Tải bản đầy đủ (.pdf) (10 trang)

A textbook of Computer Based Numerical and Statiscal Techniques part 14 ppsx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (127.3 KB, 10 trang )

116
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
Example 14. Evaluate the following:
I. ∆
2
(cos 2x)
II. ∆
2
(3e
x
)
III. ∆ tan
–1
x
IV. ∆(x + cos x)
the interval of differencing being h.
Sol. I. We have ∆
2
(cos 2x)= (E – 1)
2
cos 2x because

= E – 1.
=(E
2
– 2 E + 1) cos 2x
= E
2
cos 2x – 2E cos 2x + cos 2x
= cos (2x + 4h) – 2 cos (2x + 2h) + cos 2x
= cos (2x + 4h) – cos (2x + 2h) – cos (2x + 2h) + cos 2x


= 2 sin (2x + 3h) sin (– h) – 2 sin (2x + h) sin h
= – 2 sin h [sin (2x + 3h) – sin (2x + h)]
= – 2 sin h [2 cos (2x + 2h) sin h]
= – 4 sin
2
h cos (2x + 2h).
II. We have ∆ (3e
x
) = 3(

e
x
) = 3 (e
x +h
– e
x
)
=3e
x
(e
h
–1)


2
(3e
x
)=∆ (∆3e
x
) = ∆{3e

x
(e
h
–1)}
=3 (e
h
–1) (∆e
x
) = 3(e
h
–1) (e
x+h
– e
x
)
=3 (e
h
–1) e
x
(e
h
–1) = 3e
x
(e
h
–1)
2
.
III. We have ∆ tan
–1

x = tan
–1
(x + h) – tan
–1
x
= tan
–1
()
()
1
xh x
xhx
+−
++
= tan
–1

2
1
h
xh x


++


.
IV. We have ∆ (x + cos x) =

x +


cos x
={(x + h) – x} + {cos (x + h) – cos x}
= h + 2 sin
2
2
xh+
sin
2
h




= h – 2 sin
2
h
x

+


sin
.
2
h
Example 15. Evaluate

2
E

sin (x + h) +
()
()
2
sin x h
Esin x h
∆+
+
, where h being the interval of differencing.
Sol. To evaluate the given problem we use the operator property that is,

= E – 1
Now
2
E

sin (x + h) +
()
()
2
sin
sin
xh
Exh
∆+
+
=
()
2
1

E
E

sin (x + h) +
()()
()
2
1sin
sin 2
Exh
xh
−+
+
CALCULUS OF FINITE DIFFERENCES
117
= (E – 2 + E
–1
) sin (x + h) +
−+ +
+
2
(21)sin()
(2)
EE xh
sin x h
= [sin (x + 2h) – 2 sin (x + h) + sin x] +
sin( 3 ) 2 sin( 2 ) sin( )
sin( 2 )
xh xh xh
xh

+− ++ +

+

= 2 sin (x + h) [cos h – 1] +
2sin( 2 )[cos 1]
sin( 2 )
xh h
xh
+−
+
= 2 (cos h – 1) {sin (x + h) – 1}.
Example 16. Show that B(m + 1, n) = (–1)
m

m




1
n
where m is a positive integer.
Sol. We know that
0
nx
e




dx =
1
n
.
Therefore,
0
mnx
e




dx = ∆
m

1
n



or
0
mnx
e




dx = ∆
m

1
n



,
where for
m

e
–nx
, n is to be regarded variable and x is to be regarded as constant.
Now, ∆
m
e
–nx
= ∆
m–1
[e
–(n+1)x
– e
–nx
]
= ∆
m–1
e
–nx
(e
–x
– 1) = (e

–x
– 1) ∆
m–1
e
–nx
= (e
–x
– 1)
2

m–2
e
–nx
=
= (e
–x
– 1)
m
e
–nx
Therefore,
()
0
1
nx x
ee

−−



m
dx = ∆
m

1
n



Put e
–x
= z, so that –e
–x
dx = dz or dx = – (1/z) dz.
Then,
0
1

n
z
(z–1)
m
(–1/z) dz = ∆
m

1
n




or (–1)
m
1
1
0
n
z


(1 – z)
m
dz = ∆
m

1
n



or
1
1
0
n
z


(1 – z)
(m + 1)–1
dz = (–1)

m

m

1
n



or B (m + 1, n) = (–1)
m

m

1
n



118
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
Example 17. Show that e
x
=




2
E

e
x
.

x
2x
Ee
e
; the interval of differencing being h.
Sol. Let f(x) = e
x
, then Ef (x) = f(x + h), therefore Ee
x
= e
x+h
.
Now,
f∆
(x)= f (x + h) – f (x)


x
e

= e
x+h
– e
x
= e
x

(e
h
– 1)

2 x
e

=

(

e
x
) =

{e
x
(e
h
– 1)}

2 x
e

= (e
h
– 1)

e
x

= (e
h
– 1)
2
e
x

2
E




e
x
= (

2
E
–1
) e
x
=

2
(E
–1
e
x
) =


2
(e
x–h
)
=

2
(e
x
e
–h
) = e
–h

2
e
x
= e
–h
(e
h
– 1)
2
e
x
.

