Tải bản đầy đủ (.pdf) (19 trang)

báo cáo hóa học:" Research Article Strong Convergence Theorems of a New General Iterative Process with Meir-Keeler Contractions for a Countable Family of λi -Strict Pseudocontractions in q-Uniformly Smooth Banach Spaces" pptx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (557.03 KB, 19 trang )

Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2010, Article ID 354202, 19 pages
doi:10.1155/2010/354202
Research Article
Strong Convergence Theorems of a New General
Iterative Process with Meir-Keeler Contractions for
a Countable Family of λ
i
-Strict Pseudocontractions
in q-Uniformly Smooth Banach Spaces
Yanlai Song and Changsong Hu
Department of Mathematics, Hubei Normal University, Huangshi 435002, China
Correspondence should be addressed to Yanlai Song,
Received 9 August 2010; Revised 2 October 2010; Accepted 14 November 2010
Academic Editor: Mohamed Amine Khamsi
Copyright q 2010 Y. Song and C. Hu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
We introduce a new iterative scheme with Meir-Keeler contractions for strict pseudocontractions
in q-uniformly smooth Banach spaces. We also discuss the strong convergence theorems for the
new iterative scheme in q-uniformly smooth Banach space. Our results improve and extend the
corresponding results announced by many others.
1. Introduction
Throughout this paper, we denote by E and E

a real Banach space and the dual space of E,
respectively. Let C be a subset of E,andlrtT be a non-self-mapping of C.WeuseFT to
denote the set of fixed points of T.
The norm of a Banach space E is said to be G
ˆ


ateaux differentiable if the limit
lim
t → 0


x  ty




x

t
1.1
exists for all x, y on the unit sphere SE{x ∈ E : x  1}. If, for each y ∈ SE,the
limit 1.1 is uniformly attained for x ∈ SE, then the norm of E is said to be uniformly
G
ˆ
ateaux differentiable. The norm of E is said to be Fr
´
echet differentiable if, for each x ∈ SE,
the limit 1.1 is attained uniformly for y ∈ SE. The norm of E is said to be uniformly
Fr
´
echet differentiable or uniformly smooth if the limit 1.1 is attained uniformly for x, y ∈
SE × SE.
2 Fixed Point Theory and Applications
Let ρ
E
: 0, 1 → 0, 1 be the modulus of smoothness of E defined by

ρ
E

t

 sup

1
2



x  y





x − y



− 1:x ∈ S

E

,


y



≤ t

. 1.2
A Banach space E is said to be uniformly smooth if ρ
E
t/t → 0ast → 0. Let q>1.
A Banach space E is said to be q-uniformly smooth, if there exists a fixed constant c>0 such
that ρ
E
t ≤ ct
q
. It is well known that E is uniformly smooth if and only if the norm of E is
uniformly Fr
´
echet differentiable. If E is q-uniformly smooth, then q ≤ 2andE is uniformly
smooth, and hence the norm of E is uniformly Fr
´
echet differentiable, in particular, the norm of
E is Fr
´
echet differentiable. Typical examples of both uniformly convex and uniformly smooth
Banach spaces are L
p
, where p>1. More precisely, L
p
is min{p, 2}-uniformly smooth for every
p>1.
By a gauge we mean a continuous strictly increasing function ϕ defined R


:0, ∞
such that ϕ00 and lim
r →∞
ϕr∞. We associate with a gauge ϕ a generally
multivalued duality map J
ϕ
: E → E

defined by
J
ϕ

x



x

∈ E

:

x, x




x


ϕ


x


,

x


 ϕ


x



. 1.3
In particular, the duality mapping with gauge function ϕtt
q−1
denoted by J
q
, is referred
to the generalized duality mapping. The duality mapping with gauge function ϕtt
denoted by J, is referred to the normalized duality mapping. Browder 1 initiated the study
J
ϕ
.Setfort ≥ 0
Φ


t



t
0
ϕ

r

dr. 1.4
Then it is known that J
ϕ
x is the subdifferential of the convex function Φ· at x. It is well
known that if E is smooth, then J
q
is single valued, which is denoted by j
q
.
The duality mapping J
q
is said to be weakly sequentially continuous if the duality
mapping J
q
is single valued and for any {x
n
}∈E with x
n
x, J

q
x
n


J
q
x. Every
l
p
1 <p<∞ space has a weakly sequentially continuous duality map with the gauge
ϕtt
p−1
. Gossez and Lami Dozo 2 proved that a space with a weakly continuous duality
mapping satisfies Opial’s condition. Conversely, if a space satisfies Opial’s condition and has
a uniformly G
ˆ
ateaux differentiable norm, then it has a weakly continuous duality mapping.
We already know t hat in q-uniformly smooth Banach space, there exists a constant C
q
> 0
such that


x  y


q



x

q
 q

y, J
q

x


 C
q


y


q
, 1.5
for all x, y ∈ E.
Recall that a mapping T is said to be nonexpansive, if


Tx − Ty






x − y


∀x, y ∈ C. 1.6
Fixed Point Theory and Applications 3
T is said to be a λ-strict pseudocontraction in the terminology of Browder and
Petryshyn 3, if there exists a constant λ>0 such that

Tx − Ty,j
q

x − y




x − y


q
− λ


I − Tx − I − Ty


q
, 1.7
for every x, y,andC for some j
q

x − y ∈ J
q
x − y. It is clear that 1.7 is equivalent to the
following:


I − T

x −

I − T

y, j
q

x − y

≥ λ


I − Tx − I − Ty


q
. 1.8
The following famous theorem is referred to as the Banach contraction principle.
Theorem 1.1 Banach 4. Let X, d be a complete metric space and let f be a contraction on X,
that is, there exists r ∈ 0, 1 such that dfx,fy ≤ rdx, y for all x, y ∈ X.Thenf has a
unique fixed point.
Theorem 1.2 Meir and Keeler 5. Let X, d be a complete metric space and let φ be a Meir-Keeler

contraction (MKC, for short) on X, that is, for every ε>0, there exists δ>0 such that dx, y <ε δ
implies dφx,φy <εfor all x, y ∈ X.Thenφ
has a unique fixed point.
This theorem is one of generalizations of Theorem 1.1, because contractions are Meir-
Keeler contractions.
In a smooth Banach space, we define an operator A is strongly positive if there exists
a constant
γ>0 with the property

