Tải bản đầy đủ (.pdf) (24 trang)

Project Report Mid-Term Know How To Use Spice Programming To Simulate And Analyze Pnp Transistor Circuit.pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.74 MB, 24 trang )

<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">

<b>SCHOOL OF ELECTRONICS AND TELECOMMUNICATIONS </b>

<b>PROJECT REPORT MID-TERM</b>

Name of students: Name of instructor:

</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2">

Table of Contents

List of Figures ... 3

List of Tables ... 4

ABSTRACT ... 5

1.Introduction ... 6

1. 1.Purpose ... 6

2.Specification ... 6

2. 1.Executive

Summary ... 6

2.1.1.Project Overview ... 6

2.1.2.Purpose and Scope ... 6

2. 2.Project Description ...6

2.2. 1.Project

Context ... 6 2.2.2.Assumptions ... 6

2.2.3. Parameters ... 7

2.2.4. Development Time ... 7

</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3">

2.2.5. Development Cost ... 7

3. Planning ... 7

3. 1.Task Table ... 8

7-3.2. Human Resource Table ... 9

8-4. Designing ... 10

4.1. Requirements ... 10

4.1.1. Electrical Constraints ... 10

4.1.2. Functional Requirements ... 10

4.2. Circuit Components ... 10

4.2.1. Choose components on Spice ... 10

4.2.1.1 PNP BJT 25N401 ... 11

10-4.2.1.2 Resistor ... 12

11-4.2.1.3 Voltage Source ... 12

4.2.1.4 Ground ... 13

12-4.2.2. Set up the testing circuit on Spice ... 14

13-5. Testing ... 14

</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4">

5.1. Input I-V characteristics simulation ... 15

5.1.1. DC sweep with 2 sources ... 17

15-5.1.2. Input I-V characteristics for the common Base configuration of the PNP BJT 2N5401 ... 17-20

5.1. 2.SPICE Netlist ... 20

5.2. Output I-V characteristics simulation ... 20

5.2.1. DC sweep with 2 sources ... 20

5.2.2. Output I-V characteristics for the common Base configuration of the PNP BJT 2N5401 ... 21-22

5.1.2.1 SPICE Netlist ... 22

6. Calculation ... 23

22-CONCLUSION ... 24

<b>List of Figures </b>

Figure 4.2.1.1a: Component directory ...11 Figure 4.1.1.1b: PNP BJT transistor ...11 Figure 4.2.1.1c: Transistor properties and options ...11

</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">

Figure 4.2.1.1d: Pick New Transistor ...11

Figure 4.2.1.1e: PNP BJT 2N5401 ...11

Figure 4.2.1.2: R1 Resistor ...12

Figure 4.2.1.3: V1 Voltage source ...13

Figure 4.2.1.4: Ground ...13

Figure 4.2.2a: Component arrangements ...14

Figure 4.2.2b: Overall circuit ...14

Figure 5.1.1a: Edit Simulation Command ...15

Figure 5.1.1b: DC sweep command ...16

Figure 5.1.1c: “Edit text on the Schematic” ...16

Figure 5.1.1d: Finished circuit for testing input I-V characteristics ...17

Figure 5.1.2a: Linear graph with VEE horizontal axis ...18

Figure 5.1.2b: Horizontal Axis...18

Figure 5.1.2c: Input or driving point characteristics for the common Base configuration ...19

Figure 5.1.2d: Zoomed Fig 5.1.2...19

Figure 5.2.1: Finished circuit for testing output I-V characteristics ...20

Figure 5.2.2: Output or collector characteristics for the common Base configuration ...21

<b>List of Tables </b>Table 3.1 Task Table ... 8-9Table 3.2 Resources Assigning Table ...9-10 Table 6.1 I & I values at V = 1V, 2V and V varies<small>B CEECC</small> ... 23

