Tải bản đầy đủ (.pdf) (55 trang)

trigonometry unit english for students of mathematics no2

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.65 MB, 55 trang )

<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">

<b>THAI NGUYEN UNIVERSITY OF EDUCATION MATHEMATICS</b>

<i> </i>

<b>------TRIGONOMETRY</b>

<b> Supervisors: PhD. TRAN NGUYEN AN</b>

<b>Unit: English for students of mathematics (NO2)</b>

<i>Thai nguyen, April 2023</i>

</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2">

<i>Trigonometry is the branch of mathematics concerned with specificfunctions of angles and their application to calculations. There aresix functions of an angle commonly used in trigonometry. Theirnames and abbreviations are sine (sin), cosine (cos), tangent (tan), cotangent(cot). These four trigonometric functions in relation to a right triangle. Forexample, the triangle contains an angle A, and the ratio of the side opposite toA and the side opposite to the right angle (the hypotenuse) is called the sine ofA, or sin A; the other trigonometry functions are defined similarly. Thesefunctions are properties of the angle A independent of the size of the triangle,and calculated values were tabulated for many angles before computers madetrigonometry tables obsolete. Trigonometric functions are used in obtainingunknown angles and distances from known or measured angles in geometricfigures.</i>

<i>Trigonometry developed from a need to compute angles and distances in suchfields as astronomy, mapmaking, surveying, and artillery range finding.Problems involving angles and distances in one plane are covered in planetrigonometry. Applications to similar problems in more than one plane ofthree-dimensional space are considered in spherical</i>

</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3">

<b>TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS</b>

<i> TRIGONOMETRIC FUNCTIONS:</i>

<i>1. DEFINITION</i>

<i>First of all, we recall the table of trig values of special ares.</i>

<i> Sine and cosine functions</i>

<i>a) Sine functions</i>

- <i>In Grade 10, you knew that you could set each real number x corresponding toa unique point M on a trig circle with the measure of arc AM equal to x (rad).The y-coordiate M is completely determined. That value is sin x.</i>

<i>value of x on the x-axis and that of sinx on the y-axis, we get figure</i>

</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4">

<i>The rule of setting each real number x corresponding to the real number sinx</i>

sin:sinx y x

<i>Is called a sine function, denoted by y=sin x.The domain of a sine function is </i>

<i>b) Cosine functions</i>

<i>The rule of setting each real number x corresponding to the real number sinx</i>

cos:cosx y x

<i>Is called a sine function, denoted by y=cosx.The domain of a cosine function is </i><sup></sup>

<i> Tangent and cotangent function</i>

<i>a) Tangent functions</i>

<i>The tangent function is defined by the formula</i>

sin(cos 0)cos

</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">

<i>2. VARIATIONS AND GRAPHS OF TRIGONOMETRIC FUNCTIONS.a, Function y=sinx</i>

<i>VARIATIONS AND GRAPH OF FUNCTION Y=SIN X OVER INTERGER </i>

0;

<i>Consider real numbers x x where </i><small>1 2</small>, 0 <small>12</small>

2x x 

 <i> and </i>x x<small>1</small> <small>2</small><i>thus sin x <sin</i><small>12</small>

<i>x .</i>

<i>Now x x belong to </i><small>3 4</small>, 2<sup>;</sup> <sub></sub>

 <i> and </i>x x<small>3</small> <small>4</small> <i>but </i>sinx<small>3</small> sinx <small>4</small>

<i>Therefore, fructions y=sinx increases on </i> <sup>0;</sup><sup>2</sup>

  

 <i> and decreases on </i> 2<sup>;</sup> <sub></sub>

</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">

<i>+, is defintion with every x  and 1 cos</i>  x1

<i>+, is an even function;</i>

<i>+, is a periodic ffunction with period 2</i><sup></sup>

<i>With every x  we have equation </i><sup>sin</sup> <sup>x</sup> <sup>2</sup> <sup>cos</sup><sup>x</sup>

 <sub></sub> <sub></sub>

<i>Next, by translating the graph of function y = sinx through vector </i><sup>u</sup> <sup>( ;0)</sup>2 

<i>( over a unit of leghth equal to 2</i>

<i> to the left, parallel to the x-axis), we obtainthe graph of function y = cosx ( Figure 6)</i>

<i>From the graph of function y = cos x in figure 6, we infer :</i>

<i>Function y= cosx increases on interval </i>

,0

<i><sub>and decereases on interval</sub></i>

0,

<i><sub>.</sub></i>

<i>The Variation table:</i>

<i>x-π 0 πy = cos x</i>

<i>The graphs of functions y=cos x and y=sin x are called sinusoids.</i>

</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7">

<i>is an odd function</i>

<i>is a periodic function with period π.</i>

<i>A, The variation and graph of function y=tan x on half open interval </i> <sup>0;</sup>2 

