Tải bản đầy đủ (.pdf) (12 trang)

Báo cáo hóa học: " Research Article A New Subclass of Analytic Functions Defined by Generalized Ruscheweyh Differential Operator" potx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (485.63 KB, 12 trang )

Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2008, Article ID 134932, 12 pages
doi:10.1155/2008/134932
Research Article
A New Subclass of Analytic Functions Defined by
Generalized Ruscheweyh Differential Operator
Serap Bulut
Civil Aviation College, Kocaeli University, Arslanbey Campus, 41285
˙
Izmit-Kocaeli, Turkey
Correspondence should be addressed to Serap Bulut,
Received 1 July 2008; Accepted 3 September 2008
Recommended by Narendra Kumar Govil
We investigate a new subclass of analytic functions in the open unit disk
U which is defined by
generalized Ruscheweyh differential operator. Coefficient inequalities, extreme points, and the
integral means inequalities for the fractional derivatives of order p  η 0 ≤ p ≤ n, 0 ≤ η<1
of functions belonging to this subclass are obtained.
Copyright q 2008 Serap Bulut. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
1. Introduction
Throughout this paper, we use the following notations:
N : {1, 2, 3, },
N
0
: N ∪{0},
R
−1
: {u ∈ R : u>−1},


R
0
−1
: R
−1
\{0}.
1.1
Let A denote the class of all functions of the form
fzz 


n2
a
n
z
n
, 1.2
which are analytic in the open unit disk U : {z ∈ C : |z| < 1}.
For f
j
∈Agiven by
f
j
zz 


n2
a
n,j
z

n
j  1, 2, 1.3
2 Journal of Inequalities and Applications
the Hadamard product or convolution f
1
∗f
2
of f
1
and f
2
is defined by
f
1
∗f
2
zz 


n2
a
n,1
a
n,2
z
n
. 1.4
Using the convolution 1.4, Shaqsi and Darus 1 introduced the generalization of the
Ruscheweyh derivative as f ollows.
For f ∈A,λ≥ 0, and u ∈ R

−1
, we consider
R
u
λ
fz
z
1 − z
u1
∗R
λ
fzz ∈ U, 1.5
where R
λ
fz1 − λfzλzf

z,z∈ U.
If f ∈Ais of the form 1.2, then we obtain the power series expansion of the form
R
u
λ
fzz 


n2
1 n − 1λCu, na
n
z
n
, 1.6

where
Cu, n
1  u
n−1
n − 1!
n ∈ N, 1.7
and where a
n
is the Pochhammer symbol or shifted factorial defined in terms of the
Gamma function by
a
n
:
Γa  n
Γa


1, if n  0,a∈ C \{0},
aa  1 ···a  n − 1, if n ∈ N,a∈ C.
1.8
In the case m ∈ N
0
, we have
R
m
λ
fz
zz
m−1
fz

m
m!
, 1.9
and for λ  0, we obtain uth Ruscheweyh derivative introduced in 2, R
m
0
 R
m
.
Using the generalized Ruscheweyh derivative operator R
u
λ
, we define the following
classes.
Definition 1.1. Let S
λ
u, v; α be the class of functions f ∈Asatisfying
Re

R
u
λ
fz
R
v
λ
fz

>α 1.10
for some 0 ≤ α<1,u∈ R

0
−1
,v∈ R
−1
,λ≥ 0, and all z ∈ U.
Serap Bulut 3
In this paper, basic properties of the class S
λ
u, v; α are studied, such as coefficient
bounds, extreme points, and integral means inequalities for the fractional derivative.
2. Coefficient inequalities
Theorem 2.1. Let 0 ≤ α<1,u∈ R
0
−1
,v∈ R
−1
, and λ ≥ 0.Iff ∈Asatisfies


n2
B
n
u, v, α|a
n
|≤21 − α, 2.1
where
B
n
u, v, α :1 n − 1λ{|Cu, n − 1  αCv, n|  Cu, n1 − αCv, n}, 2.2
then f ∈S

λ
u, v; α.
Proof. Let 2.1 be true for 0 ≤ α<1,u∈ R
0
−1
,v∈ R
−1
,andλ ≥ 0. For f ∈A, define the
function F by
Fz :
R
u
λ
fz
R
v
λ
fz
− α. 2.3
It is sufficient to show that




