Tải bản đầy đủ (.pptx) (33 trang)

slide thuyết trình kia carnival

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.44 MB, 33 trang )

<span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2">

<i>I.Introduction to the car model</i>

• Carnival is the most versatile, comfortable and luxurious urban SUV in the

Vietnamese market, combining the

dynamism and

robustness typical of SUVs with luxurious and comfortable

space, applying many modern technologies to create a new

standard in the SUV segment.

</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3">

II. Linear layout

</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">

III. Input parameters

<small>Table 1.1. Basic parameters</small>

</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">

<b><small>3.1 ) Parameters according to the sketch Design</small></b>

<b><small>Engine type: gasoline engine, GAS 3.5</small></b>

<small>- Working capacity: V</small><sub>c</sub><small> = 3470 (cc)</small>

<small>–Maximum power: P</small><sub>max</sub><small> = 268(horsepower) = 164 (kW)–n</small><sub>N</sub><small> = 5400 ()</small>

<small>–Maximum torque: M</small><sub>max</sub><small> =331 (N.m)</small>

<small>–Maximum velocity: v</small><sub>max</sub><small> = 200 (km/h) =55.56 (m/s)–Powertrain:</small>

<small>–+ Active 2-wheel front-mounted engine–+ 6-speed manual transmission.</small>

III. Input parameters

</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7">

III. Input parameters

<small>Self-weight: 2125 kg.Passenger weight: 70 kg/person.Baggage weight: 20 kg per person.Power transmission efficiency: η_tl=0.9.tl=0.9.</small>

<small>Air resistance coefficient: K=0.18.–Rolling resistance coefficient when V<22 m/s :</small>

<b>3.2 Selection parameters</b>

</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">

III. Input parameters

<b><small>3.3) Selection calculation parameters </small></b>

<small>The road resistance coefficient corresponds to Vmax = 55.56m/s=>f=f_tl=0.9.0. (1+ 〖 V_tl=0.9.max 〗 ^2/1500)</small>

<small>Wheel radius : 235/55R19 =>H/B=55% H=235.55%=129.25 (mm)=>r0 = 129.25+ 19/2 . 25.4 = 370 (mm) = 0.37 (m)Kinetic radius and dynamic radius of wheels: </small>

<small>rđ = rk = λ.r0 =>rđ = rk = 0.93. 0.37 ≈0.34 (m).</small>

<small>Main bumper area :F = 0.7.B0. H0 = 0.7.1,995.1,775 = 2.2 (m^2 )4x4 wheel formula</small>

</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9">

III. Input parameters

<b>3.4 Determine the weight and distribution of weight on the carKia Carnival 7-seater:</b>

G = G<sub>0</sub> + n.(A + G<sub>h</sub>)

+ Self-esteem (self-weight): G0 = 2125 (kG)

+ Load capacity (cargo, luggage, ...): Gh = 20 (kG)+ n – Number of people (n = 7) + A = 70kg – Mass of people

=>G = 1875 + 7.( 70+ 20) = 2755 (kG) =27550(N)

Passenger cars acting on the front axle (G2) account for 40% ÷ 45%. Select G2 = 40%GG<sub>2</sub> = 40% . 2755= 1102 (kG) = 11020(N)

 G<sub>1</sub> = 2755-1102= 1653(kG) = 16530(N)– Vậy G<sub>2</sub> = 11020 (N); G<sub>1</sub> = 16530(N).

</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10">

IV. External character line construction of engine

<small>*Motor power corresponds to vmaxN</small><sub>ev</sub><small> = . với = = 0,031</small>

<small>N</small><sub>ev</sub><small> = (W)</small>

<small>N</small><sub>ev</sub><small> = 127472(W) =127,5(KW).*Maximum capacity</small>

</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11">

IV. Construction of the outer characteristic line of the engine

<small>+ The value Me max is determined by the Laydecman formula as follows::Derived from the formula</small>

<small>N</small><sub>emax</sub><small> = 1,1.N</small><sub>emax</sub><small> = 1,1. 130206.3 = 143226.93(W)</small>

<small> </small>

</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12">

IV. Construction of the outer characteristic line of the engine

</div><span class="text_page_counter">Trang 13</span><div class="page_container" data-page="13">

IV. Calculation of automotive dynamics parameters

<i><b><small>4.1 Calculation of gear ratios</small></b></i>

<b><small>a) Main gear ratio</small></b>

<small>Determined by conditions that ensure the car moves at the maximum speed at hand highest gear of the gearbox.Ta có:</small>

