Tải bản đầy đủ (.pdf) (369 trang)

Problems in Mathematical Alnalysis III Kaczkornowak

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (24.08 MB, 369 trang )

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


/>
Problems in
Mathematical
Analysis HI
Integration

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


This page intentionally left blank

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


STUDENT MATHEMATICAL LIBRARY
Volume 21

Problems in
Mathematical
Analysis III
Integration
W. J. Kaczor
M.T. Nowak

#AMS



AMERICAN MATHEMATICA L SOCIET Y

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


Editorial Boar d
David Bressoud , Chai r Danie

l L . GorofT Car

l Pomeranc e

2000 Mathematics Subject Classification. Primar y 00A07 , 26A42 ;
Secondary 26A45 , 26A46 , 26D1 5 , 28A1 2 .
For additiona l informatio n an d updates o n this book , visi t
www.ams.org/bookpages/stml-21
Library o f Congres s Cataloging-in-Publicatio n D a t a
Kaczor, W . J . (Wieslaw a J.) , 1 949 [Zadania z analizy matematycznej . English ]
Problems i n mathematica l analysis . I . Rea l numbers , sequence s an d serie s /
W. J . Kaczor , M . T. Nowak .
p. cm . — (Studen t mathematica l library , ISS N 1 520-91 2 1 ; v. 4)
Includes bibliographica l references .
ISBN 0-821 8-2050- 8 (softcove r ; alk. paper )
1. Mathematica l analysis . I . Nowak , M . T . (Mari a T.) , 1 951 - II . Title .
III. Series .
QA300K32513 200 0
515'.076— dc2199-08703


9

Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t
libraries actin g fo r them , ar e permitte d t o mak e fai r us e of th e material , suc h a s to
copy a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f
passages fro m thi s publicatio n i n reviews, provide d th e customary acknowledgmen t of
the sourc e i s given.
Republication, systemati c copying , o r multiple reproductio n o f any materia l i n this
publication i s permitted onl y unde r licens e fro m th e American Mathematica l Society .
Requests fo r suc h permissio n shoul d b e addresse d t o th e Acquisition s Department ,
American Mathematica l Society , 20 1 Charles Street , Providence , Rhod e Islan d 02904 2294, USA . Requests ca n also be made b y e-mail t o .
© 200 3 b y the American Mathematica l Society . Al l rights reserved .
The America n Mathematica l Societ y retain s al l right s
except thos e grante d t o the United State s Government .
Printed i n the United State s o f America .
@ Th e paper use d i n this boo k i s acid-free an d fall s withi n th e guideline s
established t o ensure permanenc e an d durability .
Visit th e AMS home pag e a t /
10 9 8 7 6 5 4 3 2 1 0

8 07 06 05 04 0 3

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


Contents

Preface vi


i

Part 1 . Problem s
Chapter 1 . Th e Riemann-Stieltje s Integra l 3
§1.1. Propertie s o f th e Riemann-Stieltje s Integra l 3
§1.2. Function s1
o f Bounde d Variatio n

0

§1.3. Furthe r Propertie s o f th e Riemann-Stieltje s Integra
1l

5

§1.4. Prope r Integral s 2 1
§1.5. Imprope r Integral s 2

8

§1.6. Integra l Inequalitie s 4

2

§1.7. Jorda n Measur e 5

2

Chapter 2 . Th e Lebesgu e Integra l 5


9

§2.1. Lebesgu e Measur e o n th e Rea l Lin e 5

9

§2.2. Lebesgu e Measurabl e Function s 6

6

§2.3. Lebesgu e Integratio n 7 1
§2.4. Absolut e Continuity , Differentiatio n an d Integratio n 7

9

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


Contents

VI

§2.5. Fourie r Serie s 8

4

Part 2 . Solution s
Chapter 1 . Th e Riemann-Stieltje s Integra l 9


7

§1.1. Propertie s o f th e Riemann-Stieltje s Integra l 9

7

§1.2. Function s 1
o1
f Bounde d Variatio n

4

§1.3. Furthe r Propertie s o f the Riemann-Stieltje s Integra1l 2

6

§1.4. Prope r Integral s 4

3

1
§1.5. Imprope r Integral s 6

4

§1.6. Integra l Inequalitie s 20

7

§1.7. Jorda n Measur e 22


8

Chapter 2 . Th e Lebesgu e Integra l 24

7

§2.1. Lebesgu e Measur e o n th e Rea l Lin e 24

7

§2.2. Lebesgu e Measurabl e Function s 26

8

§2.3. Lebesgu e Integratio n 28 1
§2.4. Absolut e Continuity , Differentiatio n an d Integratio n 29

6

§2.5. Fourie r Serie s 3

6

Bibliography - Book s 35 1
Index 35

5

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth

Thank You!