Fz − 1
Fz1





< 1 2.4
for z ∈ U.
So, we have




Fz − 1
Fz1









R
u
λ
fz − 1  αR
v
λ
fz
R
u
λ
fz1 − αR
v

λ
fz









α −


n2
1 n − 1λCu, n − 1  αCv, na
n
z
n−1
2 − α


n2
1 n − 1λCu, n1 − αCv, na
n
z
n−1






α 


n2
1 n − 1λ|Cu, n − 1  αCv, n||a
n
||z|
n−1
2 − α −


n2
1 n − 1λCu, n1 − αCv, n|a
n
||z|
n−1
<
α 


n2
1 n − 1λ|Cu, n − 1  αCv, n||a
n
|
2 − α −


n2

1 n − 1λCu, n1 − αCv, n|a
n
|
< 1 by 2.1.
2.5
Therefore, f ∈S
λ
u, v; α.
4 Journal of Inequalities and Applications
Theorem 2.2. If f ∈S
λ
u, v; α,then
|a
n
|≤
21 − α
1 n − 1λ|Cu, n − Cv, n|
n−1

u1
1 n − u − 1λCv, n − u|a
n−u
| 2.6
for n ≥ 2,witha
1
 1.
Proof. Define the function
Gz :
1
1 − α


R
u
λ
fz
R
v
λ
fz
− α

: 1 


n1
a
n
z
n
. 2.7
Since Re{Gz} > 0, we get
|a
n
|≤2 2.8
for n  1, 2,
From the definition of Gz,weobtain
R
u
λ
fz − αR

v
λ
fz
1 − α
 R
v
fz

1 


n1
a
n
z
n

. 2.9
So, by 1.6, we have
z 
1  λ
1 − α
Cu, 2 − αCv, 2a
2
z
2

1  2λ
1 − α
Cu, 3 − αCv, 3a

3
z
3
 ···
 z  a
1
z
2
 a
2
z
3
 a
3
z
4
 ···
1  λCv, 2a
2
z
2
1  λCv, 2a
2
a
1
z
3
1  λCv, 2a
2
a

2
z
4
 ···
1  2λCv, 3a
3
z
3
1  2λCv, 3a
3
a
1
z
4
 ···
2.10
or
z 
1  λ
1 − α
Cu, 2 − Cv, 2a
2
z
2

1  2λ
1 − α
Cu, 3 − Cv, 3a
3
z

3
 ···
 z  a
1
z
2
1  λCv, 2a
2
a
1
 a
2
z
3
1  2λCv, 3a
3
a
1
1  λCv, 2a
2
a
2
 a
3
z
4
 ···
2.11
Serap Bulut 5
or, equivalently,

z 


n2
1 n − 1λ
1 − α
Cu, j − Cv, ja
n
z
n
 z 


n2

n−1

u1
1 n − u − 1λCv, n − ua
n−u
a
u

z
n
.
2.12
When we consider the coe fficients of z
n
of both series in the above equality, we have

a
n

1 − α
1 n − 1λCu, n − Cv, n
n−1

u1
1 n − u − 1λCv, n − ua
n−u
a
u
. 2.13
Therefore,
|a
n
|≤
1 − α
1 n − 1λ|Cu, n − Cv, n|
n−1

u1
1 n − u − 1λCv, n − u|a
n−u
||a
u
|

21 − α
1 n − 1λ|Cu, n − Cv, n|

n−1

u1
1 n − u − 1λCv, n − u|a
n−u
|,
2.14
since |a
u
|≤2, u  1, 2, .
3. Extreme points
Definition 3.1. Let

S
λ
u, v; α be the subclass of S
λ
u, v; α which consists of function
fzz 


n2
a
n
z
n
a
n
≥ 03.1
whose coefficients satisfy inequality 2.1.

Theorem 3.2. Let f
1
zz and
f
k
zz 
21 − α
B
k
u, v, α
z
k
k  2, 3, , 3.2
where B
k
u, v, α is given by 2.2.
6 Journal of Inequalities and Applications
Then f ∈

S
λ
u, v; α if and only if it can be expressed in the form
fz


k1
δ
k
f
k

z, 3.3
where δ
k
≥ 0 and


k1
δ
k
 1.
Proof. Assume that
fz


k1
δ
k
f
k
z. 3.4
Then
fzδ
1
f
1
z


k2
δ

k
f
k
z
 δ
1
z 


k2
δ
k

z 
21 − α
B
k
u, v, α
z
k





k1
δ
k

z 



k2
δ
k
21 − α
B
k
u, v, α
z
k
 z 


k2
δ
k
21 − α
B
k
u, v, α
z
k
.
3.5
Thus


k2
δ

k
21 − α
B
k
u, v, α
B
k
u, v, α21 − α


k2
δ
k
 21 − α1 − δ
1
 ≤ 21 − α. 3.6
Therefore, we have f ∈

S
λ
u, v; α.
Conversely, suppose that f ∈

S
λ
u, v; α. Since
a
k

21 − α

B
k
u, v, α
k  2, 3, , 3.7
we can set
δ
k
:
B
k
u, v, α
21 − α
a
k
k  2, 3, ,
δ
1
: 1 −