Ax, J

x



γ

x

2
,

aI − bA

 sup

x

≤1
{|


aI − bA

x, J

x

|
: a ∈

0, 1

,b∈

0, 1

}
, 1.9
where I is the identity mapping and J is the normalized duality mapping.
Attempts to modify the normal Mann’s iteration method for nonexpansive mappings
and λ-strictly pseudocontractions so that strong convergence is guaranteed have recently
been made; see, for example, 6–11 and the references therein.
Kim and Xu 6 introduced the following iteration process:
x
1
 x ∈ C,
y
n
 β
n

x
n


1 − β
n

Tx
n
,
x
n1
 α
n
u 

1 − α
n

y
n
,n≥ 0,
1.10
where T is a nonexpansive mapping of C into itself u ∈ C is a given point. They proved the
sequence {x
n
} defined by 1.10 converges strongly to a fixed point of T, provided the control
sequences {α
n
} and {β

n
} satisfy appropriate conditions.
4 Fixed Point Theory and Applications
Hu and Cai 12 introduced the following iteration process:
x
1
 x ∈ C,
y
n
 P
C

β
n
x
n


1 − β
n

N

i1
η
n
i
T
i
x

n

,
x
n1
 α
n
γf

x
n

 γ
n
x
n


1 − γ
n

I − α
n
A

y
n
,n≥ 1.
1.11
where T

i
is non-self-λ
i
-strictly pseudocontraction, f is a contraction and A is a strong positive
linear bounded operator in Banach space. They have proved, under certain appropriate
assumptions on the sequences {α
n
}, {γ
n
},and{β
n
},that{x
n
} defined by 1.11 converges
strongly to a common fixed point of a finite family of λ
i
-strictly pseudocontractions, which
solves some variational inequality.
Question 1. Can Theorem 3.1 of Zhou 8, T heorem 2.2 of Hu and Cai 12 and so on be
extended from finite λ
i
-strictly pseudocontraction to infinite λ
i
-strictly pseudocontraction?
Question 2. We know that the Meir-Keeler contraction MKC, for short is more general than
the contraction. What happens if the contraction is replaced by the Meir-Keeler contraction?
The purpose of this paper is to give the affirmative answers to these questions
mentioned above. In this paper we study a general iterative scheme as follows:
x
1

 x ∈ C,
y
n
 P
C

β
n
x
n


1 − β
n



i1
η
n
i
T
i
x
n

,
x
n1
 α

n
γφ

x
n

 γ
n
x
n


1 − γ
n

I − α
n
A

y
n
,n≥ 1,
1.12
where T
n
is non-self λ
n
-strictly pseudocontraction, φ is a MKC contraction and A is a strong
positive linear bounded operator in Banach space. Under certain appropriate assumptions on
the sequences {α

n
}, {β
n
}, {γ
n
},and{μ
n
i
},that{x
n
} defined by 1.12 converges strongly to a
common fixed point of an infinite family of λ
i
-strictly pseudocontractions, which solves some
variational inequality.
2. Preliminaries
In order to prove our main results, we need the following lemmas.
Lemma 2.1 see 13. Let {x
n
}, {z
n
} be bounded sequences in a Banach space E and {β
n
} be a
sequence in 0, 1 which satisfies the following condition: 0 < lim inf
n →∞
β
n
≤ lim sup
n →∞

β
n
< 1.
Suppose that x
n1
1 − β
n
x
n
 β
n
z
n
for all n ≥ 0 and lim sup
n →∞
z
n1
− z
n
−x
n1
− x
n
 ≤ 0.
Then, lim
n →∞
z
n
− x
n

  0.
Fixed Point Theory and Applications 5
Lemma 2.2 see Xu 14. Assume that {α
n
} is a sequence of nonnegative real numbers such that
α
n1
≤ 1 − γ
n
α
n
 δ
n
,whereγ
n
is a sequence in (0, 1) and {δ
n
} is a sequence in R such that
i


n1
γ
n
 ∞,
ii lim sup
n →∞
δ
n


n
 ≤ 0 or


n1

n
| < ∞.
Then lim
n →∞
α
n
 0.
Lemma 2.3 see 15 demiclosedness principle. Let C be a nonempty closed convex subset of a
reflexive Banach space E which satisfies Opial’s condition, and suppose T : C → E is nonexpansive.
Then the mapping I − T is demiclosed at zero, that is, x
n
x, x
n
− Tx
n
→ 0 implies x  Tx.
Lemma 2.4 see 16, Lemmas 3.1, 3.3. Let E be real smooth and strictly convex Banach space,
and C be a nonempty closed convex subset of E which is also a sunny nonexpansive retraction of E.
Assume that T : C → E is a nonexpansive mapping and P is a sunny nonexpansive retraction of E
onto C,thenFTFPT.
Lemma 2.5 see 17, Lemma 2.2. Let C be a nonempty convex subset of a real q-uniformly smooth
Banach space E and T : C → C be a λ-strict pseudocontraction. For α ∈ 0, 1, we define T
α
x 

1 − αx  αTx. Then, as α ∈ 0,μ, μ  min{1, {qλ/C
q
}
1/q−1
}, T
α
: C → C is nonexpansive such
that FT
α
FT.
Lemma 2.6 see 12, Remark 2.6. When T is non-self-mapping, the Lemma 2.5 also holds.
Lemma 2.7 see 12, Lemma 2.8. Assume that A is a strongly positive linear bounded operator
on a smooth Banach space E with coefficient
γ>0 and 0 <ρ≤A
−1
. Then,


I − ρA


≤ 1 − ρ
γ. 2.1
Lemma 2.8 see 18, Lemma 2.3. Let φ be an MKC on a convex subset C of a Banach space E.
Then for each ε>0,thereexistsr ∈ 0, 1 such that


x − y



≥ ε implies


φx − φy


≤ r


x − y


∀x, y ∈ C. 2.2
Lemma 2.9. Let C be a closed convex subset of a reflexive Banach space E which admits a weakly
sequentially continuous duality mapping J
q
from E to E

