Tải bản đầy đủ (.pdf) (14 trang)

Báo cáo hóa học: " Research Article A Multiple Hilbert-Type Integral Inequality with the Best Constant Factor" doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (534.85 KB, 14 trang )

Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2007, Article ID 71049, 14 pages
doi:10.1155/2007/71049
Research Article
A Multiple Hilbert-Type Integral Inequality with
the Best Constant Factor
Baoju Sun
Received 9 February 2007; Accepted 29 April 2007
Recommended by Eugene H. Dshalalow
By introducing the norm
x
α
(x ∈ R) and two parameters α, λ, we give a multiple
Hilbert-type integral inequality with a best possible constant factor. Also its equivalent
form is considered.
Copyright © 2007 Baoju Sun. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
1. Introduction
If p>1, 1/p+1/q
= 1, f ,g ≥ 0, satisfy 0 <


0
f
p
(t)dt < ∞ and 0 <


0


g
q
(t)dt < ∞,then
the well-known Hardy-Hilbert’s integral inequality is given by (see [1, 2])


0
f (x)g(y)
x + y
dxdy <
π
sin(π/p)



0
f
p
(t)dt

1/p



0
g
q
(t)dt

1/q

, (1.1)
where the constant factor π/sin(π/p) is the best possible. Its equivalent form is


0



0
f (x)
x + y
dx

p
dy <

π
sin(π/p)

p


0
f
p
(x) dx, (1.2)
where the constant factor (π/sin(π/p))
p
is still the best possible.
Hardy-Hilbert integral inequality is important in analysis and applications. During

the past few years, many researchers obtained var ious gener alizations, variants, and ex-
tensions of inequality (1.1) (see [3–9] and the references cited therein).
2 Journal of Inequalities and Applications
Hardy et al. [1] gave a Hilbert-type integral inequality similar to (1.1)as


0
ln(x/y)
x − y
f (x)g(y)dxdy <

π
sin(π/p)

2



0
f
p
(x) dx

1/p



0
g
q

(x) dx

1/q
, (1.3)
where the constant factor (π/sin(π/p))
2
is the best possible.
Recently, Yang gave a generalization of (1.3) as (see [9])


0
ln(x/y) f (x)g(y)
x
λ
− y
λ
dxdy
<

π
λsin(π/p)

2



0
x
(p−1)(1−λ)
f

p
(x) dx

1/p



0
x
(q−1)(1−λ)
g
q
(x) dx

1/q
,
(1.4)
where the constant factor (π/λsin(π/p))
2
is the best possible. Its equivalent form is


0
y
λ−1



0
ln(x/y) f (x)

x
λ
− y
λ
dx

p
dy <

π
λsin(π/p)

2p


0
x
(p−1)(1−λ)
f
p
(x) dx, (1.5)
where the constant factor (π/λsin(π/p))
2p
is the best possible.
At present, because of the requirement of higher-dimensional harmonic analysis and
higher-dimensional operator theory, multiple Hilbert-type integral inequalities have been
studied. Hong [10] obtained the following. If
a>0,
n


i=1
1
p
i
= 1, p
i
> 1, r
i
=
1
p
i
n

i=1
p
i
, λ>
1
a

n − 1 −
1
r
i

, i = 1,2, ,n, (1.6)
then



α
···


α
1


n
i
=1

x
i
− α

a

λ
n

i=1
f
i

x
i

dx
1

dx
2
···dx
n

Γ
n
(1/α)
α
n−1
Γ(λ)
n

i=1

Γ

1
a

1 −
1
r
i

Γ

λ −
1
a


n −1 −
1
r
i



α
(t − α)
n−1−αλ
f
p
i
i
(t)dt

1/p
i
.
(1.7)
Yang and Kuang, and others obtained some multiple Hilbert-type integral inequalities
(see [5, 11, 12]).
The main objective of this paper is to build multiple Hilbert-type integral inequalities
with best constant factor of (1.4)and(1.5).
For this reason, we introduce signs as
R
+
n
=