Preface

This i s a seque l t o ou r book s Problems in Mathematical Analysis I,
II (Volume s 4 an d 1 2 i n th e Studen t Mathematica l Librar y series) .
The boo k deal s with th e Riemann-Stieltje s integra l an d th e Lebesgu e
integral fo r rea l function s o f one rea l variable . Th e boo k i s organize d
in a wa y simila r t o tha t o f the firs t tw o volumes , tha t is , i t i s divide d
into tw o parts : problem s an d thei r solutions . Eac h sectio n start s
with a numbe r o f problem s tha t ar e moderat e i n difficulty , bu t som e
of th e problem s ar e actuall y theorems . Thu s i t i s no t a typica l prob lem book , bu t rathe r a supplemen t t o undergraduat e an d graduat e
textbooks i n mathematica l analysis . W e hop e tha t thi s boo k wil l b e
of interes t t o undergraduat e students , graduat e students , instructor s
and researche s i n mathematical analysi s an d it s applications. W e also
hope tha t i t wil l b e suitabl e fo r independen t study .
The first chapte r of the book is devoted to Riemann an d Riemann Stieltjes integrals . I n Sectio n 1 . 1 w e conside r th e Riemann-Stieltje s
integral wit h respec t t o monotoni c functions , an d i n Sectio n 1 . 3 w e
turn t o integratio n wit h respec t t o function s o f bounde d variation .
In Sectio n 1 . 6 w e collec t famou s an d no t s o famou s integra l inequal ities. Amon g others , on e ca n fin d OpiaP s inequalit y an d Steffensen' s
inequality. W e clos e th e chapte r wit h th e sectio n entitle d "Jorda n
measure". Th e Jorda n measure , als o calle d conten t b y som e authors ,

vn

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!



Vlll

Preface

is no t a measur e i n th e usua l sens e becaus e i t i s no t coun t ably addi tive. However , i t i s closely connecte d wit h th e Rieman n integral , an d
we hope that thi s section will give the student a deeper understandin g
of the idea s underlyin g th e calculus .
Chapter 2 deals with the Lebesgu e measur e an d integration . Sec tion 2. 3 present s man y problem s connecte d wit h convergenc e theo rems tha t permi t th e interchang e o f limi t an d integral ; LP spaces o n
finite interval s ar e als o considere d here . I n th e nex t section , absolut e
continuity an d the relation between differentiation an d integration ar e
discussed. W e present a proo f o f th e theore m o f Banac h an d Zareck i
which state s tha t a function / i s absolutely continuou s o n a finite in terval [a , b] i f and onl y i f it i s continuous an d o f bounded variatio n o n
[a, b], an d map s set s o f measur e zer o int o set s o f measur e zero . Fur ther, th e concep t o f approximate continuit y i s introduced. I t i s worth
noting her e that ther e i s a certain analog y betwee n tw o relationships :
the relationshi p betwee n Rieman n integrabilit y an d continuity , o n
the on e hand , an d th e relationshi p betwee n approximat e continuit y
and Lebesgu e integrability , o n th e othe r hand . Namely , a bounde d
function o n [a , b] i s Rieman n integrabl e i f an d onl y i f i t i s almost ev erywhere continuous ; an d similarly , a bounde d functio n o n [a , b] is
measurable, an d s o Lebesgu e integrable , i f an d onl y i f i t i s almos t
everywhere approximatel y continuous . Th e las t sectio n i s devoted t o
the Fourie r series . Give n th e existenc e o f extensiv e literatur e o n th e
subject, e.g. , th e book s b y A . Zygmun d "Trigonometri c Series" , b y
N. K . Bar i " A Treatis e o n Trigonometri c Series" , an d b y R . E . Ed wards "Fourie r Series" , w e foun d i t difficul t t o decid e wha t materia l
to includ e i n a boo k whic h i s primaril y addresse d t o undergraduat e
students. Consequently , w e hav e mainl y concentrate d o n Fourie r co efficients o f function s fro m variou s classe s an d o n basi c theorem s fo r
convergence o f Fourie r series .
All the notatio n an d definition s use d i n this volume ar e standard .
One ca n find the m i n the textbook s [27 ] and [28] , which als o provid e
the reade r wit h th e sufficien t theoretica l background . However , t o
avoid ambiguit y an d t o mak e the boo k self-containe d w e start almos t

every sectio n wit h a n introductor y paragrap h containin g basi c defi nitions an d theorem s use d i n th e section . Ou r referenc e convention s