.LetT : C → C be a nonexpansive mapping
with FT
/
 ∅ and φ : C → C be a MKC, A is strongly positive linear bounded operator with
coefficient
γ>0. Assume that 0 <γ<γ. Then the sequence {x
t
} define by x
t
 tγφx
t
1 −tATx

t
converges strongly as t → 0 to a fixed point x of T which solves the variational inequality:

A − γφ

x, J
q

x − z


≤ 0,z∈ F

T

. 2.3
Proof. The definition of {x
t
} is well definition. Indeed, from the definition of MKC, we can
see MKC is also a nonexpansive mapping. Consider a mapping S
t
on C defined by
S
t
x  tγφ

x




I − tA

Tx, x ∈ C. 2.4
6 Fixed Point Theory and Applications
It is easy to see that S
t
is a contraction. Indeed, by Lemma 2.8, we have


S
t
x − S
t
y


≤ tγ


φ

x

− φ

y








I − tA


Tx − Ty



≤ tγ


φ

x

− φ

y





1 − t
γ




x − y


≤ tγ


x − y




1 − t
γ



x − y




1 − t

γ − γ



x − y



.
2.5
Hence, S
t
has a unique fixed point, denoted by x
t
, which uniquely solves the fixed point
equation
x
t
 tγφ

x
t



I − tA

Tx
t
. 2.6
We next show the uniqueness of a solution of the variational inequality 2.3. Suppose
both x ∈ FT and x ∈ FT are solutions to 2.3, not lost generality, we may assume there
is a number ε such that  x − x≥ε. Then by Lemma 2.8, there is a number r such that
φ x − φ x≤r x − x.From2.3,weknow

A − γφ

x, J

q

x − x


≤ 0,

A − γφ

x, J
q

x − x


≤ 0.
2.7
Adding up 2.7 gets

A − γφ

x −

A − γφ

x, J
q

x − x



≤ 0. 2.8
Noticing that

A − γφ

x −

A − γφ

x, J
q

x − x


 A

x − x

,J
q

x − x

−γ

φ x − φ x, J
q


x − x



γ

x − x

q
− γ


φ x − φ x



x − x

q−1
≥ γ

x − x

q
− γr

x − x

q



γ − γr


x − x

q


γ − γr

ε
q
> 0.
2.9
Therefore x  x and the uniqueness is proved. Below, we use x to denote the unique solution
of 2.3.
We observe that {x
t
} is bounded. Indeed, we may assume, with no loss of generality,
t<A
−1
, for all p ∈ FT, fixed ε
1
, for each t ∈ 0, 1.
Case 1 x
t
− p <ε
1
. In this case, we can see easily that {x

t
} is bounded.
Fixed Point Theory and Applications 7
Case 2 x
t
− p≥ε
1
. In this case, by Lemmas 2.7 and 2.8, there is a number r
1
such that


φ

x
t

− φ

p



<r
1


x
t
− p



,


x
t
− p





tγφ

x
t



I − tA

Tx
t
− p






t

γφ

x
t

− Ap



I − tA


Tx
t
− p



≤ t


γφ

x
t

− Ap





1 − t
γ




x
t
− p



≤ t


γφ

x
t

− γφ

p







γφ

p

− Ap




1 − t
γ



x
t
− p


≤ tγr
1


x
t
− p



 t


γφ

p

− Ap




1 − t
γ



x
t
− p


,
2.10
therefore, x
t
− p≤γφp − Ap/γ − γr
1
. This implies the {x
t

} is bounded.
To prove that x
t
→ x  x ∈ FT as t → 0.
Since {x
t
} is bounded and E is reflexive, there exists a subsequence {x
t
n
} of {x
t
} such
that x
t
n
x

.Byx
t
− Tx
t
 tγφx
t
 − ATx
t
. We have x
t
n
− Tx
t

n
→ 0, as t
n
→ 0. Since E
satisfies Opial’s condition, it follows from Lemma 2.3 that x

∈ FT. We claim

x
t
n
− x


−→ 0. 2.11
By contradiction, there is a number ε
0
and a subsequence {x
t
m
} of {x
t
n
} such that x
t
m
− x

≥
ε

0
.FromLemma 2.8, there is a number r
ε
0
> 0 such that φx
t
m
 − φx

≤r
ε
0
x
t
m
− x

,we
write
x
t
m
− x

 t
m

γφ

x

t
m

− Ax




I − t
m
A

Tx
t
m
− x


, 2.12
to derive that

x
t
m
− x


q
 t
m

γφ

x
t
m

− Ax

,J
q

x
t
m
− x


  

I − t
m
A

Tx
t
m
− x


,J

q

x
t
m
− x



≤ t
m

γφ

x
t
m

− Ax

,J
q

x
t
m
− x






1 − t
m
γ


x
t
m
− x


q
.
2.13
It follows that

x
t
m
− x


q

1
γ

γφ


x
t
m

− Ax

,J
q

x
t
m
− x




1
γ

γφ

x
t
m

− γφ

x



,J
q

x
t
m
− x





γφ

x


− Ax

,J
q

x
t
m
− x





1
γ

γr
ε
0

x
t
m
− x


q


γφ

x


− Ax

,J
q

x
t

m
− x



.
2.14
Therefore,

x
t
m
− x


q


γφ

x


− Ax

,J
q

x
t

m
− x



γ − γr
ε
0
. 2.15
8 Fixed Point Theory and Applications
Using that the duality map J
q
is single valued and weakly sequentially continuous from E to
E

,by2.15,wegetthatx
t
m
→ x

. It is a contradiction. Hence, we have x
t
n
→ x

.
We next prove that x

solves the variational inequality 2.3. Since
x

t
 tγφ

x
t



I − tA

Tx
t
, 2.16
we derive that

A − γφ

x
t
 −
1
t

I − tA

I − T

x
t
. 2.17

Notice


I − T

x
t


I − T

z, J
q

x
t
− z




x
t
− z

q


Tx
t

− Tz

x
t
− z

q−1


x
t
− z

q


x
t
− z

q
 0.
2.18
It follows that, for z ∈ FT,

A − γφ

x
t
,J

q

x
t
− z


 −
1
t


I − tA

I − T

x
t
,J
q

x
t
− z


 −
1
t



I − T

x
t


I − T

z, J
q

x
t
− z

 