x =

x
1
,x
2
, ,x
n

: x
1
,x
2
, ,x
n
> 0

,
x
α
=

x
α
1
+ x
α
2
+ ···+ x

α
n

1/α
, α>0,
(1.8)
and we agree with
x
α
<crepresenting {x ∈ R
+
n
: x
α
<c}.
Baoju Sun 3
2. Lemmas
Firstwegivesomemultipleintegralformulas.
Lemma 2.1 (see [13]). If p
i
> 0, i = 1,2, ,n, f (τ) is a measurable function, then

t
1
,t
2
, ,t
n
>0;t
1

+t
2
+···+t
n
≤1
f

t
1
+ t
2
+ ···+ t
n

t
p
1
−1
1
t
p
2
−1
2
···t
p
n
−1
n
dt

1
dt
2
···dt
n
=
Γ

p
1

Γ

p
2

···
Γ

p
n

Γ

p
1
+ p
2
+ ···+ p
n



1
0
f (τ)τ
p
1
+p
2
+···+p
n
−1
dτ.
(2.1)
Lemma 2.2. If r>0, p
i
> 0, i = 1,2, ,n, f (τ) is a measurable function, then

t
1
,t
2
, ,t
n
>0;t
1
+t
2
+···+t
n

≤r
f

t
1
+ t
2
+ ···+ t
n

t
p
1
−1
1
t
p
2
−1
2
···t
p
n
−1
n
dt
1
dt
2
···dt

n
=
Γ

p
1

Γ

p
2

···
Γ

p
n

Γ

p
1
+ p
2
+ ···+ p
n


r
0

f (τ)τ
p
1
+p
2
+···+p
n
−1
dτ,
(2.2)

t
1
,t
2
, ,t
n
>0
f

t
1
+ t
2
+ ···+ t
n

t
p
1

−1
1
t
p
2
−1
2
···t
p
n
−1
n
dt
1
dt
2
···dt
n
=
Γ

p
1

Γ

p
2

···

Γ

p
n

Γ

p
1
+ p
2
+ ···+ p
n



0
f (τ)τ
p
1
+p
2
+···+p
n
−1
dτ.
(2.3)
Proof. Setting t
i
/r = u

i
(i = 1, 2, ,n) on the left-hand side of (2.2)weobtain(2.2)from
Lemma 2.1.

From (2.1)and(2.3), we have the following lemma.
Lemma 2.3.

t
1
,t
2
, ,t
n
>0;t
1
+t
2
+···+t
n
≥1
f

t
1
+ t
2
+ ···+ t
n

t

p
1
−1
1
t
p
2
−1
2
···t
p
n
−1
n
dt
1
dt
2
···dt
n
=
Γ

p
1

Γ

p
2


···
Γ

p
n

Γ

p
1
+ p
2
+ ···+ p
n



1
f (τ)τ
p
1
+p
2
+···+p
n
−1
dτ.
(2.4)
Setting t

i
= (x
i
/a
i
)
α
i
(i = 1,2, ,n)in(2.1), (2.2), (2.3), (2.4) we have the following
lemma.
4 Journal of Inequalities and Applications
Lemma 2.4. If p
i
> 0, a
i
> 0, α
i
> 0, i = 1,2, ,n, f (τ) is a measurable function, then

x
1
,x
2
, ,x
n
>0;(x
1
/a
1
)

