
b/ Chứng minh U
n+2
= 6U
n+1
-7U
n
c/ Lập quy trình ấn phím liên tục tính U
n+2
theo U
n+1
và U
n
trên máy tính.
Giải
a/ U
1
= 1, U
2
= 6, U
3
= 29, U
4
= 132, U
5
= 589
b/ Đặt A = 3+
2
và B = 3 -
2
Ta có :
A
n+2
+ B
n+2
= A
n+1
(3+
2
) – B
n+1
(3 -
2
) = 3(A
n+1
– B
n+1
) +
2
A
n+1
+
2
B
n+1
. =
6(A
n+1
– B
n+1
) - 3(A
n+1
– B
n+1
) + 2 A
n+1
+ 2 B
n+1
.
= 6(A
n+1
– B
n+1
) – 3A
n
(3+ 2 ) + 3B
n
(3 - 2 ) + 2 A
n
(3+ 2 ) + 2 B
n
(3- 2 )
= 6(A
n+1
– B
n+1
) - 9A
n
- 3 2 A
n
+ 9B
n
- 3 2 B
n
+ 3 2 A
n
+ 2A
n
+ 3 2 B
n
– 2B
n
.
= 6(A
n+1
– B
n+1
) – 7(A
n
– B
n
).
Vậy U
n+2
= 6U
n+1
-7U
n
.
c/ Lập quy trình bấm phím liên tục tính U
n+2
22
Cách 1 :
+ Gán 1 cho A (giá trị U
1
); Gán 6 cho B (giá trị U
2
); Gán 2 cho D (biến đếm).
+ Bấm liên tục các phím: (-7A +6B) gán vào C, ghi kết quả U
3
+ Lặp lại thêm 2 lượt: (-7B + 6C) gán vào A, ghi kết quả U
4
… (theo quy luật đường
tròn ABC, BCA, CAB).
Bấm phím trở về lượt 1, tiếp Shift copy sau đó bấm =, = liên tục và đếm chỉ số, ta
được kết quả cần tìm.
Cách 2 :
Gán 1 cho A (giá trị U
1
); Gán 6 cho B (giá trị U
2
); Gán 2 cho D (biến đếm)
Lập quy trình bấm phím:
D=D+1: C= 6B-7A:
D= D+1:A =6C-7B:
D =D+1: B = 6A-7C sau đó bấm=, =, = liên tục ta tính được các giá trị của U
n
của
dãy số.
Ghi chú: Trong cách 2, ta cũng thực hiện quy luật đường tròn, nhưng cách ấn phím
theo cách 2 có một số ưu điểm hơn cách 1 đó là:
+ Có gán biến đếm nên không nhầm lẫn khi ta tự đếm như ở cách 1
+ Không phải bấm các phím
trở về lượt 1 và shift copy (bấm các phím này nếu
không cẩn thận dễ bị sai sót).
Cách 3:
Gán 1 cho A (giá trị U
1
); Gán 6 cho B (giá trị U
2
); Gán 2 cho D (biến đếm)
Lập quy trình bấm phím:
D =D+1: A= 6B -7A:
D = D+1: B = 6A -7B sau đó bấm = = = liên tục ta tính được U
n
.
Ghi chú: Cách 3 ta cũng sử dụng quy luật đường tròn, nhưng ta chỉ gán số hạng dãy
số chỉ với 2 biến A, B nên lập trình gọn hơn cách 2.
Cách 4:
Gán 1 cho A (giá trị U
1
); Gán 6 cho B (giá trịU
2
); Gán 2 cho D (biến đếm)
Lập quy trình bấm phím:
D = D+1: C= 6B-7A: A = B: B = C sau đó bấm =, =, = liên tục ta tính được U
n
Ghi chú: Cách 4 ta cũng sử dụng quy luật đường tròn, nhưng rõ ràng quy luật này dễ
thực hiện, ngắn gọn và ít nhầm lẫn.
23
Một số bài tập đề nghị
Bài 22: (QG THCS năm 2006)
Cho dãy số U
n
= 1,2,3 n
32
)310()310(
nn
a/ Tính giá trị U
1
, U
2
, U
3
, U
4
.
b/ Lập công thức truy hồi tính U
n+2
theo U
n+1
và U
n
c/ Lập quy trình ấn liên tục tính U
n+2
theo U
n+1
và U
n
.