<small>i</small><sub>0 </sub><small>= (CT3-8 [1])(2.6)Where: </small>

<small>+ r</small><sub>bx</sub><small> = 0,37 (m) </small>

<small>+ Engine speed corresponding to Vmax+ Pass score of the last number hand+ : Maximum engine velocity i</small><sub>0</sub><small> == 3,83</small>

<small> So the gear ratio of the power transmission is: i</small><sub>0</sub><small> = 3,83</small>

<small> </small>

</div><span class="text_page_counter">Trang 14</span><div class="page_container" data-page="14">

IV. Calculation of automotive dynamics parameters

<i><b><small>4.2 Gear ratio</small></b></i>

<b><small>b) Gear 1</small></b>

P<sub>k max </sub>= P<sub>ψ max</sub>ψ<sub>max</sub>.G

<small> Test the grip of the pavement wheels: </small>

<small> = 3,8 =7,36(satisfying the clinging condition)So the gear 1 ratio is: = 3,8</small>

<small> </small>

</div><span class="text_page_counter">Trang 15</span><div class="page_container" data-page="15">

IV. Calculation of automotive dynamics parameters

<b><small>c) Largest gear ratio and smallest gear ratio</small></b>

<small>The largest gear ratios are</small>

<small>The smallest gear ratio is </small>

<b><small>= 3,485</small></b>

<small> </small>

</div><span class="text_page_counter">Trang 16</span><div class="page_container" data-page="16">

IV. Calculation of automotive dynamics parameters

<b><small>d) intermediate gear ratio</small></b>

</div><span class="text_page_counter">Trang 17</span><div class="page_container" data-page="17">

IV. Calculation of automotive dynamics parameters

<i><b><small>4.3.xây dựng đò thị lực kéo của oto</small></b></i>

P<sub>ki</sub> = =

P<sub>c</sub> = G.f + KFv²

Pφ =G.m<sub>p.</sub>φ

• P<sub>ki</sub> : traction in the gear arms;

• M<sub>ki</sub> : tensile torque at the gear arms;• M<sub>e</sub> :Traction torque at the engine• i<sub>o</sub> :Main gear ratio

• i<sub>hn</sub> :Gear ratios at different levels• :Power transmission efficiency• <sub>G: Weight of the car</sub>

• f:rolling resistance coefficient• F:Frontal bumper area

• V:velocity at the gear arms;• <sub>Φ:Line adhesion coefficient</sub>• m<sub>p</sub>:Line adhesion coefficient

</div><span class="text_page_counter">Trang 18</span><div class="page_container" data-page="18">

IV. Calculation of automotive dynamics parameters

<i><b><small>4.3 build automobile traction graphs</small></b></i>

<i><b><small>Traction graph corresponding to each number hand</small></b></i>

</div><span class="text_page_counter">Trang 19</span><div class="page_container" data-page="19">

IV. Calculation of automotive dynamics parameters

<i><b><small>4.3 build automobile traction graphs </small></b></i>

<b><small> Table 2.4. Resistance value for each number hand</small></b>

<small>Pc330.6430.9909 498.52496 613.9433807.69771136.5161690.134</small>

<small>Pφ6942.66942.66942.66942.66942.66942.66942.6</small>

</div><span class="text_page_counter">Trang 20</span><div class="page_container" data-page="20">

IV. Calculation of automotive dynamics parameters

<i><b>4.3 build automobile traction graphs</b></i>

Observe:

+ The vertical axis represents Pk , Pf , Pw . Representation horizontal axis v (m/s)+ The traction graph of the car Pki = f(v) is similar to the curve form Me = f(ne) of the external speed characteristic line of the engine.+ The limit between the Pki drag curve and the total drag curve is the residual traction force (Pkd) used for acceleration or climbing.+ The total traction force of the car must be less than the grip force between the wheel and the road surface

</div><span class="text_page_counter">Trang 21</span><div class="page_container" data-page="21">

VII.Tính tốn các thông số động lực học ô tô

<i><b><small>7.4 Xây dựng đồ thị cơng suất kéo </small></b></i>

bumpers of the road

• V:velocity at the gear arms;• N<sub>c</sub>: bumper power

</div><span class="text_page_counter">Trang 22</span><div class="page_container" data-page="22">

IV. Calculation of automotive dynamics parameters

<i><b><small>4.4 Build a traction capacity graph </small></b></i>

<i><b><small>Table 2.5 Automotive Power Table</small></b></i>

</div><span class="text_page_counter">Trang 23</span><div class="page_container" data-page="23">