α
1
+(x
2
/a
2
)
α
2
+···+(x
1
/a
n
)
α
n
≤1
f

x
1
a
1

α
1
+

x
2

a
2

α
2
+ ···+

x
1
a
n

α
n

×
x
p
1
−1
1
x
p
2
−1
2
···x
p
n
−1

n
dx
1
dx
2
···dx
n
=
a
p
1
1
a
p
2
2
···a
p
n
n
Γ

p
1

1

Γ

p

2

2

···
Γ

p
n

n

α
1
α
2
···α
n
Γ

p
1

1
+ p
2

2
+ ···+ p
n


n


1
0
f (τ)τ
p
1

1
+p
2

2
+···+p
n

n
−1
dτ,

x
1
,x
2
, ,x
n
>0;(x
1

/a
1
)
α
1
+(x
2
/a
2
)
α
2
+···+(x
1
/a
n
)
α
n
≤r
f

x
1
a
1

α
1
+


x
2
a
2

α
2
+ ···+

x
1
a
n

α
n

×
x
p
1
−1
1
x
p
2
−1
2
···x

p
n
−1
n
dx
1
dx
2
···dx
n
=
a
p
1
1
a
p
2
2
···a
p
n
n
Γ

p
1

1


Γ

p
2

2

···
Γ

p
n

n

α
1
α
2
···α
n
Γ

p
1

1
+ p
2


2
+ ···+ p
n

n


r
0
f (τ)τ
p
1

1
+p
2

2
+···+p
n

n
−1
dτ,

x
1
,x
2
, ,x

n
>0
f

x
1
a
1

α
1
+

x
2
a
2

α
2
+ ···+

x
1
a
n

α
n


x
p
1
−1
1
x
p
2
−1
2
···x
p
n
−1
n
dx
1
dx
2
···dx
n
=
a
p
1
1
a
p
2
2

···a
p
n
n
Γ

p
1

1

Γ

p
2

2

···
Γ

p
n

n

α
1
α
2

···α
n
Γ

p
1

1
+ p
2

2
+ ···+ p
n

n



0
f (τ)τ
p
1

1
+p
2

2
+···+p

n

n
−1
dτ,

x
1
,x
2
, ,x
n
>0;(x
1
/a
1
)
α
1
+(x
2
/a
2
)
α
2
+···+(x
1
/a
n

)
α
n
≥1
f

x
1
a
1

α
1
+

x
2
a
2

α
2
+ ···+

x
1
a
n

α

n

×
x
p
1
−1
1
x
p
2
−1
2
···x
p
n
−1
n
dx
1
dx
2
···dx
n
=
a
p
1
1
a

p
2
2
···a
p
n
n
Γ

p
1

1

Γ

p
2

2

···
Γ

p
n

n

α

1
α
2
···α
n
Γ

p
1

1
+ p
2

2
+ ···+ p
n

n



1
f (τ)τ
p
1

1
+p
2


2
+···+p
n

n
−1
dτ.
(2.5)
In particular , if p>0, α>0, f (τ) is a measurable function, then

x
1
,x
2
, ,x
n
>0;x
α
1
+x
α
2
+···+x
α
n
≤1
f

x

α
1
+ x
α
2
+ ···+ x
α
n

dx
1
dx
2
···dx
n
=
Γ
n
(1/α)
α
n
Γ(n/α)

1
0
f (τ)τ
n/α−1
dτ,
(2.6)


x
1
,x
2
, ,x
n
>0;x
α
1
+x
α
2
+···+x
α
n
≥1
f

x
α
1
+ x
α
2
+ ···+ x
α
n

dx
1

dx
2
···dx
n
=
Γ
n
(1/α)
α
n
Γ(n/α)


1
f (τ)τ
n/α−1
dτ.
(2.7)
The following result holds.
Baoju Sun 5
Lemma 2.5. If p>1, n
∈ Z
+
, α>0, λ>0,definetheweightfunctionw
α,λ
(x, p) as
w
α,λ
(x, p) =


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α

x
α
y
α

n−λ/p
dy. (2.8)
Then
w
α,λ
(x, p) =x
n−λ

α
Γ
n
(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)

2
. (2.9)
Proof. By (2.6)and(2.7), we have
w
α,λ
(x, p) =x
n−λ/p
α

R
n
+
ln


x
α
/y
α


x
λ
α
−y
λ
α
y
λ/p−n
α
dy
=x
n−λ/p
α

y
1
,y
2
, ,y
n
>0
ln

y
α
1
+ y
α
2

+ ···+ y
α
n

1/α
/x
α


y
α
1
+ y
α
2
+ ···+ y
α
n

λ/α
−x
λ
α
×

y
α
1
+ y
α

2
+ ···+ y
α
n

(1/α)(λ/p−n)
dy
1
dy
2
···dy
n
=x
n−λ/p
α
Γ
n
(1/α)
α
n
Γ(n/α)