</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">

<b> ABSTRACT </b>

LTSpice is a freeware computer software, implementing a SPICE simulator ofelectronic circuits, produced by semiconductor manufacturer Linear Technology(LTC). Bipolar Junction Transistor (BJT) is a single piece of silicon with twobackto-back P-N junctions. It is constructed with three semiconductors pieces, twojunctions, and three terminals, emitter E, base B and collector C. The goal of thisproject is to successfully design, simulate the circuit, and analyze the input andoutput I-V characteristics for a PNP BJT 2N5401 in a common Base configurationusing LTSpice. In this report, the design and parameters specifications of the circuitare explained. The circuit involves resistors, independent voltage and currentsources.

</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7">

and V values are then applied at Run to produce input and output I-V characteristics.Results from the simulation are used to calculate the current gain values (α, β) of thePNP BJT 2N5401. Results might vary based on a different parameters’ values.

<i><b>2.1.2.Purpose and Scope </b></i>

This report addresses all requirements, planning, and testing needed to simulate and analyze the electronic circuit, the input and output I-V characteristics of the common Base configuration of the PNP BJT 2N5401.

</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">

- It is assumed that the project should be simple.

<i><b>2.2.3. Parameters </b></i>

<small> Modified Gummel-Poon BJT Parameters. </small>

<small>1 IS transport saturation current A 1.0E-16 1.0E-15</small>

<small>4 ISE B-E leakage saturation current A 0 1.0E-13 5 NE B-E leakage emission coefficient - 1.5 2 </small>

<small>8 ISC B-C leakage saturation current A 0 1.0E-13 9 NC B-C leakage emission coefficient - 2 1.5 </small>

<small>13 CJE B-E zero-bias depletion capacitance F 0 2PF </small>

<small>16 CJC B-C zero-bias depletion capacitance F 0 2PF </small>

<small>19 CJS zero-bias collector-substrate F 0 2PF capacitance </small>

<small>20 JS substrate junction built-in potential V 0.75 </small>

Our project consists of 8 tasks. Each task has its own deliverables. The project starts

<b>on August 20, and ends on August 27. </b>

</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9">

<b>No <sup>Task Name </sup><sup>Duration </sup>Date Date ies<sup>Format </sup></b>

#1

Create schematic design for thecircuit

2 days Aug 20, 2021

Aug 22, 2021

#1 <sup>Specification requirements </sup>documented in MS Word format

#2

Create resources table and tasks allocation

< 1 day Aug 21, 2021

Aug 21, 2021

1 day Aug 22, 2021

Aug 22 2021

#4 <sup>Simulate the </sup>circuit <sup>< 1 day </sup>

Aug 22 2021

Aug 23, 2021

#5

Test circuit and troubleshoot any errors

< 1 day Aug 23 2021

Aug 23 2021

#6

Test finished circuit and analyze the results

< 1 day Aug 24 2021

Aug 25 2021

#7 Calculation 1 day Aug 25 2021

Aug 26 2021

#5 Report in MS Word format

</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10">

#8 <sup>Report </sup>

2021 27, 2021

#5 Report in MS Word format

<i><small>Table 3.1 Task Table </small></i>

There are 3 people on our team. Since each member has different strengths and weaknesses, we have created the following task allocations table according to personal competence and preferences.

<b>Task No.Task NameMember Name</b>

#1 Create schematic design for the circuit

#2 Create resources table and tasks allocation

#3 Design and analyze functional requirements

#4 Simulate the circuit #5 Test circuit and

trouble-shoot any errors

#6 Test finished circuits and analyze the results

#7 Calculation

</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11">

<i><b>4.1.2.Functional Requirements </b></i>

- Produce input I-V characteristics of the common Base configuration. - Produce output I-V characteristics of the common Base configuration.- Accurate PNP BJT 2N5401 circuit.