 

<i>From the geometric representation of tan x (Fig. 7a), with</i>

<small>1</small>, <small>2</small> 0; , <small>11</small>, <small>22</small>, <small>1</small> tan ,<small>12</small> tan <small>2</small>

x x<sub></sub>  AM<sub></sub>x AM <sub></sub>x AT<sub></sub> x AT <sub></sub> x

 

<i>The variation table:X</i>

<i>To draw the graph of function y= tanx on half- open interval </i> <sup>0;</sup><small>2</small><small></small>

<i>Follow the steps below:</i>

</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">

<i>First, calculate values of function y = tan x at some special points such as x = 0,</i>

<i>, the nearer the graph of function</i>

<i>y=tanx moves to line </i><sup>x</sup> 2

<i> . Function y=cot x</i>

<i>By definition, we find fuction y=cot x;Has domain D=R</i>‚

k k Z, 

<i>Is an odd function;</i>

<i>Is a periodic function with period π</i>

<i>We are going to consider the variation and the graph of function y=cot x oninterval (0; )</i><sup></sup> <i> and then we will infer the graph of this function on D.</i>

<i>a) The variation and graph of function y=cot x on interval (0;π)</i>

<i>For two numbers x and </i><small>1</small> <i>x such that 0 <</i><small>2</small> <i>x <</i><small>1</small> <i>x < π, we have 0 <</i><small>2</small> x x<small>2</small> <small>1</small><i> π.</i>

<i>Thus cot </i>x<small>1</small><i> cot x = </i><small>2</small>

cos cossin sin

x  x

<i>= </i>

sin cos cos sinsin sin

x x

</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9">

x xx x

<i>Figure 10 represents the graph of function y=cot x on open interval (0; )</i><sup></sup>

<i>b) Graph of function y= cot x on D</i>

</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10">

<i>The graph of function y=cot x on D as represented in Figure 11.</i>

<i>The range of function y=cot x is open interval </i>

  ;

<b>I.Some basic vocabulary: M t sốố t v ng c b n</b>ộ ừ ự ơ ả

<b>Ordinal</b>

</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11">

8 <i>Oriented circles/ _ rient d s k l /</i>ɔː ɪ ˈ ɜː ə <i>Đ</i>ườ<i>ng tròn đ nh h</i>ị ướ<i>ng</i>

34 <i>Positive real number/ p z. .t v r l </i>ˈ ɒ ə ɪ ɪə

<i>n mb r/</i>

ˈ ʌ ə

<i>Sốế th c d</i>ự ươ<i>ng</i>

40 <i>Anti-Clockwise/ ænti kl kwa z/</i>ˈ ˈ ɒ ɪ <i>Ng</i>ượ<i>c chiêều kim đh</i>

</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12">

43 <i>Decrease/d kri s/</i>ɪˈ ː <i>S gi m đi</i>ự ả

47 <i>Starting point/ st t ŋ p nt/</i>ˈ ɑː ɪ ˌ ɔɪ <i>Đi m đâều</i>ể

54 <i>Opposite orientation/ p z t rien te</i>ˈɒ ə ɪ ɔː ˈ ɪʃə <i>n/Chiêều ng</i>ượ ạ<i>c l i</i>

55 <i>One orientation/w n</i>ʌ ˌɔː<i>rien te</i>ˈ ɪʃə<i>n/M t chiêều</i>ộ

<i>Đ</i>ườ<i>ng tròn l</i>ượ<i>ng giác</i>

81 <i>Arc of semi-circle/ k v semi s k l/</i>ɑː ɒ ˈ ˌ ɜː ə <i>Cung n a đ</i>ử ườ<i>ng tròn</i>

</div><span class="text_page_counter">Trang 38</span><div class="page_container" data-page="38">

<i>Comment: Thus, to reduce the above expressions, we use a descending formulabased on the main idea of turning it into a whole.</i>

<i>(Bài t p 1: rút g n bi u th c l</i>ậ ọ ể ứ ượ<i>ng giác</i>

<i>Rút g n bi u th c: A = cos10x + 2cos</i>ọ ể ứ <i>24x + 6cos3x.cosx - cosx - 8cosx.cos33x.Gi i</i>ả

<i>b c d a trên ý t</i>ậ ự ưở<i>ng ch đ o là biêến đ i nó vêề d ng t ng.)</i>ủ ạ ổ ạ ổ