0
ln

t
1/α
/x
α


t
λ/α
−x
λ
α
t
(1/α)(λ/p−n)
t
n/α−1
dt.
(2.10)
Setting (t
1/α
/x
α
)
λ
= u we have
w
α,λ
(x, p) =x
n−λ
α
Γ
n
(1/α)
α
n−1
Γ(n/α)

1
λ
2


0
lnu
u − 1
u
1/p−1
du. (2.11)
From [1, Theorem 342] we have (1/λ
2
)


0
(lnu/(u − 1))u
1/p−1
du = (π/λsin(π/p))
2
.
So we obtain
w
α,λ
(x, p) =x
n−λ
α
Γ
n

(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)

2
. (2.12)
Thus Lemma 2.5 is proved.

Lemma 2.6. If λ>0, s>0, then


1
1
x

1/x
λ
0
lnu
u − 1
u
s−1
dudx =
2
λ



n=0
1
(n + s)
3
. (2.13)
Proof. Since
lnu
u − 1
u
s−1
=−lnu


n=0
u
n+s−1
,0<u<1, (2.14)
6 Journal of Inequalities and Applications
then

1/x
λ
0
lnu
u − 1
u
s−1
du =



n=0

1/x
λ
0
(−lnu)u
n+s−1
du
=


n=0

λ
n + s
x
−λ(n+s)
lnx +
1
(n + s)
2
x
−λ(n+s)

,


1
1

x

1/x
λ
0
lnu
u − 1
u
s−1
dudx =


1



n=0

λ
n + s
x
−λ(n+s)−1
+
1
(n + s)
2
x
−λ(n+s)−1



dx
=


n=0



1
λ
n + s
x
−λ(n+s)−1
lnxdx+


1
1
(n + s)
2
x
−λ(n+s)−1
dx

=
2
λ


n=0

1
(n + s)
3
.
(2.15)

We next give a key lemma in this paper.
Lemma 2.7. If p>1, 1/p+1/q
= 1, n ∈ Z
+
, α>0, λ>0, 0 <ε<qλ/2p, then
A :
=

x
α
≥1

y
α
≥1
ln


x
α
/y
α

x

λ
α
−y
λ
α
x
−((n−λ)(p−1)+n+ε)/p
α
y
−((n−λ)(q−1)+n+ε)/q
α
dxdy


Γ
n
(1/α)
α
n−1
Γ(n/α)

2

π
λsin(π/p)

2
1
ε


1+o(1)

, ε −→ 0
+
.
(2.16)
Proof. We have
A
=

x
α
≥1
x
λ/q−n−ε/p
α
dx ×

y
α
1
+y
α
2
+···+y
α
n
≥1
ln


y
α
1
+ y
α
2
+ ···+ y
α
n

1/α
/x
α


y
α
1
+ y
α
2
+ ···+ y
α
n

λ/α
−x
λ
α
×


y
α
1
+ y
α
2
+ ···+ y
α
n

(1/α)(λ/p−n−ε/q)
dy
1
dy
2
···dy
n
=

x
α
≥1
x
λ/q−n−ε/p
α
dx
Γ
n
(1/α)

α
n
Γ(n/α)


1
ln

t
1/α
/x
α

t
λ/α
−x
λ
α
t
(1/α)(λ/p−n−ε/q)
t
n/α−1
dt.
(2.17)
Setting (t
1/α
/x
α
)
λ

= u,wehave
A
=

x
α
≥1
x
−n−ε
α
dx
Γ
n
(1/α)
α
n−1
Γ(n/α)
1
λ
2


1/x
λ
α
lnu
u − 1
u
1/p−1−ε/λq
du

=

x
α
≥1
x
−n−ε
α
dx
Γ
n
(1/α)
α
n−1
Γ(n/α)
1
λ
2


0
lnu
u − 1
u
1/p−1−ε/λq
du


x
α

≥1
x
−n−ε
α
dx
Γ
n
(1/α)
α
n−1
Γ(n/α)
1
λ
2

1/x
λ
α
0
lnu
u − 1
u
1/p−1−ε/λq
du.
(2.18)
Baoju Sun 7
Notice

x
α

≥1
x
−n−ε
α
dx =

x
1
,x
2
, ,x
n
>0;x
α
1
+x
α
2
+···+x
α
n
≥1
(x
α
1
+ x
α
2
+ ···+ x
α

n
)
−(n+ε)/α
dx
1
dx
2
···dx
n
=
Γ
n
(1/α)
α
n
Γ(n/α)