k2
δ
k
.
3.8
Serap Bulut 7
Then
fzz 



k2
a
k
z
k




k1
δ
k

z 


k2
δ
k
21 − α
B
k
u, v, α
z
k
 δ
1
z 



k2
δ
k

z 
21 − α
B
k
u, v, α
z
k

 δ
1
f
1
z


k2
δ
k
f
k
z



k1
δ

k
f
k
z.
3.9
This completes the proof of Theorem 3.2.
Corollary 3.3. The extreme points of

S
λ
u, v; α are given by
f
1
zz, f
k
zz 
21 − α
B
k
u, v, α
z
k
k  2, 3, , 3.10
where B
k
u, v, α is given by 2.2.
4. The main integral means inequalities for the fractional derivative
We discuss the integral means inequalities for functions f ∈

S

λ
u, v; α.
The following definitions of fractional derivatives by Owa 3also by Srivastava and
Owa 4 will be required in our investigation.
Definition 4.1. The fractional derivative of order η is defined, for a function f,by
D
η
z
fz
1
Γ1 − η
d
dz

z
0
fξ
z − ξ
η
dξ 0 ≤ η<1, 4.1
where the function f is analytic in a simply connected region of the complex z-plane
containing the origin, and the multiplicity of z − ξ
−η
is removed by requiring logz − ξ
to be real when z − ξ>0.
Definition 4.2. Under the hypothesis of Definition 4.1, the fractional derivative of order p  η
is defined, for a function f,by
D
pη
z

fz
d
p
dz
p
D
η
z
fz, 4.2
where 0 ≤ η<1andp ∈ N
0
.
8 Journal of Inequalities and Applications
It readily follows from 4.1 in Definition 4.1 that
D
η
z
z
k

Γk  1
Γk  1 − η
z
k−η
0 ≤ η<1,k∈ N. 4.3
We will also need the concept of subordination between analytic functions and a
subordination theorem of Littlewood 5 in our investigation.
Definition 4.3. Given two functions f and g, which are analytic in U, the function f is said to
be subordinate to g in U if there exists a function w analytic in U with
w00, |wz| < 1 z ∈ U, 4.4

such that
fzgwz z ∈ U. 4.5
We denote this subordination by
fz ≺ gz. 4.6
Lemma 4.4. If the functions f and g are analytic in U
with
fz ≺ gz, 4.7
then, for μ>0 and z  re

0 <r<1,


0
|fz|
μ
dθ ≤


0
|gz|
μ
dθ. 4.8
Our main theorem is contained in the following.
Theorem 4.5. Let f ∈

S
λ
u, v; α and suppose that



n2
n − p
p1
a
n

21 − αΓk  1Γ3 − η − p
B
k
u, v, αΓk  1 − η − pΓ2 − p
4.9
for 0 ≤ p ≤ n, k ≥ p, 0 ≤ η<1,wheren − p
p1
denotes the Pochhammer symbol defined by
n − p
p1
n − pn − p  1 ···n. 4.10
Also let the function f
k
be defined by
f
k
zz 
21 − α
B
k
u, v, α
z
k
k  2, 3, . 4.11

Serap Bulut 9
If there exists an analytic function w defined by
wz
k−1
:
B
k
u, v, αΓk  1 − η − p
21 − αΓk  1


n2
n − p
p1
Ψna
n
z
n−1
4.12
with
Ψn
Γn − p
Γn  1 − η − p
, 0 ≤ η<1,n 2, 3, , 4.13
then, for μ>0 and z  re

0 <r<1,


0



D
pη
z
fz


μ
dθ ≤


0


D
pη
z
f
k
z


μ
dθ, 0 ≤ η<1. 4.14
Proof. By means of 4.3 and Definition 4.2,wefindfrom3.1 that
D
pη
z
fz

z
1−η−p
Γ2 − η − p

1 


n2
Γ2 − η − pΓn  1
Γn  1 − η − p
a
n
z
n−1


z
1−η−p
Γ2 − η − p

1 


n2
Γ2 − η − pn − p
p1
Ψna
n
z
n−1


,
4.15
where
Ψn
Γn − p
Γn  1 − η − p
, 0 ≤ η<1,n 2, 3, . 4.16
Since Ψ is a decreasing function of n,weget
0 < Ψn ≤ Ψ2
Γ2 − p
Γ3 − η − p
. 4.17
Similarly, from 4.11, 4.3,andDefinition 4.2, we have
D
pη
z
f
k
z
z
1−η−p
Γ2 − η − p