A

I − T

x
t
,J
q

x
t
− z





A

I − T

x
t
,J
q

x
t
− z


.
2.19
Now replacing t in 2.19 with t
n
and letting n →∞, noticing I−Tx
t
n
→ I−Tx

 0
for x


∈ FT,weobtainA − γφx

,J
q
x

− z≤0. That is, x

∈ FT is a solution of 2.3;
Hence x  x

by uniqueness. In a summary, we have shown that each cluster point of {x
t
} at
t → 0 equals x, therefore, x
t
→ x as t → 0.
Lemma 2.10 see, e.g., Mitrinovi
´
c 19, page 63. Let q>1. Then the following inequality holds:
ab ≤
1
q
a
q

q − 1
q
b
q/q−1

, 2.20
for arbitrary positive real numbers a, b.
Lemma 2.11. Let E be a q-uniformly smooth Banach space which admits a weakly sequentially
continuous duality mapping J
q
from E to E

and C be a nonempty convex subset of E. Assume
that T
i
: C → E is a countable family of λ
i
-strict pseudocontraction for some 0 <λ
i
< 1 and
inf{λ
i
: i ∈ N} > 0 such that F 


i1
FT
i

/
 ∅. Assume that {η
i
}

i1

is a positive sequence such that


i1
η
i
 1.Then


i1
η
i
T
i
: C → E is a λ-strict pseudocontraction with λ  inf{λ
i
: i ∈ N} and
F


i1
η
i
T
i
F.
Fixed Point Theory and Applications 9
Proof. Let
G
n

x  η
1
T
1
x  η
2
T
2
x  ··· η
n
T
n
x 2.21
and

n
i1
η
i
 1. Then, G
n
: C → E is a λ
i
-strict pseudocontraction with λ  min{λ
i
:1≤ i ≤
n}. Indeed, we can firstly see the case of n  2.


I − G

2

x −

I − G
2

y, J
q

x − y

 η
1

I − T
1

x  η
2

I − T
2

x − η
1

I − T
1


y − η
2

I − T
2

y, J
q

x − y


 η
1


I − T
1

x −

I − T
1

y, J
q

x − y

 η

2


I − T
2

x −

I − T
2

y, J
q

x − y

≥ η
1
λ
1


I − T
1
x − I − T
1
y


q

 η
2
λ
2


I − T
2
x − I − T
2
y


q
≥ λ

η
1



I − T
1

x −

I − T
1

y



q
 η
2



I − T
2

x −

I − T
2

y


q

≥ λ


I − G
2
x − I − G
2
y



q
,
2.22
which shows that G
2
: C → E is a λ-strict pseudocontraction with λ  min{λ
i
: i  1, 2}.By
the same way, our proof method easily carries over to the general finite case.
Next, we prove the infinite case. From the definition of λ-strict pseudocontraction, we
know


I − T
n

x −

I − T
n

y, J
q

x − y

≥ λ



I − T
n
x − I − T
n
y


q
. 2.23
Hence, we can get



I − T
n

x −

I − T
n

y




1
λ

1/q−1



x − y


. 2.24
Taking p ∈ FT
n
,from2.24, we have


I − T
n

x





I − T
n

x −

I − T
n

p





1
λ

1/q−1


x − p


. 2.25
Consquently, for all x ∈ E,ifF 


i1
FT
i

/
 ∅, η
i
> 0 i ∈ N and


i1
η
i
 1, then



i1
η
i
T
i
strongly converges. Let
Tx 


i1
η
i
T
i
x, 2.26
we have
Tx 


i1
η
i
T
i
x  lim
n →∞
n


i1
η
i
T
i
x  lim
n →∞
1

n
i1
η
i
n

i1
η
i
T
i
x. 2.27
10 Fixed Point Theory and Applications
Hence,


I − T

x −

I − T


y, J
q

x − y

 lim
n →∞

I −
1

n
i1
η
i
n

i1
η
i
T
i

x 

I −
1

n

i1
η
i
n

i1
η
i
T
i

y, J
q

x − y


 lim
n →∞
1

n
i1
η
i
n

i1
η
i



I − T
i

x −

I − T
i

y, J
q

x − y

≥ lim
n →∞
1

n
i1
η
i
n

i1
η
i
λ



I − T
i
x − I − T
i
y


q
≥ λ lim
n →∞






I −
1

n
i1
η
i
n

i1
η
i
T

i

x −

I −
1

n
i1
η
i
n

i1
η
i
T
i

y





q
 λ


I − Tx − I − Ty



q
.
2.28
So, we get T is λ-strict pseudocontraction.
Finally, we show F


i1
η
i
T
i
F. Suppose that x 


i1
η
i
T
i
x,itissufficient to show
that x ∈ F. Indeed, for p ∈ F, we have


x − p


q



x − p, J
q

x − p





i1
η
i
T
i
x − p, J
q

x − p





i1
η
i

T

i
x − p, J
q

x − p




x − p


q
− λ


i1
η
i

x − T
i
x

q
,
2.29
where λ  inf{λ
i
: i ∈ N}. Hence, x  T

i
x for each i ∈ N, this means that x ∈ F.
3. Main Results
Lemma 3.1. Let E be a real q-uniformly smooth, strictly convex Banach space and C be a closed
convex subset of E such that C ± C ⊂ C.LetC be also a sunny nonexpansive retraction of E.Let
φ : C → C be a MKC. Let A : C → C be a strongly positive linear bounded operator with the
coefficient
γ>0 such that 0 <γ<γ and T
i
: C → E be λ
i
-strictly pseudo-contractive non-self-
mapping such that F 


i1
FT
i

/
 ∅.Letλ  inf {λ
i
: i ∈ N} > 0.Let{x
n
} be a sequence of C
generated by 1.12 with the sequences {α
n
},{β
n
} and {γ

n
} in 0, 1, assume for each n, {η
n
i
} be an
infinity sequence of positive number such that


i1
η
n
i
 1 for all n and η
n
i
> 0. The following
control conditions are satisfied
i