1
u
−(n+ε)/α
u
n/α−1
du
=
Γ
n
(1/α)
α
n

Γ(n/α)


1
u
−ε/α−1
du =
Γ
n
(1/α)
α
n−1
Γ(n/α)
·
1
ε
,
1
λ
2


0
lnu
u − 1
u
1/p−1−ε/λq
du =

π

λsin(π/p)

2
+ o(1).
(2.19)
Further , from (2.7)andLemma 2.6 we have
0


x
α
≥1
x
−n−ε
α
dx
Γ
n
(1/α)
α
n−1
Γ(n/α)
1
λ
2

1/x
λ
α
0

lnu
u − 1
u
1/p−1−ε/λq
du


x
α
≥1
x
−n
α
dx
Γ
n
(1/α)
α
n−1
Γ(n/α)
1
λ
2

1/x
λ
α
0
lnu
u − 1

u
1/2p−1
du
=
Γ
n
(1/α)
α
n−1
Γ(n/α)
1
λ
2


1
t
−n/α


1/t
λ/α
0
lnu
u − 1
u
1/2p−1
du

t

n/α−1
dt
=
Γ
n
(1/α)
α
n−1
Γ(n/α)
1
λ
2

λ


n=0
1
(n +1/2p)
3
=

n
(1/α)
α
n−2
λ
3
Γ(n/α)



n=0
1
(n +1/2p)
3
.
(2.20)
Then
A


Γ
n
(1/α)
α
n−1
Γ(n/α)

2

π
λsin(π/p)

2
1
ε

1+o(1)

. (2.21)


3. Main results
Our main result is given in the following theorem.
Theorem 3.1. If p>1, 1/p+1/q
= 1, n ∈ Z, α>0, λ>0, f ,g ≥ 0,satisfy
0 <

R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx < ∞,
0 <

R
n
+
y
(n−λ)(q−1)
α
g
q
(y)dy <∞.
(3.1)
8 Journal of Inequalities and Applications
Then

J :
=

R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)g(y)dxdy <
Γ
n
(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)


2
×


R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx

1/p


R
n
+
y
(n−λ)(q−1)
α
g
q
(y)dy

1/q
,

(3.2)

R
n
+
y
λ−n
α


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx

p

dy
<

π
λsin(π/p)

2
Γ
n
(1/α)
α
n−1
Γ(n/α)

p

R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx.
(3.3)
The constant factors (Γ
n
(1/α)/α
n−1

Γ(n/α))[π/λsin(π/p)]
2
, [(π/λsin(π/p))
2

n
(1/α)/
α
n−1
Γ(n/α))]
p
are the best possible.
Proof. By H
¨
older’s inequalit y, one has
J
=

R
n
+

ln


x
α
/y
α


x
λ
α
−y
λ
α

1/p

x
α
y
α

(n−λ)/p+λ/ pq
x
(1/q−1/p)(n−λ)
α
f (x)
×

ln


x
α
/y
α

x

λ
α
−y
λ
α

1/q


y
α
x
α

(n−λ)/q+λ/qp
y
(1/p−1/q)(n−λ)
α
g(y)dxdy



R
n
+
ln


x
α

/y
α

x
λ
α
−y
λ
α

x
α
y
α

n−λ+λ/q
x
(p/q−1)(n−λ)
α
f
p
(x) dxdy

1/p
×


R
n
+

ln


x
α
/y
α

x
λ
α
−y
λ
α


y
α
x
α

n−λ+λ/p
y
(q/p−1)(n−λ)
α
g
q
(y)dxdy

1/q

=


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α


x
α
y
α

n−λ/p
x
(p−2)(n−λ)