</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12">

→ Search PNP choose PNP we have a new PNP BJT transistor is

<b>present on the schematic (Fig 4.2.1.1b) </b>

→ Right-click on the PNP BJT transistor, showing its properties and options

<b>(Fig 4.2.1.1c) </b>

→ Choose “Pick New Transistor” option Choose PNP BJT model 2N5401

<b>(Fig 4.2.1.1d) </b>

<b>→ We have a PNP BJT 2N5401 transistor on the schematic (Fig 4.2.1.1e) </b>

<i><small>Figure 4.2.1.1d: Pick New Transistor Figure 4.2.1.1e: PNP BJT 2N5401 </small></i>

<i><b>4.2.1.2. Resistor </b></i>

On the same schematic:

→ Click on the Resistor symbol on the tool bar

→ We have a new resistor R1 is present on the schematic (Fig 4.2.1.2)

<i><small>Figure 4.2.1.1a: Component directory Figure 4.2.1.1b: PNP BJT transistor Figure 4.2.1.1c: Transistor proper琀椀es and op琀椀ons </small></i>

</div><span class="text_page_counter">Trang 13</span><div class="page_container" data-page="13">

Right-click on “R1” to change the name of the resistor ❖ Right-click on “R” or click the component directly to change the

resistance.

<i><small>Figure 4.2.1.2: R1 Resistor </small></i>

<i><b>4.2.1.3. Voltage Source </b></i>

On the same schematic:

→ Click on the Component symbol on the tool bar to show the component directory (Fig 4.2.1.1a)

→ Search Voltage choose Voltage we have a new voltage source V1 on the  schematic (Fig 4.2.1.3a)

❖ To change the name and the value of the Voltage Source, similar to <b>section 4.2.2.2 Resistor. </b>

</div><span class="text_page_counter">Trang 14</span><div class="page_container" data-page="14">

→ We have a new ground on the schematic (Fig 4.2.1.4)

<i><small>Figure 4.2.1.4. Ground </small></i>

<b>Note: </b>

• To move/rotate one component, right-click and choose Move . To move/rotate one or more components, right-click and choose drag .

• Press Ctrl-R to rotate component 90  clock-wise.<b> </b>

• Press Ctrl-E to mirror component.<b> </b>

<i><b>4.2.2. Set up the testing circuit on Spice </b></i>

→ Arrange, rename and assign values to the components as required: R = 1k , <small>E</small> R<small>C</small> = 5k , V1 = VEE & VCC (Fig 4.2.2a) 

→ Right-click on the VEE source to set the signal source by choosing “Advanced” option  choose (none) for Functions.

→ Apply similar setting to VCC.

→ Click on the Wire symbol on the tool bar to connect all components. → Click on the Label Net symbol to assign Net Name as “C” or “E” or

“B” and arrange them correctly on the circuit → We have the overall testing circuit (Fig 4.2.2b)

</div><span class="text_page_counter">Trang 15</span><div class="page_container" data-page="15">

<i><small>Figure 4.2.2b: Overall circuit</small></i>

<b>5. Testing </b>

After completed desgning the testing circuit, we will simulate it on SPICE with DC sweep. We then proceed with error checking and trouble-shooting when running. Part 5 presents the simulation and its results.

<b>5.1. Input I-V characteristics simulation </b>

Since the equation for the static input I-V characteristic curves plotting is , we plot V against I with V as the parameter (a set f-curves <small>EBE, CB</small>for different values of V<small>CB</small>)

begin the simulation:

→ Click on the Run symbol on the tool bar which shows an “Edit Simulation Command” (on Fig 5.1.1a)

</div><span class="text_page_counter">Trang 16</span><div class="page_container" data-page="16">

➢ Name of 1 source to sweep: VEE. <small>st</small>

➢ Type of sweep: Linear

➢ Start value and Stop value (optional): 0 & 1, respectively. ➢ Increment: 0.001.