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


Preface

IX

are bes t explaine d b y th e followin g examples : 1 .2.1 3 or I , 1 .2.1 3 o r
II, 1 .2.1 3 , whic h denot e th e numbe r o f th e proble m i n thi s volume ,
in Volum e I o r i n Volum e II , respectively . W e als o us e notatio n an d
terminology give n i n th e first tw o volumes .
Many problem s hav e bee n borrowe d freel y fro m proble m section s
of journals lik e the America n Mathematica l Monthl y an d Mathemat ics Today (Russian) , an d fro m variou s textbooks an d proble m books ;
of thos e onl y book s ar e liste d i n th e bibliography . W e woul d lik e t o
add tha t man y problem s i n Sectio n 1 . 5 com e fro m th e boo k o f Ficht enholz [1 0 ] an d Sectio n 1 . 7 i s influence d b y th e boo k o f Rogosinsk i
[26]. Regrettably , i t wa s beyon d ou r scop e t o trac e al l th e origina l
sources, an d w e offer ou r sincer e apologies if we have overlooked som e
contributions.
Finally, w e woul d lik e t o than k severa l peopl e fro m th e Depart ment o f Mathematics o f Maria Curie-Sklodowsk a Universit y t o who m
we are indebted . Specia l mentio n shoul d b e mad e o f Tadeusz Kuczu mow an d Witol d Rzymowsk i fo r suggestion s o f severa l problem s an d
solutions, an d o f Stanisla w Pru s fo r hi s counselin g an d Te X support .
Words o f gratitud e g o t o Richar d J . Libera , Universit y o f Delaware ,
for hi s generou s hel p wit h Englis h an d th e presentatio n o f th e ma terial. W e ar e ver y gratefu l t o Jadwig a Zygmun t fro m th e Catholi c
University o f Lublin , wh o ha s draw n al l th e figure s an d helpe d u s
with incorporatin g the m int o th e text . W e than k ou r student s wh o
helped u s i n th e lon g an d tediou s proces s o f proofreading . Specia l
thanks g o t o Pawe l Sobolewsk i an d Przemysla w Widelski , wh o hav e

read th e manuscrip t wit h muc h car e and thought , an d provide d man y
useful suggestions . Withou t thei r assistanc e som e errors , no t onl y ty pographical, coul d have passed unnoticed . However , we do accept ful l
responsibility fo r an y mistake s o r blunder s tha t remain . W e woul d
like t o tak e thi s opportunit y t o than k th e staf f a t th e AM S fo r thei r
long-lasting cooperation , patienc e an d encouragement .
W. J . Kaczor , M . T . Nowa k

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


This page intentionally left blank

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


Part 1

Problems

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


This page intentionally left blank

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!



/>
Chapter 1

The Riemann-Stieltje s
Integral

1.1. Propertie s o f th e Riemann-Stieltje s Integra l
We star t wit h som e basi c notations , definition s an d theorems . B y a
partition P o f a close d interva l [a , b] we mea n a finite se t o f point s
xo, xi,..., xn suc h tha t
a = XQ < x\ < .. . < x n-\ <
The numbe r n(P) = maxjx ^ — xi-\ :
raes/i of P.

x n = b.

i = 1 , 2 , . .. ,n} i s calle d th e

For a functio n a monotonicall y increasin g o n [a , b] w e writ e
A ^ = a(xi) - a(xi-i).
If / i s a real function bounde d o n [a , 6], we define th e uppe r an d lowe r
Darboux sum s o f / wit h respec t t o a an d relativ e t o P , respectively ,
by
nn

U(P,f,a) =

Y,MiAa t, L(P,f,a)


=

^m^Aa, ,

where
Mi = su

p /(#)

, ^

i = in

f /(#)