α
f
p
(x) dxdy

1/p
×


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α


y
α

x
α

n−λ/q
y
(q−2)(n−λ)
α
g
q
(y)dxdy

1/q
=


R
n
+
w
α,λ
(x, p)x
(n−λ)(p−2)
α
f
p
(x) dx

1/p



R
n
+
w
α,λ
(y,q)y
(n−λ)(q−2)
α
g
q
(y)dy

1/q
.
(3.4)
According to the condition of taking equality in H
¨
older’s inequality, if this inequality
takes the form of an equality, then there exist constants C
1
and C
2
, such that they are not
Baoju Sun 9
all zero, and
C
1
ln



x
α
/y
α

x
λ
α
−y
λ
α

x
α
y
α

n−λ/p
x
(p−2)(n−λ)
α
f
p
(x)
= C
2
ln


x

α
/y
α

x
λ
α
−y
λ
α


y
α
x
α

n−λ/q
y
(q−2)(n−λ)
α
g
q
(y), a.e. in R
n
+
× R
n
+
.

(3.5)
It follows that
C
1
x
n
α
x
(p−1)(n−λ)
α
f
p
(x) = C
2
y
n
α
y
(q−1)(n−λ)
α
g
q
(y)
= C (constant), a.e. in R
n
+
× R
n
+
,

(3.6)
which contradicts (3.1). Hence we have
J<


R
n
+
w
α,λ
(x, p)x
(n−λ)(p−2)
α
f
p
(x) dx

1/p


R
n
+
w
α,λ
(y,q)y
(n−λ)(q−2)
α
g
q

(y)dy

1/q
.
(3.7)
By Lemma 2.5 and since π/sin(π/p)
= π/sin(π/q), we have
J<
Γ
n
(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)

2


R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx


1/p
×


R
n
+
y
(n−λ)(q−1)
α
g
q
(y)dy

1/q
.
(3.8)
Hence (3.2)isvalid.
For 0 <a<b<
∞, let us define
g
a,b
(y) =









y
λ−n
α


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx

p−1
, a<y
α
<b,

0, 0 <
y
α
≤ a,ory
α
≥ b,
g(y) =y
λ−n
α


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx


p−1
, y ∈ R
n
+
.
(3.9)
By (3.1), for sufficiently small a>0andsufficiently large b>0, we have
0 <

a<y
α
<b
y
(n−λ)(q−1)
α
g
q
a,b
(y)dy <∞. (3.10)
10 Journal of Inequalities and Applications
Hence by (3.2)wehave

a<y
α
<b
y
(n−λ)(q−1)
α
g
q

(y)dy
=

a<y
α
<b
y
λ−n
α


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx


p
dy
=

a<y
α
<b
y
λ−n
α


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx


p−1
×


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx

dy
=

R
n
+

ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)g
a,b
(y)dxdy
<
Γ
n
(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)

2



R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx

1/p
×


R
n
+
y
(n−λ)(q−1)
α
g
q
a,b
(y)dy

1/q
=
Γ
n

(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)

2


R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx

1/p
×


a<y
α
<b
y
(n−λ)(q−1)

α
g
q
(y)dy

1/q
.
(3.11)
It follows that

a<y
α
<b
y
(n−λ)(q−1)
α
g
q
(y)dy <

π
λsin(π/p)

2
Γ
n
(1/α)
α
n−1
Γ(n/α)


p

R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx.
(3.12)
For a
→ 0
+
, b → +∞,by(3.1), we have

R
n
+
y
(n−λ)(q−1)
α
g
q
(y)dy ≤

π
λsin(π/p)


2
Γ
n
(1/α)
α
n−1
Γ(n/α)

p

R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx < ∞.
(3.13)
Baoju Sun 11
Hence by (3.2)wehave

R
n
+
y
λ−n
α



R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx

p
dy
=

R
n
+
ln



x
α
/y
α

x
λ
α
−y
λ
α
f (x)g(y)dxdy
<
Γ
n
(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)

2


R
n
+

x
(n−λ)(p−1)
α
f
p
(x) dx

1/p
×


R
n
+
y
(n−λ)(q−1)
α
g
q
(y)dy

1/q
=
Γ
n
(1/α)
α
n−1
Γ(n/α)


π
λsin(π/p)

