CHUYÊN ĐỀ 6: Các bài toán hình học phẳng
có nội dung chứng minh, tính toán.
Bài 1: Cho tam giác OAB cân đỉnh O và đường tròn tâm O có bán kính R thay đổi
(R<OA).Từ A và B vẽ hai tiếp tuyến AC và BD với đường tròn .Hai tiếp tuyến này
không đối xứng với nhau qua trục đối xứng của tam giác và chúng cắt nhau ở M.
a)Chứng minh rằng bốn điểm O,A,M,B cùng thuộc đường tròn.Tìm tập hợp các
điểm M.
b)Trên tia đối của tia MA lấy MP = BM.Tìm tập hợp các điểm P.
c)CMR: MA.MB = |OA
2
- OM
2
|.
Giải:
a)Gọi I,T lần lượt là các điểm tiếp xúc của tiếp tuyến kẻ từ A và B.
Dễ thấy:
OIA =
OTB (cạnh huyền-cạnh góc vuông).
Do đó:
IAO =
OBT.Suy ra tứ giác OAMB nội tiếp được.
b) Có:
APB =
2
1
.
AMB =
2
1
.(180
0
-
AOB)= const.
Vậy có thể chứng minh được rằng quĩ tích các điểm P là cung chứa góc nhìn AB
một góc không đổi là
2
1
.(180
0
-
AOB).
c)Xét vị trí của M mà OM > OA(trường hợp ngược lại hoàn toàn tương tự).
Ta có: |OA
2
- OM
2
| = OM
2
-OA
2
= MI
2
- IA
2
= (MI-IA).(MI + IA) = AM.(MT +
TB)=
=MA.MB (đpcm).
Bài 2: Cho điểm P nằm ngòai đường tròn (O); Một cát tuyến qua P cắt (O) ở A và
B.Các tiếp tuyến kẻ từ A và B cắt nhau ở M. Dựng MH vuông góc với OP.
a)CMR: 5 điểm O,A,B,M,H nằm trên 1 đường tròn.
b)CMR: H cố định khi cát tuyến PAB quay quanh P. Từ đó suy ra tập hợp điểm M.
c)Gọi I là trung điểm của AB và N là giao điểm của PA với MH.CMR:
PA.PB=PI.PN
và IP.IN=IA
2
.
Giải:
a) Nhận thấy 5 điểm O,A,B,M,H nằm trên đường tròn đường kính OM (đpcm).
b)Phương tích của điểm P đối với đường tròn đường kính OM là:
PH.PO=PA.PB=const (1). Suy ra H cố định nằm trên đoạn PO.
Từ đó dễ dàng suy ra được rằng quĩ tích điểm M là đường thẳng d qua H vuông
góc với PO trừ đi đoạn TV với T,V là giao điểm của d với (O).
c)Phương tích của điểm P đối với đường tròn đường kính ON là: PN.PI=PH.PO (2)
Từ (2) và (1) suy ra: PA.PB=PI.PN (đpcm).
Lại có:
IP.IN=(NI+NP).IN=IN
2
+ NI.NP (3)
Phương tích của điểm N đối với đường tròn đường kính PM là: NP.NI=NH.NM
Phương tích của điểm N đối với đường tròn đường kínhOM là: NH.NM=NA.NB
Suy ra: NI.NP=NA.NB (4)
Từ (3) và (4) suy ra:
IP.IN=IN
2
+ NA.NB
Ta sẽ chứng minh: IN
2
+ NA.NB=IA
2
(5).Thật vậy:
(5)
NA.NB=IA
2
-IN
2
NA.NB=(IA-IN).(IA+IN)
NA.NB=NA.(IB+IN)
NA.NB=NA.NB (luôn đúng)
Vậy ta có đpcm.
Bài 3:Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn bán kính R,tâm
O.
a)Chứng minh BC = 2R.SinA
b)Chứng minh:SinA + SinB + SinC < 2.(cosA + cosB + cosC) trong đó A,B,C là
ba góc của tam giác.
Giải:
a)Kéo dài BO cắt (O) tại điểm thứ hai là D.
Tam giác vuông BCD có:BC = BD.Sin(
BDC) = 2R.SinA (đpcm)
b)Kéo dài AO cắt (O) tại điểm thứ hai là E.
Hoàn toàn tương tự phần a) ta có:AC=2R.SinB. Ta có:
SinB= CosACosCCDBCosADBCos
BD
CD
BD
AD
R
CDAD
R
AC
)()(
2
2
(1)
Tương tự ta cũng có: SinC < CosA + CosB (2) và SinA < CosB + CosC (3).
Cộng (1),(2),(3) theo vế ta có đpcm.