i1
α
n
 ∞, lim
n →∞
α
n
 0,
ii 1 − α ≤ 1 − β
n

≤ μ, μ  min {1, {qλ/C
q
}
1/q−1
} for some α ∈ 0, 1 and for all n ≥ 0,
Fixed Point Theory and Applications 11
iii lim
n →∞
β
n1
− β
n
0, lim
n →∞


i1

n1
i
− η
n
i
|  0,
iv 0 < lim inf
n →∞
γ
n
≤ lim sup
n →∞

γ
n
< 1.
Then, lim
n →∞
x
n1
− x
n
  0.
Proof. Write, for each n ≥ 0, B
n



i1
η
n
i
T
i
.ByLemma 2.11, each B
n
is a λ-strict
pseudocontraction on C and FB
n
F for all n and the algorithm 1.12 can be rewritten
as
x
1

 x ∈ C,
y
n
 P
C

β
n
x
n


1 − β
n

B
n
x
n

,
x
n1
 α
n
γφ

x
n


 γ
n
x
n


1 − γ
n

I − α
n
A

y
n
,n≥ 1.
3.1
The rest of the proof will now be split into two parts.
Step 1. First, we show that sequences {x
n
} and {y
n
} are bounded. Define a mapping
L
n
x : P
C

β
n

x 

1 − β
n

B
n
x

. 3.2
Then, from the control condition ii, Lemmas 2.5 and 2.6,weobtainL
n
: C → C is
nonexpansive. Taking a point p ∈ F,byLemma 2.4, we can get L
n
p  p. Hence, we have


y
n
− p





L
n
x
n

− p





x
n
− p


. 3.3
From definition of MKC and Lemma 2.8, for each ε>0 there is a number r
ε
∈ 0, 1,if
x
n
− z <εthen φx
n
 − φz <ε;Ifx
n
− z≥ε then φx
n
 − φz≤r
ε
x
n
− z. It follow
3.1



x
n1
− p





α
n
γφ

x
n

 γ
n
x
n


1 − γ
n

I − α
n
A

y

n
− p





α
n

γφ

x
n

− Ap

 γ
n

x
n
− p



1 − γ
n

I − α

n
A

y
n
− p





1 − γ
n
− α
n
γ



x
n
− p


 γ
n


x
n

− p


 α
n


γφ

x
n

− Ap




1 − α
n
γ



x
n
− p


 α
n

γ max

r
ε


x
n
− p




 α
n


γφ

p

− Ap


 max

1 − α
n
γ




x
n
− p


 α
n
γr
ε


x
n
− p


 α
n


γφ

p

− Ap


,


1 − α
n
γ



x
n
− p


 α
n
γε  α
n


γφ

p

− Ap



 max

1 − α
n

γ  α
n
γr
ε



x
n
− p


 α
n


γφ

p

− Ap


,

1 − α
n
γ




x
n
− p


α
n
γε  α
n


γφ

p

− Ap



 max

1 −

α
n
γ − α
n
γr
ε




x
n
− p


 α
n


γφ

p

− Ap


,

1 − α
n
γ



x
n
− p



α
n
γε  α
n


γφ

p

− Ap



.
3.4
12 Fixed Point Theory and Applications
By induction, we have


x
n
− p


≤ max




x
0
− p


,


γφ

p

− Ap


γ − γr
ε
,
γε 


γφ

p

− Ap


γ


,n≥ 1, 3.5
which gives that the sequence {x
n
} is bounded, so are {y
n
} and {L
n
x
n
}.
Step 2. In this part, we shall claim that x
n1
− x
n
→0, as n →∞.From3.1,weget
x
n1
 α
n
γφ

x
n

 γ
n
x
n



1 − γ
n

I − α
n
A

L
n
x
n
. 3.6
Define
x
n1


1 − γ
n

l
n
 γ
n
x
n
, ∀n ≥ 0, 3.7
where
l

n

x
n1
− γ
n
x
n
1 − γ
n
. 3.8
It follows that
l
n1
− l
n

α
n1
γφ

x
n1

 γ
n1
x
n1



1 − γ
n1

I − α
n1
A

L
n1
x
n1
− γ
n1
x
n1
1 − γ
n1

α
n
γφ

x
n

 γ
n
x
n



1 − γ
n

I − α
n
A

L
n
x
n
− γ
n
x
n
1 − γ
n

α
n1

γφ

x
n1

− AL
n1
x

n1

1 − γ
n1

α
n

γφ

x
n

− AL
n
x
n

1 − γ
n
 L
n1
x
n1
− L
n
x
n
,
3.9

which yields that

l
n1
− l
n


α
n1


γφ

x
n1

− AL
n1
x
n1


1 − γ
n1

α
n



γφ

x
n

− AL
n
x
n


1 − γ
n


L
n1
x
n1
− L
n
x
n


α
n1


γφ


x
n1

− AL
n1
x
n1


1 − γ
n1

α
n


γφ

x
n

− AL
n
x
n


1 − γ
n



L
n1
x
n1
− L
n1
x
n



L
n1
x
n
− L
n
x
n


α
n1


γφ

x

n1

− AL
n1
x
n1


1 − γ
n1

α
n


γφ

x
n

− AL
n
x
n


1 − γ
n



x
n1
− x
n



L
n1
x
n
− L
n
x
n

.
3.10
Fixed Point Theory and Applications 13
Next, we estimate L
n1
x
n
− L
n
x
n
.Noticethat