IV. Calculation of automotive dynamics parameters

<i><b><small>4.4 Build a traction capacity graph Table 2.6. The bumper of the car corresponds to each gear hand</small></b></i>

<small>Ne(kW)07.20871311.28060918.99843 34.11817 65.22106 130.3659</small>

</div><span class="text_page_counter">Trang 24</span><div class="page_container" data-page="24">

IV. Calculation of automotive dynamics parameters

<b><small>4.5 Building dynamic graphs</small></b>

D<sub>i</sub> = (-KFv²)

<small>2w</small> <i><sub>k</sub></i><small>. .. .</small>

<i><small>PPmGK F VD</small></i>

</div><span class="text_page_counter">Trang 25</span><div class="page_container" data-page="25">

IV. Calculation of automotive dynamics parameters

<b><small>4.5) Building dynamic graphs</small></b>

<i><b><small>Table 2.7.Dynamics factors</small></b></i>

</div><span class="text_page_counter">Trang 26</span><div class="page_container" data-page="26">

IV. Calculation of automotive dynamics parameters

<i><b><small>Table 2.8. Dynamics factors according to attachment conditions</small></b></i>

<small>Dφ0.28-0.003644-0.006095 -0.010285 -0.017318-0.029253 -0.049348f0.0120.01380.0150109 0.017080.0205540.026450.036376</small>

<b><small>4.5) Building dynamic graphs</small></b>

</div><span class="text_page_counter">Trang 27</span><div class="page_container" data-page="27">

IV. Calculation of automotive dynamics parameters

<b><small>4.5) Building dynamic graphs</small></b>

</div><span class="text_page_counter">Trang 28</span><div class="page_container" data-page="28">

<b><small>4.6) determine the acceleration capacity of the automobile –and build an accelerator</small></b>

VII. Calculation of automotive dynamics parameters

J<sub>i</sub> = .g

+ D<sub>i</sub> – the dynamic factor value in the ith hand corresponds to the known vi rate from the graph D = f(v);

+ f, i – coefficient of rolling resistance and slope of the road;

+ j<sub>i</sub> – The acceleration of the car in the i-th hand.

+ is the coefficient that takes into account the influence of the mass of rotation

= 1+0,05(1+i<sub>hi</sub>²) (CT 1-37 [1])

</div><span class="text_page_counter">Trang 29</span><div class="page_container" data-page="29">

IV. Calculation of automotive dynamics parameters

<b><small>7.6) determine the acceleration capacity of the automobile –and build an accelerator</small></b>

<i><b><small>Table 2.10. The acceleration value corresponding to each number hand</small></b></i>

</div><span class="text_page_counter">Trang 30</span><div class="page_container" data-page="30">

IV. Calculation of automotive dynamics parameters

<b><small>4.6) determine the acceleration capacity of the automobile –and build an accelerator</small></b>

– + In the speed range from 0 to vmin the car starts to depart, at that time, the clutch slips and the throttle opens gradually.

– + At vmax = 58.33 (m / s), jv = 0, then the car is no longer able to accelerate.

</div><span class="text_page_counter">Trang 31</span><div class="page_container" data-page="31">

V<b>. </b>Lập bảng tính giá trị thời gian tăng tốc – quãng đường tăng tốc của ôtô

dS = v.dt →

<b>5.1 .Cách tính thời gian tăng tốc – quãng đường tăng tốc của ôtô</b>

</div><span class="text_page_counter">Trang 32</span><div class="page_container" data-page="32">

<b>V. </b>Make a spreadsheet of the value of acceleration time – the acceleration distance of the car

<small>–Considering the loss of speed and time when changing gears.</small>

Δ<sub>v</sub> = (m/s)

<small>+ f – hệ số cản lăn của đường .f = f0∗ ቀ1 +</small> <sup>V</sup><sup>2</sup>

<small>1500ቁ + g = 9,81 (m/s2) – gia tốc trọng trường </small>

<small>+ ∆t =1– thời gian chuyển số [s] + δj ≈1 </small>

<b>5.1 . How to calculate acceleration time – the acceleration distance of the car</b>

</div><span class="text_page_counter">Trang 33</span><div class="page_container" data-page="33">

VII. Evaluate the ability to pull hooks and cross hills

<small>7.1) Hill climbing ability -0,012=0,44 =44%</small>

<small>ÞThe vehicle has good hill climbing ability5.2) Trailer towing capability</small>

<small> </small>

</div>

×