<b>Exercise 2: Simplify expressions:</b>

sin x cos xbB

tan x tan  x 

<small>2222</small>

</div><span class="text_page_counter">Trang 39</span><div class="page_container" data-page="39">

<i>Thus, to reduce the above expressions, we only need to use the relationshipbetween special angles.</i>

sin x cos xbB

tan<sub></sub> x tan<sub></sub> <sub></sub> x <sub></sub>

<i>cosx .</i>

<i>Bài t p 3</i>ậ

</div><span class="text_page_counter">Trang 40</span><div class="page_container" data-page="40">

<b>2. Calculate the value of trigonometric expressions</b><i>. (Tính giá tr các</i>ị

<i>bi u th c l</i>ể ứ ượ<i>ng giác)</i>

<i>From the given hypothesis (usually the value of an angle or a trigonometricvalue) the orientation transforms the expression to a form where only thegiven value of the hypothesis is present. Need to pay attention to theapplicable conditions (if any)</i>

<i>(T gi thiêết đêề cho (th</i>ừ ả ườ<i>ng là giá tr c a góc hay m t giá tr l</i>ị ủ ộ ị ượ<i>ng giác)đ nh h</i>ị ướ<i>ng biêến đ i bi u th c vêề d ng ch xuâết hi n giá tr đã cho c a gi</i>ổ ể ứ ạ ỉ ệ ị ủ ả

<i>thiêết đ tính. Câền chú ý điêều ki n áp d ng (nêếu có))</i>ể ệ ụ

<b>Exercise 4:Solution:</b>

<i>Let cos x = 1. Calculate the value of the expression</i>

<small>22</small> 1

3P sin x cos x  cosx

<i>we have,</i>

<small>22</small> 1<small>2</small> 114(1 cos ) cos 4 3()

3 3

<i> .</i>

</div><span class="text_page_counter">Trang 41</span><div class="page_container" data-page="41">

<b>Exercise 5: Problems in triangles</b>

<i>1.Show that :</i>

<i>(i) tan 48° tan 23° tan 42° tan 67° = 1(ii) cos 38° cos 52° – sin 38° sin 52° = 0</i>

<b>Solution:</b><i><b> </b></i>

<i>(i) tan 48° tan 23° tan 42° tan 67°</i>

<i>= tan (90° - 42°) tan (90° - 67°) tan 42° tan 67°= cot 42° cot 67° tan 42° tan 67°</i>

<i>= (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1(ii) cos 38° cos 52° - sin 38° sin 52°</i>

<i>= cos (90° - 52°) cos (90°-38°) - sin 38° sin 52°= sin 52° sin 38° - sin 38° sin 52° = 0</i>

<i>2. If tan A = cot B, prove that A + B = 90°</i>

<i>tan A = cot B</i>

<i>⇒ tan A = tan (90° - B)⇒ A = 90° - B⇒ A + B = 90°</i>

<b>E4. Prove a trigonometric expression that does not depend on x</b>

<i>Use basic trigonometric systems.Use properties of trigonometric values.+ Use memorable equality constants.</i>

<b>Exercise 6:</b><i> If tan(A + B) = √3 and tan(A – B) = 1/√3 ; 0° < A + B ≤ 90°; A > B, find A and B.</i>

</div><span class="text_page_counter">Trang 42</span><div class="page_container" data-page="42">

<b>Solution: </b>

<i>tan(A + B) = √3tan(A + B) = tan 60°A + B = 60°….(i)And tan(A – B) = 1/√3tan(A – B) = tan 30°A – B = 30°….(ii)Adding (i) and (ii),A + B + A – B = 60° + 30°2A = 90°</i>

<i>A = 45°</i>

<i>Substituting A = 45° in (i),45° + B = 60°</i>

<i>A = 45°</i>

<i>Thay A = 45° vào (i), ta có</i>

</div><span class="text_page_counter">Trang 43</span><div class="page_container" data-page="43">

<i>45° + B = 60°B = 60° – 45° = 15°Do đó, A = 45° và B = 15°</i>

<b>Exercise 7: Given triangle . Prove that:</b>

BB

</div><span class="text_page_counter">Trang 44</span><div class="page_container" data-page="44">

Bài t pậ 7<i>: Cho tam giác </i> ABC.<i>. Ch ng minh răềng:</i>ứ

<b>Exercise 8: Prove that the following expression does not depend on x:Solution:</b>