2


R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx

1/p
×


R
n
+
y
λ−n
α


R
n

+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx

p
dy

1/q
.
(3.14)
It follows that

R
n
+
y
λ−n

α


R
n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f (x)dx

p
dy
<

π
λsin(π/p)

2

Γ
n
(1/α)
α
n−1
Γ(n/α)

p

R
n
+
x
(n−λ)(p−1)
α
f
p
(x) dx,
(3.15)
hence (3.3)isvalid.
If the constant factor C
n,α
(λ, p) = (π/λsin(π/p))
2

n
(1/α)/α
n−1
Γ(n/α)) in (3.2)isnot
the best possible, then there exists a positive number k (with k<C

n,α
(λ, p)), such that
(3.2)isstillvalidifonereplacesC
n,α
(λ, p)byk.
For 0 <ε<qλ/2p, by sitting
f
ε
(x) =






x
−((n−λ)(p−1)+n+ε)/p
α
, x
α
≥ 1,
0,
x
α
< 1,
g
ε
(y) =







y
−((n−λ)(q−1)+n+ε)/q
α
, y
α
≥ 1,
0,
y
α
< 1
(3.16)
12 Journal of Inequalities and Applications
we have

R
n
+
ln


x
α
/y
α

x

λ
α
−y
λ
α
f
ε
(x) g
ε
(y)dxdy
<k


R
n
+
x
(n−λ)(p−1)
α
f
p
ε
(x) dx

1/p


R
n
+

y
(n−λ)(q−1)
α
g
q
ε
(y)dy

1/q
,

x
α
≥1

y
α
≥1
ln


x
α
/y
α

x
λ
α
−y

λ
α
f
ε
(x) g
ε
(y)dxdy
<k


x
α
≥1
x
(n−λ)(p−1)
α
x
−(n−λ)(p−1)−n−ε
α
dx

1/p
×


y
α
≥1
y
(n−λ)(q−1)

α
y
−(n−λ)(q−1)−n−ε
α
dy

1/q
= k

x
α
≥1
x
−n−ε
α
dx = k ·
Γ
n
(1/α)
α
n−1
Γ(n/α)
·
1
ε
.
(3.17)
On the other hand, from Lemma 2.7 we have

R

n
+
ln


x
α
/y
α

x
λ
α
−y
λ
α
f
ε
(x) g
ε
(y)dxdy


Γ
n
(1/α)
α
n−1
Γ(n/α)


2

π
λsin(π/p)

2
1
ε

1+o(1)

, ε −→ 0
+
.
(3.18)
Hence we have

Γ
n
(1/α)
α
n−1
Γ(n/α)

2

π
λsin(π/p)

2

1
ε

1+o(1)


k ·
Γ
n
(1/α)
α
n−1
Γ(n/α)
·
1
ε
,
Γ
n
(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)

2

1+o(1)



k.
(3.19)
By sitting ε
→ 0
+
we have
C
n,α
(λ, p) =
Γ
n
(1/α)
α
n−1
Γ(n/α)

π
λsin(π/p)

2
≤ k. (3.20)
This contradicts the fact that k<C
n,α
(λ, p), hence the constant factor in (3.2)isthebest
possible. Since inequality (3.2)isequivalentto(3.3), the constant factor in (3.3)isalso
the best possible. Thus the theorem is proved.

Remark 3.2. By using (3.3)wecanobtain(3.2), hence inequality (3.2)isequivalentto

(3.3).
Baoju Sun 13
Corollary 3.3. If p>1, 1/p+1/q
= 1, n ∈ Z, α>0, f ,g ≥ 0,satisfy
0 <

R
n
+
f
p
(x) dx < ∞,0<

R
n
+
g
q
(y)dy <∞. (3.21)
Then

R
n
+
ln


x
α
/y

α

x
n
α
−y
n
α
f (x)g(y)dxdy
<
Γ
n
(1/α)
α
n−1
Γ(n/α)

π
nsin(π/p)

2


R
n
+
f
p
(x) dx


1/p


R
n
+
g
q
(y)dy

1/q
,

R
n
+


R
n
+
ln


x
α
/y
α

x

n
α
−y
n
α
f (x)dx

p
dy <

π
nsin(π/p)