L

n1
x
n
− L
n
x
n




P
C

β
n1
x
n


1 − β
n1

B
n1
x
n

− P
C


β
n
x
n


1 − β
n

B
n
x
n







β
n1
x
n


1 − β
n1


B
n1
x
n



β
n
x
n


1 − β
n

B
n
x
n






β
n1
− β
n




x
n
− B
n1
x
n



1 − β
n


B
n1
x
n
− B
n
x
n




β
n1

− β
n



x
n
− B
n1
x
n



1 − β
n



i−1



η
n1
i
− η
n
i





T
i
x
n

.
3.11
Substituting 3.11 into 3.10, we have

l
n1
− l
n


α
n1


γφ

x
n1

− AL
n1
x

n1


1 − γ
n1

α
n


γφ

x
n

− AL
n
x
n


1 − γ
n


x
n1
− x
n





β
n1
− β
n



x
n
− B
n1
x
n



1 − β
n



i1



η
n1

i
− η
n
i




T
i
x
n

.
3.12
Hence, we have

l
n1
− l
n



x
n1
− x
n



α
n1


γφ

x
n1

− AL
n1
x
n1


1 − γ
n1

α
n


γφ

x
n

− AL
n
x

n


1 − γ
n


x
n
− B
n1
x
n



β
n1
− β
n




1 − β
n



i1




η
n1
i
− η
n
i




T
i
x
n

.
3.13
Observing conditions i, iii, iv, and the boundedness of {x
n
}, {y
n
}, {fx
n
}, {T
n
x
n

},
{T
n
y
n
} it follows that
lim sup
n →∞
{

l
n1
− l
n



x
n1
− x
n

}
≤ 0. 3.14
Thus by Lemma 2.1, we have lim
n →∞
l
n
− x
n

  0.
From 3.7, we have
x
n1
− x
n


1 − γ
n


l
n
− x
n

. 3.15
Therefore,
lim
n →∞

x
n1
− x
n

 0. 3.16
Theorem 3.2. Let E be a real q-uniformly smooth, strictly convex Banach space which admits a
weakly sequentially continuous duality mapping J

q
from E to E

and C be a closed convex subset of
E which be also a sunny nonexpansive retraction of E such that C ± C ⊂ C.Letφ : C → C be
14 Fixed Point Theory and Applications
a MKC. Let A : C → C be a strongly positive linear bounded operator with the coefficient
γ>0
such that 0 <γ<
γ and T
i
: C → E be λ
i
-strictly pseudo-contractive non-self-mapping such
that F 


i1
FT
i

/
 ∅.Letλ  inf {λ
i
: i ∈ N} > 0.Let{x
n
} be a sequence of C generated
by 1.12 with the sequences {α
n
},{β

n
} and {γ
n
} in 0, 1, assume for each n, Σ

i1
η
n
i
 1 for all
n and η
n
i
> 0 for all i ∈ N. They satisfy the conditions (i), (ii), (iii), (iv) of Lemma 3.1 and (v)
lim
n →∞
β
n
 α, lim
n →∞


i1

n
i
− η
i
|  0 and



i1
η
i
 1.Then{x
n
} converges strongly to x ∈ F,
which also solves the following variational inequality

γφ

x

− Ax, J
q

p − x

≤ 0, ∀p ∈ F. 3.17
Proof. From 3.1,weobtain

L
n
x
n
− x
n




x
n
− x
n1



x
n1
− L
n
x
n



x
n
− x
n1




α
n
γφ

x
n


 γ
n

x
n
− L
n
x
n

− α
n
AL
n
x
n




x
n
− x
n1

 α
n




γφ

x
n





AL
n
x
n


 γ
n

x
n
− L
n
x
n

.
3.18
So L
n

x
n
− x
n
≤1/1 − γ
n
x
n
− x
n1
  α
n
γφx
n
  AL
n
x
n
, which together with the
condition i, iv and Lemma 3.1 implies
lim
n →∞

L
n
x
n
− x
n


 0. 3.19
Define B 


i1
η
i
T
i
, then B : C → E is a λ-strict pseudocontraction such that FB


i1
FT
i
F by Lemma 2.11, furthermore B
n
x → Bx as n →∞for all x ∈ C. Defines
T : C → E by
Tx  αx 

1 − α

Bx. 3.20
Then, T is nonexpansive with FTFB by Lemma 2.5. It follows from Lemma 2.4 that
FP
C
TFTF.Noticethat

P

C
Tx
n
− x
n



x
n
− L
n
x
n



L
n
x
n
− P
C
Tx
n



x
n

− L
n
x
n




β
n
x
n


1 − β
n

B
n
x
n


αx
n


1 − α

Bx

n





x
n
− L
n
x
n





β
n
− α


x
n
− B
n
x
n




1 − α

B
n
x
n
− Bx
n





x
n
− L
n
x
n



β
n
− a


x
n

− B
n
x
n



1 − α


B
n
x
n
− Bx
n

3.21
which combines with 3.19 yielding that
lim
n →∞

P
C
Tx
n
− x
n

 0. 3.22

Fixed Point Theory and Applications 15
Next, we show that
lim sup
n →∞

γφ

x

− Ax, J
q

x
n
− x


≤ 0, 3.23
where x  lim
t → 0
x
t
with x
t
being the fixed point of the contraction
x −→ tγφ

x




1 − tA

P
C
Tx. 3.24
To see this, we take a subsequence {x
n
k
} of {x
n
} such that
lim sup
n →∞

γφ

x

− Ax, J

x
n
− x


 lim
k →∞

γφ


x

− Ax, J

x
n
k
− x


. 3.25
We may also assume that x
n
k
q.Notethatq ∈ FT in virtue of Lemma 2.3 and 3.22.It
follow from the Lemma 2.9 and J
q
is weak weakly sequentially continuous duality mapping
that
lim sup
n →∞

γφ

x

− Ax, J
q


x
n
− x


 lim
k →∞

γφ

x

− Ax, J
q

x
n
k
− x




γφ

x

− Ax, J
q


q − x

≤ 0.
3.26
Hence, we have
lim sup
n →∞

γφ

x

− Ax, J
q

x
n
− x


≤ 0. 3.27
Finally, We show x
n
− x→0. By contradiction, there is a number ε
0
such that
lim sup
n →∞

x

n
− x

≥ ε
0
. 3.28
Case 1. Fixed ε
1
ε
1

0
, if for some n ≥ N ∈ N such that x
n
− x≥ε
0
− ε
1
, and for the other
n ≥ N ∈ N such that x
n
− x <ε
0
− ε
1
.
Let
M
n


q

γφ

x

− Ax, J

x
n1
− x



ε
0
− ε
1

q
. 3.29
16 Fixed Point Theory and Applications
From 3.23, we know lim sup
n →∞
M
n
≤ 0. Hence, there is a number N, when n>N,we
have M
n
≤ γ − γ. We extract a number n