3

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


4

Problems. 1 : Th e Riemann-Stieltje s Integra l

We als o pu t
pb rb

/ fda = mfU(P if,a), /


fda = supL(P , f,a),

J aJ

a

where th e infimu m an d th e supremu m ar e taken ove r al l partition s P
of [a, 6], and call them, respectively, the upper an d the lower Riemann Stieltjes integral . I f th e uppe r an d th e lowe r Riemann-Stieltje s inte grals are equal, we denote the common valu e by / fda an d cal l it th e
Riemann-Stieltjes integra l o f / wit h respec t t o a ove r [a , b]. I n thi s
case w e sa y tha t / i s integrabl e wit h respec t t o a , i n th e Rieman n
sense, an d w e writ e / G 1Z(a). I n th e specia l cas e o f a(x) = x w e
get th e Rieman n integral . I n thi s cas e th e uppe r (lower ) Darbou x
sum correspondin g t o a partitio n P , an d th e uppe r (lower ) Rieman n
integral ar e denoted , respectively , b y U(P,f) ( L ( P , / ) ) , an d f
(fafdx) .

afdx

The Rieman n integra l o f / ove r [a , b] i s denoted b y j a fdx.

Moreover, correspondin g t o ever y partitio n P o f [a , b] w e choos e
points t i , t 2 , . . . , t n suc h tha t Xi-\ < t{ < Xi, i = 1 ,2 , . . . , n , an d
consider th e su m
n

5(P,/,a) = 53/(ti)Aai.
2 =1

We say tha t

lim S(PJ,a)

=

A

if, fo r ever y e > 0 , ther e i s S > 0 suc h tha t /i(P ) < S implie s tha t
|5(P, /, a) — A\ < e fo r al l admissibl e choices o f U. I n th e cas e whe n
a(x) — x w e se t

5(P,/) = £/(*i)(x i -x < _ 1 ).
i=l

Throughout thi s section , / i s always assume d t o b e bounde d an d
a monotonicall y increasin g o n [a , b]. I n th e solution s w e will often us e
the followin g theorem s (see , e.g. , Rudi n [28]) .
Theorem 1 . / G 71(a) on [a , b] if and only if for every e > 0 there
exists a partition P such that

U(PJ,a)-L(PJ,a)
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


1.1. Propertie s o f th e Riemann-Stieltje s Integra l 5
Theorem 2 . If f is continuous on [a,b], then f G 71 (a) on [a , b\.
1.1.1. Suppos e a increase s o n [a , 6], a < c < b, a i s continuou s a t
c, f(c) — 1, an d f(x) — 0 fo r x ^ c . Sho w tha t / G lZ(a) an d tha t
/ * / * * = <>.

1.1.2. Suppos e / i s continuou s o n [a , 6], a < c < fr, a(x ) = 0 i f
x G [a, c), an d a(x) = 1 if x G [c, 6]. Sho w tha t J* a / da = /(c) .
1.1.3. Le t 0 < a < b and
fx

ifar€[a,6]nQ,

\o ifxG[a,6]\Q

.

Find th e uppe r an d lowe r Rieman n integral s o f / ove r [a , 6].
1.1.4. Le t a > 0 an d
(x ifx G [ - o , o ] n Q ,
[0 i f x G [ - a , a ] \ Q .
Find th e uppe r an d lowe r Rieman n integral s o f / ove r [—a , a].
1.1.5. Sho w tha t th e so-calle d Rieman n functio n
0i
f{x) = {l/q i

f x i s irrational o r x = 0 ,
f x = p/q, p G Z , g r G N , an d
p, g are co-prime ,

is Riemann integrabl e o n ever y interva l [a , b].
1.1.6. Le t / : [0,1] - + R b e define d b y settin g

[0 otherwise .
Show tha t J Q f(x)dx = 0.
1.1.7. Sho w tha t / : [0,1] - > R define d b y


\x ~ ix] otherwis

e

is Riemann integrabl e o n [0,1 ] .

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


6

Problems. 1 : Th e Riemann-Stieltje s Integra l

1.1.8. Defin e
JO if * G [-1,0], /
/(x) = < an
d a(x
\ l i f x G ( 0 , l ] , \l
Show tha t / G 7£(a ) althoug h li m S(P,

O if * G [-1,0),
)= <
iixe
[0,
1 ] .
/ , a) doe s no t exist .