2
Γ
n
(1/α)
α
n−1
Γ(n/α)

p

R
n
+
f
p
(x)dx.
(3.22)

The constant factors (Γ
n
(1/α)/α
n−1
Γ(n/α))[π/nsin(π/p)]
2
, [(π/nsin(π/p))
2

n
(1/α)/
α
n−1
Γ(n/α))]
p
in (3.22) are all the best possible.
Corollary 3.4. If p>1, 1/p+1/q
= 1, n ∈ Z, f ,g ≥ 0,satisfy
0 <

R
n
+
f
p
(x) dx < ∞,0<

R
n
+

g
q
(y)dy <∞. (3.23)
Then

R
n
+
ln


n
i
=1
x
i
/

n
i
=1
y
i



n
i
=1
x

i

n



n
i
=1
y
i

n
f (x)g(y)dxdy
<
1
(n − 1)!

π
nsin(π/p)

2


R
n
+
f
p
(x) dx


1/p


R
n
+
g
q
(y)dy

1/q
,

R
n
+


R
n
+
ln


n
i
=1
x
i

/

n
i
=1
y
i



n
i
=1
x
i

n



n
i
=1
y
i

n
f (x)dx

p

dy
<

1
(n − 1)!

π
nsin(π/p)

2

p

R
n
+
f
p
(x)dx,
(3.24)
where the constant factors in (3.24) are all the best possible.
References
[1] G. H. Hardy, J. E. Littlewood, and G. P
´
olya, Inequalities, Cambridge University Press, Cam-
bridge, UK, 2nd edition, 1952.
[2] D. S. Mitrinov i
´
c, J. E. Pe
ˇ

cari
´
c,andA.M.Fink,Inequalities Involving Functions and Their Inte-
grals and Derivatives, vol. 53 of MathematicsandItsApplications(EastEuropeanSeries),Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1991.
14 Journal of Inequalities and Applications
[3] M. Gao and B. Yang, “On the extended Hilbert’s inequality,” Proceedings of the American Math-
ematical Society, vol. 126, no. 3, pp. 751–759, 1998.
[4] K. Jichang and L. Debnath, “On new generalizations of Hilbert’s inequality and their applica-
tions,” Journal of Mathematical Analysis and Applications, vol. 245, no. 1, pp. 248–265, 2000.
[5] K. Jichang, Applied Inequalities, Shandong Science and Technology Press, Jinan, China, 2004.
[6] B. G. Pachpatte, “On some new inequalities similar to Hilbert’s inequality,” JournalofMathe-
matical Analysis and Applications, vol. 226, no. 1, pp. 166–179, 1998.
[7] B. Yang and L. Debnath, “On new strengthened Hardy-Hilbert’s inequality,” International Jour-
nal of Mathematics and Mathematical Sciences, vol. 21, no. 2, pp. 403–408, 1998.
[8] B. Yang, “On a general Hardy-Hilbert’s integral inequality with a best constant,” Chinese Annals
of Mathematics. Series A, vol. 21, no. 4, pp. 401–408, 2000.
[9] B. Yang, “On a generalization of a Hilbert’s type integral inequality and its applications,” Math-
ematica Applicata, vol. 16, no. 2, pp. 82–86, 2003.
[10] Y. Hong, “All-sided generalization about Hardy-Hilbert integral inequalities,” Acta Mathematica
Sinica. Chinese Series, vol. 44, no. 4, pp. 619–626, 2001.
[11] B. Yang, “A multiple Hardy-Hilbert integral inequality,” Chinese Annals of Mathematics. Series A,
vol. 24, no. 6, pp. 743–750, 2003.
[12] H. Yong, “A multiple Hardy-Hilbert integral inequality with the best constant factor,” Journal of
Inequalities in Pure and Applied Mathematics, vol. 7, no. 4, article 139, p. 10, 2006.
[13] L. Hua, An Introduction to Advanced Mathematics (Remaining Sections), Science Publishers, Bei-
jing, China, 1984.
Baoju Sun: Zhejiang Water Conservancy and Hydropower College, Zhejiang University,
Hangzhou 310018, China
Email address:

×