0
≥ N stastifying x
n
0
− x <ε
0
− ε
1
, then we estimate
x
n
0
1
− x.

x
n
0
1
− x

q



α
n
0
γφ


x
n
0

 γ
n
0
x
n
0


1 − γ
n
0

I − α
n
0
A

y
n
0
− x


q





1 − γ
n
0

I − α
n
0
A

y
n
0
− xα
n
0

γφ

x
n
0

− Ax

 γ
n
0


x
n
0
− x



q


1 − γ
n
0

I − α
n
0
A

y
n
0
− x

 α
n
0

γφ


x
n
0

−Ax

γ
n
0

x
n
0
− x

,J
q

x
n
0
1
− x


 

1−γ
n
0


I−α
n
0
A

y
n
0
− x

,J
q

x
n
0
1
− x



α
n
0

γφ

x
n

0

−Ax

,J
q

x
n
0
1
− x




γ
n
0

x
n
0
− x

,J
q

x
n

0
1
− x


 

1−γ
n
0

I−α
n
0
A

y
n
0
− x

,J
q

x
n
0
1
− x


α
n
0
γ

φ

x
n
0

−φ

x

,J
q

x
n
0
1
− x


 α
n
0
γφ


x

− Ax, J
q

x
n
0
1
− x

 

γ
n
0

x
n
0
− x

,J
q

x
n
0
1
− x





1 − γ
n
0
− α
n
0
γ


x
n
0
− x

x
n
0
1
− x

q−1
 α
n
0
γ



φ

x
n
0

− φ

x




x
n
0
1
− x

q−1
 α
n
0
γφ

x

− Ax, J
q


x
n
0
1
− x

  γ
n
0

x
n
0
− x

x
n
0
1
− x

q−1
<

1 − α
n
0

γ − γ



ε
0
− ε
1


x
n
0
1
− x

q−1
 α
n
0

γφ

x

− Ax, J
q

x
n
0
1

− x



1
q

1 − α
n
0

γ − γ

q

ε
0
− ε
1

q

q − 1
q

x
n
0
1
− x


q
 α
n
0

γφ

x

− Ax, J
q

x
n
0
1
− x


by Lemma 2.10,
3.30
which implies that

x
n
0
1
− x


q
<

1 − α
n
0

γ − γ

q

ε
0
− ε
1

q
 qα
n
0

γφ

x

− Ax, J
q

x
n

0
1
− x


<

1 − α
n
0

γ − γ


ε
0
− ε
1

q
 qα
n
0

γφ

x

− Ax, J
q


x
n
0
1
− x




1 − α
n
0

γ − γ − M
n


ε
0
− ε
1

q


ε
0
− ε
1


q
.
3.31
Hence, we have

x
n
0
1
− x


0
− ε
1
. 3.32
In the same way, we can get

x
n
− x


0
− ε
1
, ∀n ≥ n
0
. 3.33

It contradict the lim sup
n →∞
x
n
− x≥ε
0
.
Fixed Point Theory and Applications 17
Case 2. Fixed ε
1
ε
1

0
,ifx
n
− x≥ε
0
− ε
1
for all n ≥ N ∈ N,fromLemma 2.8, there is a
number r, 0 <r<1 such that


φ

x
n

− φ


x



≤ r

x
n
− x

,n≥ N. 3.34
It follow 3.1 that

x
n1
− x

q



α
n
γφ

x
n

 γ

n
x
n


1 − γ
n

I − α
n
A

y
n
− x


q



1 − γ
n
I − α
n
Ay
n
− xα
n
γφx

n
 − Axγ
n

x
n
− x



q


1 − γ
n

I − α
n
A

y
n
− x

 α
n

γφ

x

n

− Ax

 γ
n

x
n
− x

,J
q

x
n1
− x




1 − γ
n

I − α
n
A

y
n

− x

,J
q

x
n1
− x




α
n

γφ

x
n

− Ax

,J
q

x
n1
− x





γ
n

x
n
− x

,J
q

x
n1
− x




1 − γ
n

I − α
n
A

y
n
− x


,J
q

x
n1
− x




α
n

γφ

x
n

− φ

x


,J
q

x
n1
− x



 α
n

γφ

x − Ax

,J
q

x
n1
− x




γ
n

x
n
− x

,J
q

x
n1

− x




1 − γ
n
− α
n
γ


x
n
− x

x
n1
− x

q−1
 α
n
γr

x
n
− x

x

n1
− x

q−1
 α
n
γφ

x

− Ax, J
q

x
n1
− x

  γ
n

x
n
− x

x
n1
− x

q−1



1 − α
n

γ − γr


x
n
− x

x
n1
− x

q−1
 α
n

γφ

x

− Ax, J
q

x
n1
− x





1 − α
n

γ − γr

1
q

x
n
− x

q

q − 1
q

x
n1
− x

q
 α
n
γφ

x


− Ax, J
q

x
n1
− x

 by Lemma 2.10,
3.35
which implies that

x
n1
− x

q


1 − α
n

γ − γr


x
n
− x

q

 qα
n

γφ

x

− Ax, J
q

x
n1
− x


. 3.36
Apply Lemma 2.2 to 3.36 to conclude x
n
→ x as n →∞. It contradict the x
n
− x≥ε
0
− ε
1
.
This completes the proof.
Corollary 3.3. Let D be a closed convex subset of a Hilbert space H such that D ± D ⊂ D and f ∈ D
with the coefficient 0 <α<1.LetA : C → C be a strongly positive linear bounded operator with
the coefficient
γ>0 such that 0 <γ<γ and T

i
: C → E be λ
i
-strictly pseudo-contractive non-self-
mapping such that F 


i1
FT
i

/
 ∅.Letλ  inf {λ
i
: i ∈ N} > 0.Let{x
n
} be a sequence of C
generated by 1.12 with the sequences {α
n
}, {β
n
}, and {γ
n
} in 0, 1, assume for each n, Σ

i1
η
n
i
 1

for all n and η
n
i
> 0 for all i ∈ N. They satisfy the conditions (i), (ii), (iii), (iv) of Lemma 3.1 and (v)
18 Fixed Point Theory and Applications
lim
n →∞
β
n
 α, lim
n →∞


i1

n
i
− η
i
|  0 and


i1
η
i
 1.Then{x
n
} converges strongly to x ∈ F,
which also solves the following variational inequality