1.1.9. Sho w tha t i f / an d a hav e a commo n poin t o f discontinuity i n

fa, 61 , then li m S(P, f.a) doe s no t exist .
LJ

'M

(P)-o v

)

1.1.10. Prov e tha t i f li m S(P,

/ , a) exists , the n / G 1 1 (a) o n [a , 6]

/x(P)-0

and
lim 5(P ; , /, a) = / / d a .

M(P)-O V

J

a

Show als o tha t fo r ever y / continuou s o n [a , 6], th e abov e equalit y
holds.
1.1.11. Sho w tha t i f / i s bounded an d a i s continuous o n [a , 6], the n
/ G 1 Z(a) i f an d onl y i f li m S(P, / , a) exists .
MP)-o
1.1.12. Le t

(c i f a < x < x*,
a(x) = <
[d i f x * < x < 6 ,
where c < d an d c < a(x*) < d. Sho w tha t i f / i s bounde d o n [a , 6]
and suc h tha t a t leas t on e o f th e function s / o r a i s continuous fro m
the lef t a t x * an d th e othe r i s continuou s fro m th e righ t a t x*, the n
/ G 1 1 (a) an d
C

f(x)da(x) =

f(x*)(d-c).

Ja

1.1.13. Suppos e that / i s continuous o n [a , 6] and a i s a step function
that i s constant o n th e subinterval s (a , ci), (ci, C2),..., (c m , 6), wher e
a < c\ < C2 < • - • < c m < 6. Sho w tha t
b ™>

/
f(x)da(x) =

/(o)(a(a+ ) - a(a)) + £ /(c

fc )(a(c+)

- a(c fe"))

fc=i


+ /(6)(a(6)-a(fe")) .

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


1.1. Propertie s o f the Riemann-Stieltjes Integra l 7
1.1.14. Usin g Rieman n integral s o f suitabl y chose n functions , find
the followin g limits :
(a) li m ( +
+
•• • + — ),
v;
n-o o \n + 1 n + 2 3nJ
ini n2
3 + -" +
( b ) Jn-^oo
„y n ( ^ r3 T+-l^3 +n ^3 -+ T2 ^
n

(c) h m ^-

j,

k

3

- f n3 / '


> 0,

(d) li m - ij/( n + l)( n + 2)---( n + n),
n—>oo 77 ,
/ 77

, 77

, 77

,

(e) li m si n +i2 i 2 n sin H2 + 2 2 n h
+
ol/n
sin • 2 + n 2
n r

<2

/

(f) lin ^m
( + —
— + ••• + + l / n
ooyn+1 n
+ 1/2 n
y

(g) li m y/f(l/n)f(2/n)... / ( n / n )

, wher e / i s a positiv e an d

n—»oo

continuous functio n o n [0,1 ] .
1.1.15. Sho w tha t th e limit
/ si n - ^r si n -%- si
n -^ \
Um n ±
l + 5±
L + . . . + »±
i
n-^oo 1
12
U
I
is positive .
1.1.16. Sho w tha t i f / i s continuously differentiabl e o n [0,1 ] , the n

/(D-/(0)
Using thi s result , calculat e
/ fc
fc
n /c
/ l + 2 + -- - +1
hm n —
,
f c +i


n->oo y

n

A

\
C+ 1

fc > 0.
/

1.1.17. Fo r k > 0, calculat e
fc
fc
l i m / l + 3 + -- - + ( 2 n - l )

n—>oo \ 7 7 /

fc

^

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


Problems. 1 : Th e Riemann-Stieltje s Integra l


8

1.1.18. Suppos e tha t / i s twic e differentiabl e o n [0,1 ] an d / " i s
bounded an d Rieman n integrable . Sho w tha t

^y(£mdx-±±f

2i-i\\ _ r ( i ) - r ( o
^ 2n 2

)

4

1.1.19. Fo r n G N , defin e

1
1

J

_

and
2

2

2n + 1 2


n+3 4

n- 1

Show tha t
lim [7 n = li m V n — I n 2.
n—>oo n—

->oo

Moreover, usin g th e result s state d i n 1 .1 .1 6 and 1 .1 .1 8 , sho w tha t
lim n(In 2 — U n) — - an
n-^oo 4

d li

n—>o

m n 2 (ln2 — V n) — —.
o 3

2

1.1.20. Sho w tha t i f / i s Rieman n integrabl e ove r [a , 6], the n / ca n
be change d a t a finit e numbe r o f point s withou t affectin g eithe r th e
integrability o f / o r th e valu e o f it s integral .
1.1.21. Sho w tha t i f / i s monotoni c an d a i s continuou s o n [a , 6],
then / G 71(a).
1.1.22. Prov e tha t i f / G 71 (a) an d a i s neither continuou s fro m th e
left no r fro m th e righ t a t a point i n [a , 6], then / i s continuous a t thi s

point.
1.1.23. Le t / b e Rieman n integrabl e an d a continuou s o n [a , b]. I f
a i s differentiabl e o n [a , b] except fo r finitel y man y point s an d a' i s
Riemann integrable , the n / G IZ(a) an d
pb pb