<b>Note: </b>

<b>• The smaller the horizontal axis increment, the smoother the graph. </b>

❖ For the 2 source <small>nd</small>

➢ Name of 2 source to sweep: VCC. <small>nd</small>

➢ Type of sweep: Linear

➢ Start value and Stop value (optional): 5 & 30, respectively. ➢ Increment: 5.

→ Click on “OK” and we have finished setting DC sweep (Fig 5.1.1b)

</div><span class="text_page_counter">Trang 17</span><div class="page_container" data-page="17">

→ To add theorical equations to the schematic, click on SPICE Directive symbol on the tool bar

→ Choose “Edit text on the Schematic” and apply settings as shown on Fig 5.1.1c

<i><small>Figure 5.1.1c: “Edit Text on the Schematic”</small></i>

→ We have the finished testing circuit (Fig 5.1.1d)

<i><small> Figure 5.1.1d: Finished testing circuit for input I-V characteristics </small></i>

<i><b>5.1.2. Input I-V characteristics for the common Base configuration of the PNP BJT </b></i>

<i><b>2N5401 </b></i>

To display the input/driving point characteristics for the common Base configurationof the PNP BJT 2N5401 in linear sweep:

→ Click on the Run symbol on the tool bar

→ Right-click AutoRange on the tool bar to set graph display option

</div><span class="text_page_counter">Trang 18</span><div class="page_container" data-page="18">

 Choose “Tile Windows Vertically”

→ We have the linear graph with the horizontal axis is VEE (Fig 5.1.2a)

<i><small>Figure 5.1.2a: Linear graph with VEE horizontal axis </small></i>

→ To change the voltage values of the graph, right-click the area below the horizontal axis of the graph to display a “Horizontal Axis” option (Fig 5.1.2b)

<i><small>Figure 5.1.2b: Horizontal Axis</small></i>

→ Change “Quantity Plotted” from “V ” to “V(E)” <small>ee</small>

→ We have the linear graph of the input characteristics for the common Base configuration of the PNP BJT 2N5401 (Fig 5.1.2c)

</div><span class="text_page_counter">Trang 19</span><div class="page_container" data-page="19">

<b> </b><i><small>Figure 5.1.2c: Input or driving point characteristics for the common Base configuration</small></i>

<i><small> Figure 5.1.2.d: Zoomed Fig 5.1.2.2c </small></i>

</div><span class="text_page_counter">Trang 20</span><div class="page_container" data-page="20">

<i><b>5.1.2.1 SPICE Netlist </b></i>o PNP BJT 2N5401 Input I-V characteristics

V<small>EE</small> N001 0 R<small>E</small> E N001 1k Bjtpnp C 0 E 0 2N5401 R<small>C</small> N002 C 5k V<small>CC </small>0 N002 .model PNP PNP

.dc VEE 0 1 0.001 VCC 5 30 5

<b>5.2. Output I-Vcharacteristic simulation </b>

Since the static output characteristic curves plotting equation is , we plot I against V<small>C CB</small>, with I<small>E</small> as parameter (plot curves for different values of I ) <small>E</small>

begin the simulation:

<b>→ Similar DC sweep setting to section 5.1 Input I-V characteristics simulation </b>but VCC = 1 source & VEE = 2 source. <small>stnd</small>

→ Add theoretical equations to the schematic, similar to section <b>5.1Input IVcharacteristics </b>(on Fig 5.2.1)

<i><small>Figure 5.2.1: Finished testing circuit for output I-V characteristic</small></i>

</div><span class="text_page_counter">Trang 21</span><div class="page_container" data-page="21">

<i><b>BJT 2N5401 </b></i>

To display the output/collector point characteristics for the common Base configuration of the PNP BJT 2N5401 in linear sweep:

→ Click on the Run symbol on the tool bar

→ Right-click on the graph to “Add Traces”  Choose “I (Bjtpnp)” <sub>C</sub>→ To change the voltage values of the graph, right-click the area below the

horizontal axis of the graph to display a “Horizontal Axis” → Change “Quantity Plotted” from “V ” to “V(C)” <small>CC</small>

