Tải bản đầy đủ (.pdf) (9 trang)

Live gt1 tích phân hàm hữu tỉ thầy lam trường

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (856.79 KB, 9 trang )

Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

LIVE: TOÁN CAO CẤP – GT1
CHƯƠNG VI: NGUYÊN HÀM & TÍCH PHÂN BẤT ĐỊNH
TÍCH PHÂN CÁC HÀM HỮU TỈ + LƯỢNG GIÁC

A. KIẾN THỨC
III. TÍCH PHÂN CÁC HÀM SỐ HỮU TỈ
1. Tích phân các hàm số hữu tỉ đơn giản
I:

A

 x − a dx = A ln x − a + c


II:

A

( x − a)

k

dx =

A
1
+c
1 − k ( x − a ) k −1


2


p 
p2 
Mx + N
III:  2
dx → x 2 + px + q =  x +  +  q − 
2 
4 
x + px + q


IV:



(x

Mx + N
2

+ px + q

)

k

dx : Tương tự III


 p4
= a2
q −
4
III-IV -> Đặt 
 x + p = t  dx = dt

2
2. Tích phân các hàm số hữu tỉ bất kỳ
+) Dạng tổng quát của hàm hữu tỉ: y = f (x) =

Pn (x)
Qm (x)

Với Pn (x), Qn (x) là các đa thức bậc n, m không nghiệm chung
+) n  m → hàm hữu tỉ khơng thực sự → có thể phân tích thành tổng của một đa thức và 1 hàm
bằng cách chia tử cho mẫu
_________________________________________________________________________________________________________________________________________________________________________________________________________________

Thầy Phạm Ngọc Lam Trường
1


Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

+) Ta chỉ xét n < m: các hàm hữu tỉ thật sự
→ Ta tiến hành phân tích y =

=


A1

( x − a)

α

+

A2

( x − a)

α −1

+ ... +

Pn (x)
Qm (x)


B1x + C1
+ ... +
( x − a)
x 2 + px + q

(

B2 x + C 2


+

) (x
β

2

+ px + q

)

β −1

+ ... +

Bβ x + C β
x 2 + px + q

Trong đó A1, A2...,B1, B2...,C1, C2,... gọi là hệ số bất định, ta có thể tìm ra bằng cách quy đồng hai vế
rồi đồng nhất hệ số hai vế.
IV. TÍCH PHÂN CÁC HÀM LƯỢNG GIÁC
1. Dạng 1. I =  R ( sinx,cosx ) dx

a) Trường hợp chung: Đặt tan

+) x = 2arctant  dx =

+) sinx =

x

=t
2

2dt
1+ t2

2t
1− t2
,
cosx
=
1+ t2
1+ t2

b) Các trường hợp đặc biệt:


R ( sinx,cosx ) = −R ( −sinx,cosx )  Đặt t = cosx .



R ( sinx,cosx ) = − R ( sinx, −cosx )  Đặt t = sinx



R ( sinx,cosx ) = R ( −sinx, −cosx )  Đặt t = tan x

2. Dạng 2: I =  sinaxcosbxdx ,  sinaxsinbxdx,  cosaxcosbxdx .
1
 sin ( a + b ) x + sin ( a − b ) x 

2
1
cosaxcosbx = cos ( a + b ) x + cos ( a − b ) x  .
2
1
sinaxsinbx = cos ( a − b ) x − cos ( a + b ) x 
2

sinaxcosbx =
→ Dùng các công thức:

_________________________________________________________________________________________________________________________________________________________________________________________________________________

Thầy Phạm Ngọc Lam Trường
2


Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

V. DẠNG MỞ RỘNG

( )

1. Dạng:  R e x dx .
+) Đặt e x = t  x = lnt,dt = e x dx = t  dx  dx =
→ I =  R (t )

dt
t


dt
là tích phân hàm hữu tỉ của t
t

2. Dạng:  R ( shx,chx ) dx

shx =

ex − e−x
ex + e−x
;chx =
 Tương tự dạng R e x .
2
2

( )

B. BÀI TẬP
Bài 1: Tính các tích phân sau:
a) 

x
dx
x + 3x + 2
2

b) 

(x


dx
2

+ 2x + 5

)

2

c) 

x+2
x − 5x + 6
2

dx

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________

Thầy Phạm Ngọc Lam Trường
3


Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
Bài 2: Tính các tích phân sau:
a) 

sinx − cosx + 2
dx
1 + sinx + cosx

b) 

dx
sinxcos 4 x


c) 

dx
cosx 3 sin2 x

d)  sinxsin ( x + y ) dx

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________

Thầy Phạm Ngọc Lam Trường
4


Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________

Thầy Phạm Ngọc Lam Trường
5


Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

Bài 3: Tính các tích phân sau:
a) 

e 2x

dx
1 + ex

b) 

shx
ch2x

dx

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________

_________________________________________________________________________________________________________________________________________________________________________________________________________________


Thầy Phạm Ngọc Lam Trường
6


Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

Bài 4: Tính các tích phân sau:
a) 

b) 

( 2x + 1) dx
( x + 2)( x + 3)
x2

( x + 1) ( x

2

)

+1

dx

c) 

x2 + 2

dx
x3 + x

d) 

dx
(x + 2)2 (x + 3)2

e) 

x5 + x4 − 8
dx
x 3 − 4x

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________

_______________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________

Thầy Phạm Ngọc Lam Trường
7


Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________

_______________________________________________________________________________________
_________________________________________________________________________________________________________________________________________________________________________________________________________________

Thầy Phạm Ngọc Lam Trường
8


Học online tại:
_________________________________________________________________________________________________________________________________________________________________________________________________________________

_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
__HẾT__


_________________________________________________________________________________________________________________________________________________________________________________________________________________

Thầy Phạm Ngọc Lam Trường
9



×