/ f(x)da(x) =

Jo..

/ f(x)a'(x)dx.
Ja

1.1.24. Le t / b e Rieman n integrabl e an d a b e continuou s o n [a , b]
except fo r finitel y man y points . I f a i s differentiabl e o n [a , b] except

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


1.1. P r o p e r t i e s o f t h e Riemann-Stieltje s Integra l 9
for finitely man y point s an d a' i s Riemann integrable , the n / G 7Z(a)
and
pb pb

/ f(x)da{x)= f{x)a'{x)dx
J a

+


f{a){a{a

+

)-a{a))

J a
m

+ £ f(c

k)(a(4)

-

a(c~)) + f(b)(a(b) - a(b~)),

k=l

where c^ , k = 1 , 2 , . . ., m, ar e point s o f discontinuit y o f a i n (a , b).
1.1.25. Calculat e j_ 2x2da{x), wher

e

x+ 2 i

f -2
a{x) = < 2 i


f-

2

x + 3 i f0

,

1 < x < 0,
< x < 2.

1.1.26. Prov e th e Fzrs t Mean Value Theorem. I f / i s continuous an d
a i s monotonicall y increasin g o n [a , 6], the n ther e i s c G [a , 6] suc h
that
rb

I

f(x)da(x) =

f(c)(a(b)-a(a)).

J a

1.1.27. Sho w tha t i f / i s continuou s an d a i s strictl y increasin g o n
[a, 6], the n i t i s possible t o choos e c G (a, 6) suc h tha t th e equalit y i n
the firs t mea n valu e theore m (state d above ) holds .
1.1.28. (a ) Le t / b e continuou s o n [0,1 ] . Fo r positiv e a an d b, find
the limi t
lim /


/

l^ldx.

J as

(b) Calculat e

f1 x n
lim / dx.
n
^°° Jo 1 + x
1.1.29. Suppos e / i s continuous an d a i s strictly increasin g o n [a , &];
define
F(x)= f

f(t)da(t).
J a

Show tha t fo r x G [a, b]
+ ft) - F ( s )
v F(x
lim — ; ^ 7^f = f(x) .
h-o a( x + ft) - a(x )

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!



Problems. 1 : Th e Riemann-Stieltje s Integra l

10

1.1.30. Suppos e / i s continuou s o n [a , 6], a i s bot h continuou s an d
strictly increasin g there , an d th e limi t
+ h)-f(x) df
r f(x
lim — —
— = —{x)
h-^o a(x + h) — a(x) da
exists an d i s continuou s o n [a , b]. Show tha t
rb

df
-£(x)da(x) =

f(b)-f(a).

1.2. Function s o f Bounde d Variatio n
Recall tha t th e total variation V(f; a , b) of / o n [a , b] i s

V(f;aS=snplf2\f(xi)-f(xi.1)\\,
where th e supremu m i s take n ove r al l partition s P = {xo,xi , ...,x n }
of [a , 6]. I f V{f\ a , 6) < +oo , the n / i s said t o b e of bounded variation
on [a , b]. We als o defin e
Vf(x) = V(f; a , x), a

< x < b.


Clearly, Vf(a) = 0 an d v y i s monotonicall y increasin g o n [a,b\. Th e
following theore m say s tha t a functio n o f bounde d variatio n ca n b e
exhibited a s a differenc e o f tw o monotoni c functions .
Theorem 1 . / / / is of bounded variation on [a , b], then
f(x) - f{a) =p{x) -q(x),
where
P(x) = \(v f(x) +

f(x)-f(a)) and

q(x)

= \{v f{x) -

j\x) + /(a) )

are monotonically increasing on [a , b].
The function s p an d q are calle d th e positive an d negative variation functions of f, respectively .
1.2.1. Sho w tha t th e functio n give n b y
fx2cos^ if*G(0,l]
J V T/

' I

iss

0i

,


fx - 0

differentiabl e o n [0,1 ] bu t no t o f bounde d variation .