γφ

x

− Ax, p − x

≤ 0, ∀p ∈ F. 3.37
Remark 3.4. We conclude the paper with the following observations.
i Theorem 3.2 improve and extends Theorem 3.1 of Zhang and Su 17, Theorem 1
of Yao et al. 11, and Theorem 2.2 of Cai and Hu 12. Corollary 3.3 also improve
and extend Theorem 2.1 of Choa et al. 20, Theorem 2.1 of Jung 21, Theorem 2.1
of Qin et al. 22 and includes those results as special cases. Especially, Our results
extends above results form contractions to more general Meir-Keeler contraction
MKC, for short. Our iterative scheme studied in present paper can be viewed as
a refinement and modification of the iterative methods in 12, 13, 17, 22.Onthe
other hand, our iterative schemes concern an infinite countable family of λ
i
-strict
pseudocontractions mappings, in this respect, they can be viewed as an another
improvement.
ii The advantage of the results in this paper is that less restrictions on the parameters

n
}, {β
n
}, {γ
n
} and {η
n
i

} are imposed. Our results unify many recent results
including the results in 12, 17, 22.
iii It is worth noting that we obtained two strong convergence results concerning an
infinite countable family of λ
i
-strict pseudocontractions mappings. Our result is
new and the proofs are simple and different from those in 11, 12, 17, 19–25.
Acknowledgments
The authors are extremely grateful to the referee and the editor for their useful comments and
suggestions which helped to improve this paper. This work was supported by the National
Science Foundation of China under Grant no. 10771175.
References
1 F. E. Browder, “Convergence theorems for sequences of nonlinear operators in Banach spaces,”
Mathematische Zeitschrift, vol. 100, pp. 201–225, 1967.
2 J P. Gossez and E. Lami Dozo, “Some geometric properties related to the fixed point theory for
nonexpansive mappings,” Pacific Journal of Mathematics, vol. 40, pp. 565–573, 1972.
3 F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbert
space,” Journal of Mathematical Analysis and Applications, vol. 20, pp. 197–228, 1967.
4 S. Banach, “Surles ope’rations dans les ensembles abstraits et leur application aux e’quations
inte’grales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.
5 A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and
Applications, vol. 28, pp. 326–329, 1969.
6 T H. Kim and H K. Xu, “Strong convergence of modified Mann iterations,” Nonlinear Analysis.
Theory, Methods & Applications, vol. 61, no. 1-2, pp. 51–60, 2005.
7 K. Nakajo and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and
nonexpansive semigroups,” Journal of Mathematical Analysis and Applications, vol. 279, no. 2, pp. 372–
379, 2003.
8 H. Zhou, “Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces,”
Nonlinear Analysis, Theory, Methods and Applications, vol. 69, no. 2, pp. 456–462, 2008.
Fixed Point Theory and Applications 19

9 X. Qin and Y. Su, “Approximation of a zero point of accretive operator in Banach spaces,” Journal of
Mathematical Analysis and Applications, vol. 329, no. 1, pp. 415–424, 2007.
10 G. Marino and Hong-Kun Xu, “Weak and strong convergence theorems for strict pseudo-contractions
in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 329, no. 1, pp. 336–346, 2007.
11 Y. Yao, R. Chen, and J C. Yao, “Strong convergence and certain control conditions for modified Mann
iteration,” Nonlinear Analysis, Theory, Methods and Applications, vol. 68, no. 6, pp. 1687–1693, 2008.
12 G. Cai and C. S. Hu, “Strong convergence theorems of a general iterative process for a finite family
of λ
i
-strict pseudo-contractions in q-uniformly smooth Banach spaces,” Computers & Mathematics with
Applications, vol. 59, no. 1, pp. 149–160, 2010.
13 T. Suzuki, “Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter non-
expansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications,
vol. 305, no. 1, pp. 227–239, 2005.
14 H. K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory and
Applications, vol. 116, no. 3, pp. 659–678, 2003.
15 J. S. Jung, “Iterative approaches to common fixed points of nonexpansive mappings in Banach
spaces,” Journal of Mathematical Analysis and Applications, vol. 302, no. 2, pp. 509–520, 2005.
16 S Y. Matsushita and W. Takahashi, “Strong convergence theorems for nonexpansive nonself-
mappings without boundary conditions,” Nonlinear Analysis. Theory, Methods & Applications, vol. 68,
no. 2, pp. 412–419, 2008.
17 H. Zhang and Y. Su, “Strong convergence theorems for strict pseudo-contractions in q-uniformly
smooth Banach spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 9, pp. 3236–
3242, 2009.
18 T. Suzuki, “Moudafi’s viscosity approximations with Meir-Keeler contractions,” Journal of Mathemati-
cal Analysis and Applications, vol. 325, no. 1, pp. 342–352, 2007.
19 D. S. Mitrinovi
´
c, Analytic Inequalities, Springer, New York, NY, USA, 1970.
20 Y.J.Cho,S.M.Kang,andX.Qin,“Someresultsonk-strictly pseudo-contractive mappings in Hilbert

spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 5, pp. 1956–1964, 2009.
21 J. S. Jung, “Strong convergence of iterative methods for k-strictly pseudo-contractive mappings in
Hilbert spaces,” Applied Mathematics and Computation, vol. 215, no. 10, pp. 3746–3753, 2010.
22 X. Qin, M. Shang, and S. M. Kang, “Strong convergence theorems of modified Mann iterative process
for strict pseudo-contractions in Hilbert spaces,” Nonlinear Analysis. Theory, Methods & Applications,
vol. 70, no. 3, pp. 1257–1264, 2009.
23 A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of Mathematical
Analysis and Applications, vol. 241, no. 1, pp. 46–55, 2000.
24 G. Marino and H K. Xu, “A general iterative method for nonexpansive mappings in Hilbert spaces,”
Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43–52, 2006.

25 H. Zhou, “Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces,”
Journal of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 546–556, 2008.

×