<i> So P does not depend on x</i>

Bài t p ậ 8: Ch ng minh rằằng bi u th c sau không ph thu c vào x:ứ ể ứ ụ ộ

</div><span class="text_page_counter">Trang 45</span><div class="page_container" data-page="45">

sin 6cos 3cos

<i>(i) tan 48° tan 23° tan 42° tan 67°</i>

<i>= tan (90° - 42°) tan (90° - 67°) tan 42° tan 67°= cot 42° cot 67° tan 42° tan 67°</i>

<i>= (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1(ii) cos 38° cos 52° - sin 38° sin 52°</i>

<i>= cos (90° - 52°) cos (90°-38°) - sin 38° sin 52°= sin 52° sin 38° - sin 38° sin 52° = 0</i>

<b>Exercise 10: If tan A = cot B, prove that A + B = 90°.</b>

<i>tan A = cot B</i>

<i>⇒ tan A = tan (90° - B)⇒ A = 90° - B⇒ A + B = 90°</i>

</div><span class="text_page_counter">Trang 46</span><div class="page_container" data-page="46">

<b>Exercise 11. A 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see figure ).</b>

<i>⇒ </i>

12 20

<i>⇒ </i>

<i>⇒ AB = 10</i>

<i>The height of the pole is 10 m</i>

<b>Bài 11.</b><i> M t s i dây dài 20 m đ</i>ộ ợ ượ<i>c căng và bu c ch t t đâều m t chiêếc c t </i>ộ ặ ừ ộ ộ

<i>th ng đ ng xuốếng đâết. Tìm chiêều cao c a c t, nêếu góc t o b i s i dây v i </i>ẳ ứ ủ ộ ạ ở ợ ớ

</div><span class="text_page_counter">Trang 47</span><div class="page_container" data-page="47">

<i>⇒ </i>

12 20

<i>⇒ </i>

<i>In the right triangle PQR, Q is right angle.By Pythagoras theorem,</i>

<i>PR<small>2</small> = PQ + QR<small>22</small>QR<small>2</small> = (13) – (12)<small>22</small>= 169 – 144= 25QR = 5 cmtan P = </i>

<i>PQ = </i>

<i>cot R = </i>

<i>PQ = </i>

<i>So, tan P – cot R = (</i>

<i>12 ) –(</i>

<i>12) = 0</i>

</div><span class="text_page_counter">Trang 48</span><div class="page_container" data-page="48">

<b>Exercise 13: Given 15 cot A = 8, find sin A and sec A.</b>

<i>Let ΔABC be a right-angled triangle, right-angled at B.We know that cot A =</i>

<i>cos A = </i>

Bài 13: Cho 15 cot A = 8, tìm sin A và cos A<i>.Tr l i:</i>ả ờ

<i> Cho ∆ABC là tam giác vuống cân t i B.</i>ạ

<i>Ta biêết răềng cũi A =</i>

<i> (Cho tr</i>ướ<i>c)G i AB là 8 và BC là 15 v i k là sốế th c d</i>ọ ớ ự ươ<i>ng.Theo đ nh lý Pythagore ta đ</i>ị ượ<i>c</i>

<i>AC<small>2</small> = AB + BC<small>22</small></i>

<i>AC<small>2</small> = (8) + (15)<small>22</small></i>

<i>AC<small>2 </small>= 64 + 225<small>2 2</small></i>

</div><span class="text_page_counter">Trang 49</span><div class="page_container" data-page="49">

<i>AC = 289AC = 17 sin A = </i>

<i>cos A = </i>

<b>Exercise 14:</b><i> In the right angle in the figure below, angle Z is 50 degrees.The length of XZ is 5 units.</i>

<i>sin 50° = 0.766, cos 50° = 0.643, and tan 50° = 1.192.Approximately how many units long is XY?</i>

<b>Solution:</b><i><b> The sine of angle Z is calculated by dividing XY by XZ.</b></i>

<i>sin Z = </i>

XYXZ

</div><span class="text_page_counter">Trang 50</span><div class="page_container" data-page="50">

<i>3.83 = XY. So line segment XY has length 3.83</i>

Exercise 14<i> : Trong góc vuống trong hình d</i>ướ<i>i đây, góc Z là 50 đ .</i>ộ

</div><span class="text_page_counter">Trang 51</span><div class="page_container" data-page="51">

<i>0,766 × 5 = 5</i>

<i> × 50,766 × 5 = XY3,83 = XY .</i>

<i>V y XY dài 3,83 đ n v .</i>ậ ơ ị

<b>Exercise 15:</b><i> ∠XYZ is an isosceles triangle, where XY is equal to YZ.Angle Y is 60° and points W, X, and Z are co-linear.</i>