1 
21 − α
B
k
u, v, α
Γ2 − η − pΓk  1

Γk  1 − η − p
z
k−1

. 4.18
10 Journal of Inequalities and Applications
For μ>0andz  re

0 <r<1, we want to show that


0





1 


n2
Γ2 − η − pn − p
p1
Ψna
n
z
n−1






μ




0




1 
21 − α
B
k
u, v, α
Γ2 − η − pΓk  1
Γk  1 − η − p
z
k−1




μ
dθ.
4.19
So, by applying Lemma 4.4, it is enough to show that
1 



n2
Γ2 − η − pn − p
p1
Ψna
n
z
n−1
≺ 1 
21 − α
B
k
u, v, α
Γ2 − η − pΓk  1
Γk  1 − η − p
z
k−1
.
4.20
If the above subordination holds true, then we have an analytic function w with w00and
|wz| < 1 such that
1 


n2
Γ2 − η − pn − p
p1
Ψna
n

z
n−1
 1 
21 − α
B
k
u, v, α
Γ2 − η − pΓk  1
Γk  1 − η − p
wz
k−1
.
4.21
By the condition of the theorem, we define the function w by
wz
k−1

B
k
u, v, αΓk  1 − η − p
21 − αΓk  1


n2
n − p
p1
Ψna
n
z
n−1

, 4.22
which readily yields w00. For such a function w, we have
|wz|
k−1

B
k
u, v, αΓk  1 − η − p
21 − αΓk  1


n2
n − p
p1
Ψna
n
|z|
n−1
≤|z|
B
k
u, v, αΓk  1 − η − p
21 − αΓk  1
Ψ2


n2
n − p
p1
a

n
 |z|
B
k
u, v, αΓk  1 − η − p
21 − αΓk  1
Γ2 − p
Γ3 − η − p


n2
n − p
p1
a
n
≤|z| < 1
4.23
by means of the hypothesis of the theorem.
Thus the theorem is proved.
As a special case p  0, we have the following result from Theorem 4.5.
Serap Bulut 11
Corollary 4.6. Let f ∈

S
λ
u, v; α and suppose that


n2
na

n

21 − αΓk  1Γ3 − η
B
k
u, v, αΓk  1 − η
k  2, 3, . 4.24
If there exists an analytic function w defined by
wz
k−1

B
k
u, v, αΓk  1 − η
21 − αΓk  1


n2
nΨna
n
z
n−1
4.25
with
Ψn
Γn
Γn  1 − η
, 0 ≤ η<1,n 2, 3, , 4.26
then, for μ>0 and z  re


0 <r<1,


0


D
η
z
fz


μ
dθ ≤


0


D
η
z
f
k
z


μ
dθ, 0 ≤ η<1. 4.27
Letting p  1inTheorem 4.5, we have the f ollowing.

Corollary 4.7. Let f ∈

S
λ
u, v; α and suppose that


n2
nn − 1a
n

21 − αΓk  1Γ2 − η
B
k
u, v, αΓk − η
k  2, 3, . 4.28
If there exists an analytic function w defined by
wz
k−1

B
k
u, v, αΓk − η
21 − αΓk  1


n2
nn − 1Ψna
n
z

n−1
4.29
with
Ψn
Γn − 1
Γn − η
, 0 ≤ η<1,n 2, 3, , 4.30
then, for μ>0 and z  re

0 <r<1,


0


D
1η
z
fz


μ
dθ ≤


0


D
1η

z
f
k
z


μ
dθ, 0 ≤ η<1. 4.31
12 Journal of Inequalities and Applications
References
1 K. A. Shaqsi and M. Darus, “On univalent functions with respect to K-symmetric points given by a
generalised Ruscheweyh derivatives operator,” submitted.
2 S. Ruscheweyh, “New criteria for univalent functions,” Proceedings of the American Mathematical Society,
vol. 49, no. 1, pp. 109–115, 1975.
3 S. Owa, “On the distortion theorems. I,” Kyungpook Mathematical Journal, vol. 18, no. 1, pp. 53–59, 1978.
4 H. M. Srivastava and S. Owa, Eds., Univalent Functions, Fractional Calculus, and Their Applications, Ellis
Horwood Series in Mathematics and Its Applications, Ellis Horwood, Chichester, UK; John Wiley &
Sons, New York, NY, USA, 1989.
5 J. E. Littlewood, “On inequalities in the theory of functions,” Proceedings of the London Mathematical
Society, vol. 23, no. 1, pp. 481–519, 1925.

×