→ We have the linear graph of the output characteristics for the common Base configuration of the PNP BJT 2N5401 (Fig 5.2.2)

<i><small>Figure 5.2.2: Output or collector characteristics for the common-Base configuration </small></i>

</div><span class="text_page_counter">Trang 22</span><div class="page_container" data-page="22">

o PNP BJT 2N5401 Output I-V characteristics V<small>EE</small> N001 0

R<small>E </small>E N001 1k Bjtpnp C 0 E 0 2N5401 R<small>C </small>N002 C 5k V<small>CC</small> 0 N002 .model PNP PNP

( and are determined at a particular operating point on the graph) I<small>C</small> I<small>B</small>

• For practical devices, typically ranges from about 50 to over 400, with most in βthe midrange.

❖ For each value of V<small>EE</small> and V (Table 6.1), we use Spice to find the <small>CC</small>

corresponding I and I values with the following steps: <small>CB </small>

→ Set V =1V <small>EE</small>

→ Let DC sweep with 1 source is VCC. Start <small>st</small>

value & Stop value: -1 & 10 respectively Increment: 0.001

</div><span class="text_page_counter">Trang 23</span><div class="page_container" data-page="23">

For I value:

→ We apply similar syntax:

.meas DC Ib1 FIND Ib(bjtpnp) WHEN VCC = 1.3V .meas DC Ib2 FIND Ib(bjtpnp) WHEN VCC = 1.4V .meas DC Ib3 FIND Ib(bjtpnp) WHEN VCC = 3V .meas DC Ib4 FIND Ib(bjtpnp) WHEN VCC = 4V .meas DC Ib5 FIND Ib(bjtpnp) WHEN VCC = 6V .meas DC Ib6 FIND Ib(bjtpnp) WHEN VCC = 8V .meas DC Ib7 FIND Ib(bjtpnp) WHEN VCC = 10V  OK

→ Run

→ To view the values of I & I , click on “View” then choose “SPICE <small>BC</small>

Error Log” (Table 6.1)

→ Set V = 2V and carry out the same steps <small>EE </small>

<i><small>Table 6.1: I & I values at V = 1V, 2V and V varies BCEECC</small></i>

V<small>CC </small>(V)

I<small>C </small>(µA) I (µA) <small>B</small> β I (µA) <small>C</small> I (µA) <small>B</small> β 1.3 -370.72 -15.69 23.63 -394.86 -921.39 0.43 1.4 -382.48 -6.04 63.35 -414.70 -902.13 0.46 2 -385.69 -3.54 108.94 -533.71 -786.72 0.69 4 -386.23 -3.48 111.02 -929.32 -405.24 2.29 6 -386.75 -3.42 113.10 -1314.77 -39.72 33.10 8 -387.27 -3.36 106.87 -1345.36 -11.65 115.47 10 -387.77 -3.31 117.25 -1346.07 -11.44 117.68

From the table, we can see that

• At V = 1V: with the value of VCC is equal to approximately 1.4V or more , <small>EE </small>

we are able to calculate β.

• At V = 2V: with the value of VCC is greater than 6, we can calculate β. <small>EE </small>

</div><span class="text_page_counter">Trang 24</span><div class="page_container" data-page="24">

<b> </b>

<b> CONCLUSION </b>

For this project, we have built the PNP BJT 2N5401 testing circuit with allspecification and functional requirements, and successfully simulated it on LTSpiceprogram to produce the linear graphs of the input and the output I-V characteristicsfor the common Base configuration of the PNP BJT 2N5401. We studied thecharacteristics, construction, and working condition of a PNP BJT as well asimplementing LTSpice features. Above is the step-by-step of our circuit simulationon LTSpice. However, our graph would have been improved if we had used asmaller increment for the horizontal axis values. Overall, the objectives of theproject were met.

</div>

×