<i>What is the measurement of ∠WXY?</i>

<b>Solution:</b><i><b> We know that any straight line is 180°.</b></i>

<i>So, we need to subtract the degree of the angle stated in the problem (∠XYZ)from 180°.</i>

<i>180° − 60° = 120°</i>

<i>There are two remaining angles lying on the straight line.</i>

<i>One is WXY, and we will call the other one that extends past point Z </i>∠ <i>∠YZV.</i>

<i>The sum of these two remaining angles, WXY and YZV equals 120°.</i>∠ ∠

<i>Since XYZ is isosceles, the remaining angles will be equal to each other since</i>∠

<i>their two sides, XY and YZ are equal.</i>

<i>So, we divide the remaining degrees by two in order to find out how manydegrees there are in WXY and </i>∠ <i>∠YZV.</i>

<i>120°÷ 2 = 60°</i>

Bài 15:<i> tam giác XYZ là tam giác cân, trong đó XY băềng YZ.Góc Y băềng 60° và các đi m W, X, Z th ng hàng.</i>ể ẳ

<i>Phép đo c a tam</i>ủ <i> giác WXY là gì?</i>

Gi i:ả <i> Ta biêết răềng bâết kỳ đ</i>ườ<i>ng th ng nào cũng băềng 180°..</i>ẳ

<i>Vì v y, chúng ta câền tr đi đ c a góc đã nêu trong bài tốn (</i>ậ ừ ộ ủ <i>∠XYZ) t 180°.</i>ừ

<i>180° − 60° = 120°</i>

<i>Có hai góc cịn l i năềm trên đ</i>ạ ườ<i>ng th ng.</i>ẳ

<i>M t là </i>ộ <i>∠WXY, và chúng ta seỗ g i cái còn l i kéo dài qua đi m Z là </i>ọ ạ ể <i>∠YZV.</i>

</div><span class="text_page_counter">Trang 52</span><div class="page_container" data-page="52">

<i>T ng c a hai góc cịn l i này, tam</i>ổ ủ ạ <i> giác WXY vâềtm giác YZV băềng 120°.Vì tam giác XYZ là cân nên các góc cịn l i seỗ băềng nhau vì hai c nh XY và YZ</i>ạ ạ

<i>băềng nhau.</i>

<i>Vì v y, ta chia các đ cịn l i cho hai đ tìm xem có bao nhiêu đ trong tam</i>ậ ộ ạ ể ộ

<i>giác WXY và tam giác YZV.120°÷ 2 = 60°</i>

<b>Exercise 16: If sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A.</b>

<i>⇒ A = </i>

<i>⇒ A = 29°</i>

<b>Bài 16 Nếốu sin 3A = cos (A – 26°), trong đó 3A là góc nh n, hãy tìm giá </b><i>: </i> ọ

<b>tr c a A.</b>ị ủGi i:ả

<i>Ta có,</i>

<i>Sin 3A = cos (A – 26°); 3A là góc nh n</i>ọ

<i>cos (90° – 3A) = cos (A – 26°) </i>

<i>⇒ 90° – 3A = A – 26⇒ 3A + A = 90° + 26°⇒ 4A = 116°</i>

<i>⇒ A = </i>

<small>o</small>

</div><span class="text_page_counter">Trang 53</span><div class="page_container" data-page="53">

<i>⇒ A = 29°</i>

<b>7. problems on variation and graph of trigonometric functions</b>

<b>Exercise 17: </b><i>Determine the value of x on the segment </i>

2<sub></sub> 

 <i> so that the</i>

<i>function y=tan x;a, Get value equal to 0b, Get value equal to 1c, Get a positive valued, Get negative value </i>

<i>a, obsever the graph of the function y= tan x on the segment </i>

2<sub></sub> 

</div><span class="text_page_counter">Trang 54</span><div class="page_container" data-page="54">

<i>a, tan x=0 at the value x= - </i><sup></sup><i>,0, </i><sup></sup>

<i>(The point on the horizontal axis intersect the graph of the function y=tan x)+, Similar:</i>

<i>b, tan x=1 at the value x= </i>

3 <sub>, ,</sub>54 4 4

  

<b>7.Bài toán vếề s biếốn thiến và đốề th c a hàm sốố l</b>ự ị ủ ượ <b>ng giác </b>

Bài 17:<i> Hãy xác đ nh giá tr c a x trên đo n </i>ị ị ủ ạ3;

2<sub></sub> 

<b>L i gi i:</b>ờ ả

</div><span class="text_page_counter">Trang 55</span><div class="page_container" data-page="55">

<i>a, Quan sát đốề th hàm sốế y= tan x trên đo n</i>ị ạ3;

2<sub></sub> 

  

</div>

×