Bài 23: (QG THCS năm 2008)
Cho dãy số U
1
= 1, U
n+1
=
n
nn
u
uu 11
2
với n = 0,1,2,
Lập quy trình bấm phím tính U
n+1
trên máy tính cầm tay.
Bài 24 (QG THCS năm 2009)
Cho dãy số U
n
=
22
)21()21(
nn
, n = 1,2,3….
a/ Chứng minh rằng U
n+1
= 2U
n
+U
n -1
, với mọi n
1.
b/ Lập quy trình ấn phím liên tục tính U
n+1
theo U
n
và U
n-1
với U
1
= 1, U
2
= 2 trên máy
tính cầm tay.
c/ Tính các giá trị từ U
11
đến U
20.
Bài 25: (QG THCS năm 2009)
Cho dãy số xác định bỡi công thức : U
n+1
=
2
2
1
133
n
n
U
U
, với U
1
= 0,09, n = 1,2,3,
a/ Viết quy trình ấn phím liên tục tính U
n+1
theo U
n
.
b/ Tính U
2
, U
3
, U
4,
U
5
, U
6.
c/ Tính U
100
, U
200
( với đủ 10 chữ số trên màn hình).
Bài 26: (QG THCS năm 2010)
Cho dãy số U
n
=
112
)119()119(
nn
với n = 0, 1, 2, 3,
a/ Tính 5 số hạng U
0
, U
1
, U
2,
U
3
, U
4.
b/ Trình bày cách tìm công thức truy hồi tính U
n+2
theo U
n+1
và U
n
.
c/ Viết quy trình bấm phím liên tục tính U
n+2
theo U
n+1
và U
n
. Từ đó tính U
5
, U
10
.
Để người đọc có thể củng cố việc thực hiện nhiều lập trình khác nhau trong việc đi tìm
số hạng của một dãy số theo các số hạng đứng trước nó, chúng tôi xin lấy thêm một ví dụ
24
mà điều kiện để tìm số hạng của một dãy số không phải chỉ phụ thuộc vào 2 số hạng đứng
trước nó mà phụ thuộc vào 3 số hạng đứng trước nó. Cụ thể:
Ví dụ 15: (Huế lớp 11, 12 năm 2005)
Cho dãy số (U
n
), với U
1
=1, U
2
=2, U
3
=3, U
n
=U
n-1
+ 2U
n-2
+3U
n-3
; (n )4,
nN
a/ Tính U
4,
U
5
, U
6
, U
7
.
b/ Viết quy trình bấm phím liên tục để tính giá trị của U
n
, (n )4,
nN
c/ Sử dụng quy trình trên, tính giá trị của U
20
, U
22
, U
25
, U
28
.
BÀI GIẢI
Cách 1 :
+ Gán 1,2,3 lần lượt cho A,B,C. Bấm liên tục các phím: (3A+2B+C) gán vào D, ghi
kết quả U
4
+ Lặp lại thêm 3 lượt: (3B+2C+D) gán vào A, ghi kết quả U
5
… (theo quy luật đường
tròn ABCD, BCDA, CDAB, DABC).
Bấm phím trở về lượt 1, tiếp Shift copy sau đó bấm = liên tục và đếm chỉ số
Kết quả : U
4
=10; U
5
= 22, U
6
= 51, U
7
= 125
U
20
= 9426875; U
22
= 53147701; U
25
= 711474236; U
28
= 9524317645.
Cách 2 :
Gán 1 cho A (giá trị U
1
); Gán 2 cho B (giá trị U
2
); Gán 3 cho C (giá trị U
3
); Gán 3 cho
D (biến đếm).
Lập quy trình bấm phím:
D=D+1: E = C+2B+3A:
D= D+1: A = E+2C+3B:
D =D+1: B = A+2E+3C:
D = D+1: C = B+2A+3E sau đó bấm =, =, =… liên tục ta tính được các giá trị của U
n
của dãy số.
Cách 3:
Gán 1 cho A (giá trị U
1
); Gán 2 cho B (giá trịU
2
); Gán 3 cho C (giá trị U
3
); Gán 3 cho
D (biến đếm).
Lập quy trình bấm phím:
D =D+1: A= C+2B+3A:
D = D+1: B = A+2C+3B:
D=D+1: C=B+2A+3C sau đó bấm =, =, =… liên tục ta tính được U
n
.