Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (109.31 KB, 3 trang )
§ 3 Hai phương pháp chứng minh toán học ở Tiểu học
1) Phương pháp chứng minh tổng hợp:
Nội dung: Phương pháp chứng minh tổng hợp là phương pháp chứng minh
đi từ điều đã cho trước hoặc điều đã biết nào đó đến điều cần tìm, điều cần chứng
minh.
Cơ sở: Quy tắc lôgíc kết luận
Sơ đồ: A
B
C
Y
X
Trong đó A là mệnh đề đã biết hoặc đã cho trước; B là hệ quả lôgíc của A; C
là hệ quả lôgíc của B; ; X là hệ quả lôgíc của Y.
Vai trò và ý nghĩa:
+ Phương pháp chứng minh tổng hợp dễ gây ra khó khăn đột ngột,
không tự nhiên vì mệnh đề chọn làm mệnh đề xuất phát nếu là mệnh đề đúng đã
biết nào đó thì nó hoàn toàn phụ thuộc vào năng lực của từng học sinh.
+ Phương pháp chứng minh tổng hợp ngắn gọn vì thường từ mệnh đề
tiền đề ta dễ suy luận trực tiếp ra một hệ quả logic của nó.
+ Phương pháp chứng minh tổng hợp được sử dụng rộng rãi trong
trình bày chứng minh toán học, trong việc dạy và học toán ở trường phổ thông.
Ví dụ: Bài toán
“ Hiện nay tuổi của bố gấp 4 lần tuổi của con và tổng số tuổi của hai bố con
là 50 tuổi. Hỏi sau bao nhiêu năm nữa thì tuổi của bố gấp 2 lần tuổi của con?”
“ Cho tứ giác lồi ABCD và M, N, P, Q lần lượt là điểm giữa của các cạnh