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


1.2. F u n c t i o n s o f B o u n d e d V a r i a t i o n

11

1.2.2. Sho w t h a t i f / ha s a bounde d derivativ e o n [a , 6], then / i s o f
bounded variation .
1.2.3. Sho w t h a t th e functio n
_, A f *
/ ( X )=

2

cosf i f z e ( 0 , l ]

\ 0 if

,

*= 0

is o f bounde d variatio n o n [0,1 ] .
1.2.4. Sho w t h a t


v(/;M) =/(&)-/(<*)
if an d onl y i f / i s monotonicall y increasin g o n [a , b].
1.2.5. Fo r a e R an d / ? > 0 , defin e
iixe (0,
1 ]
it x = 0 .

,

Show t h a t / i s o f bounde d variatio n i f an d onl y i f a > (3.
1.2.6. Sho w t h a t i f / i s o f bounde d variatio n o n [a , b], the n / i s
bounded o n [a , b).
1.2.7. I f / an d g ar e o f bounde d variatio n o n [a , 6], the n s o i s thei r
product fg. Moreover , i f in f \f(x)\ > 0 , the n g/f i s als o o f bounde d
x(z[a,b]

variation o n [a , b].
1.2.8. Mus t th e compositio n o f tw o function s o f bounde d variatio n
be o f bounde d variation ?
1.2.9. I f / satisfie s a Lipschit z conditio n an d g i s o f bounde d varia tion, the n th e composit e functio n / o g i s o f bounde d variation .
1.2.10. Sho w t h a t i f / i s o f bounde d variatio n o n [a , 6], the n s o i s
|/|P, l < p < + o o .
1 . 2 . 1 1 . Prov e t h a t i f / i s continuou s o n [a , b] and | / | i s o f bounde d
variation o n [a , 6], the n s o i s / . Prov e als o t h a t continuit y i s a n
essential hypothesis .
1.2.12. I f / an d g ar e o f bounde d variatio n o n [a , 6], then s o i s h(x) =

max{/0),#0)}.


Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


Problems. 1 : Th e Riemann-Stieltje s Integra l

12

1.2.13. W e sa y tha t / : A— > R , A C M , satisfies a Holder condition
(also calle d th e Lipschitz condition of order a) o n A i f ther e exis t
positive constant s M an d a suc h tha t
\f(x)-f(x')\
r x,x'eA.

(a) Sho w tha t th e functio n

f(x) = f*dm
V

' \

if

-e(0,
1 /2],

o if

x= 0


is of bounde d variatio n o n [0,1 /2 ] an d doe s no t satisf y a Holde r con dition.
oo

(b) Set x n = Y2 k in 2 fc' n — 2 , 3 , . .. . Let / b e the continuous functio n
k=n

on [0 , X2] define d a s follows :
/(0) = /(*„ ) = 0 , f(^±^±^j=

1

-, n

= 2,3,... ,

and / i s linear o n [rr n+i, (x n + x n+i)/2] an d [(x n-\-xn+i)/2,xn}. Prov e
that / satisfie s a Holde r conditio n fo r ever y 0 < a < 1 , an d tha t / i s
not o f bounde d variatio n o n [O,^] 1.2.14. Suppos e that / : [a, 00)— > M i s of bounded variatio n o n every
interval [a , 6], b > a , an d pu t
V ( / ; a , o o ) = li m V(f;a,b).
b—>oo

Show tha t i f V(f; a , 00) < 00 , the n th e finite limi t li m f(x) exists .
x—*oo

Does th e opposit e implicatio n hold ?
1.2.15. Fo r / define d o n [a , b] an d a partitio n P — {xo,x'i,.. . , x n }
of [a , 6], w e for m th e su m


vup)=x;i/(si)-/(zi-i)iProve tha t i f / i s continuou s o n [a , 6], the n
lim V ( / , P ) = V(/:a,6) ,
that is , fo r an y s > 0 there exist s 6 > 0 such tha t //(P ) < < 5 implie s
V(f;a.b)~V(f,P)
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


1.2. F u n c t i o n s o f B o u n d e d V a r i a t i o n

13

1.2.16. Fo r / define d o n [a , b] and a partitio n P = { x o , x i , • • • ,x n}
of [a , 6], we for m th e su m
n

W(f,P) = Y,(Mr-m t),
2=1

where
M% = su

p /(x)

, ra* =

in

f f(x).


X&[Xi-.i,Xi] X(zlXi-i,Xi]

Using th e resul t i n th e previou s problem , sho w t h a t i f / i s continuou s
on [a , 6], the n
lim W(f,P)
M(P)-0

W

=
'^

V(f;a,b).
^

'}

1.2.17. Suppos e t h a t / i s o f bounde d variatio n o n [a , b], with p an d q
its correspondin g positiv e an d negativ e variatio n function s a s define d
in Theore m 1 . Suppos e als o t h a t p\ an d q\ ar e increasin g function s
on [a , b] such t h a t f = pi — q\. Sho w t h a t i f a < x < y < b, the n
p(x) - p(y) < pi(x) -

pi{y) an

d q(x)

- q{y) < qi(x) - q^y).


Conclude t h a t V(p; a , b) < V(jp\\ a , b) an d V(q\ a , b) < V{q\\ a , b).
1.2.18. Suppos e t h a t / i s o f bounde d variatio n o n [a , b] and f(x) >
m > 0 , x G [a , 6]. Sho w t h a t ther e ar e tw o monotonicall y increasin g
functions g an d / i suc h t h a t

/?,(x)

1.2.19. Comput e th e positiv e an d negativ e variatio n function s o f
(a) f(x)=^-\x\, a : G [ - l . l ]
(b) f(x)

=

cosa: , x

(c) / ( ! • ) = J - M . . r

,

€ [0.2TT] ,

e [0.3] .

1.2.20. Assum e t h a t / i s o f bounde d variatio n o n [a , b]. Prove t h a t i f
/ i s continuou s fro m th e righ t (left ) a t TQ , the n Vf i s als o continuou s
from th e righ t (left ) a t TQ.
1 . 2 . 2 1 . Sho w t h a t th e se t o f point s o f discontinuit y o f a functio n
/ o f bounde d variatio n o n [a J)] i s a t mos t countable . Moreover , i f

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth

Thank You!


14

P r o b l e m s . 1 : T h e Riemann-Stieltje s Integra l

{xn} i s the sequenc e o f points o f discontinuity o f / , the n th e functio n
g(x) = f(x) — s(x), wher e s(a) = 0 an d
s(x) = f(a+) - f(a) + £ (/(*+

) - f(x~)) + f(x) - / ( * " )

Xn
for a < x < 6 , i s continuou s o n [a , 6]. (Th e functio n s i s calle d th e
salius function of f.)
1.2.22. Le t / b e o f bounde d variatio n o n [a , b] an d le t
x
1f
f(t)dt,
x— a Ja

g(a) = 0 an d g(x ) = /

E (a, 6].

x

Prove tha t g i s of bounde d variatio n o n [a , 6].

1.2.23. Sho w that i f / satisfie s a Lipschitz conditio n o n [a , 6], then t>/
also satisfies th e Lipschitz conditio n with the same Lipschitz constant .
1.2.24. Prov e tha t i f / i s o f bounde d variatio n o n [a , b] and enjoy s
the intermediat e valu e property , the n / i s continuous. Conclud e tha t
if / ' i s o f bounde d variatio n o n [a , 6], the n f i s continuous .
1.2.25. Prov e tha t i f / i s continuously differentiat e o n [a , 6], the n
X

«/(*)= [

\f'(t)\dt.

Ja

1.2.26. Sho w tha t i f / i s continuous an d a monotonicall y increasin g
on [a , 6], the n th e functio n
F(x) = / f(t)da(t),

[a , b],

xe

./a

is o f bounde d variatio n o n [a , 6].
1.2.27. I f / O ) = li m f n(x) fo r x G [a, b], the n
n—->oo

V(f;a,b)< li


m V(/„;a,b) .
n—• oo
oo o

1.2.28. Suppos e tha t th e serie s ^T

a

o

n a n d Yl b n ar e absolutel y con -

n=l n=

l

vergent, an d le t {x n} b e a sequenc e o f distinc t point s i n (0,1 ) . Prov e
that th e functio n / define d b y

/(0)=0, f(x)=

Yl

a

- + J2

b

^ fo


r

*e(0,l ]

Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth
Thank You!


×