2
E





e
x
2
x
x
Ee
e

= e
–h
(e
h
– 1)
2
e
x
()
2
1
xh
hx
e
ee
+

= e

–h
e
x+h
= e
x
.
Example 18. Evaluate ∆
2

+

++

2
5x 12
x5x6
; the interval of differencing being unity.
Sol. We have ∆
2

2
512
56
x
xx

+


++


Therefore, ∆
2
2
512
56
x
xx

+


++

= ∆
2
()()
512
23
x
xx

+


++


= ∆
2



+=∆∆ +∆


++ + +



23 2 3
23 2 3xx x x
= ∆
11 11
23
32 43xx xx


−+ −


++ ++



= – 2 ∆
()() ()()
11
3
23 3 4xx xx



−∆

++ ++


= – 2
()()()()
11
34 23xx xx



++ ++


– 3
()()()()
11
45 34xx xx



++ ++


=
()()()()()()
46
234 345xxx xxx

+
+++ +++
=
()
()()()()
25 16
2345
x
xxxx
+
++++
.
CALCULUS OF FINITE DIFFERENCES
119
Example 19. Evaluate ∆
n
e
ax+b
; where the interval of differencing taken to be unity?
Sol. Given ∆
n
e
ax+b
; which shows that f(x) = e
ax+b
.
Now ∆f (x)= f(x + 1) – f(x)

∆(e
a + bx

)= e
a(x + 1)+b
– e
ax + b
= e
ax + b
(e
a
– 1)


2
(e
a + bx
)= ∆ (

e
a + bx
) = ∆ {e
ax + b
(e
a
–1)}
= (e
a
– 1) (∆ e
ax + b
)
= (e
a

– 1) e
ax + b
(e
a
–1)
= (e
a
–1)
2
e
ax + b
.
Proceeding in the same way, we get

n

e
ax + b
= (e
a
–1)
n
e
ax + b
Example 20. With usual notations, prove that,

n





1
x
= (–1)
n
.
() ( )
!
n
nh
x x h x nh
++
Sol.
1
n
x




=
1
1
n
x


∆∆



=
1
11
n
xhx


∆−

+

=
1
()
n
h
xx h





+

=


−∆ ∆

+


2
1
()
()
n
h
xx h
=



−∆ ∆ −


+


2
11
(1)
n
xxh
=
2
11 1 1
(1)
2
n
xhx x hxh



 
−∆ − − −
 

+++
 

=
2
21 1
(1)
2
n
xh x x h


−∆ − −

++

=
2
2
2
(1)
()(2)
n
h

xx h x h



−∆

++

=


−∆

++

2
22
2!
(1)
()(2)
n
h
xx h x h
=
3
33
!
(1)
()(2)(3)
n

h
xx hx hx h


3
−∆

++ +

.
.
.
.
.
=
!
(1)
( ) ( )
n
n
nh
xx h x nh

++
Example 21. Prove that:
(a)
µµ −δδ

µ=



−+
1
f(x) g(x) f(x) g(x)
f(x)
4
11
g(x)
g(x )g(x )
22
Here, interval of differencing being unity.
120
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
(b)

2
= h
2
D
2
– h
3
D
3
+
7
12
h
4
D

4 –
(c)

– ∆ = –


(d) 1 +



2
2
δ
=
+
22
1
δµ
(e)
µδ
=
1
2
()∆+∇
Sol.
(a) Here R.H.S. is =
1
() () () ()
4
11

()()
22
fx gx fx gx
gx gx
µµ −δδ
−+
Now numerator of R.H.S. is given by:
=
1
2
[E
1/2
+ E
–1/2
] f(x) .
1
2
(E
1/2
+ E
–1/2
) g(x) –
1
4
(E
1/2
– E
–1/2
) f(x) (E
1/2

– E
–1/2
)g(x)
=
1
4
[ f (x +
1
2
) + f(x –
1
2
)] [g(x +
1
2
) + g(x –
1
2
)] –
1
4
[ f (x +
1
2
) – f(x–
1
2
] [g(x +
1
2

)
– g(x –
1
2
)]
=
1
4
[f (x +
1
2
)g(x +
1
2
) + f(x +
1
2
) g(x –
1
2
) + f (x –
1
2
) g(x +
1
2
) f(x –
1
2
)g(x –

1
2
)

1
4
[f(x +
1
2
) g(x +
1
2
) – f (x +
1
2
) g(x –
1
2
) – f (x –
1
2
) g(x +
1
2
) + f(x –
1
2
) f(x–
1
2

)]
=
1
2
[f (x +
1
2
) g(x –
1
2
) + f (x –
1
2
) g(x +
1
2
) ]
Therefore right hand side is =
111 11
222 22
11
22
fx gx fx gx
gx gx


+−+−+






−+


=
()
()
()
()
1/2 1/2
11
1
22
11
22
22
fx fx
fx fx
EE
gx gx
gx gx



+−



+


+= =µ





+−




(b) We know E = e
hD
and

= 1 – E
–1
, therefore

2
= (1 – e
–hD
)
2
.
=
() () ()
2
234

1 1
2! 3! 4!
hD hD hD
hD




−− + − + −





=
() () ()


−+−+



2
234

2! 3! 4!
hD hD hD
hD
CALCULUS OF FINITE DIFFERENCES
121

= h
2
D
2
()




−− +





2
2
1
26
hD
hD
= h
2
D
2
() ()
 


 

+− + − − +

 


 
2
22
1 2
26 26
hD hD
hD hD
= h
2
D
2
()


−++ −




2
11
1
43
hD hD
= h

2
D
2


−+ −


22
7
1
12
hD h D
= h
2
D
2
– h
3
D
3
+
7
12
h
4
D
4

(c)

∇−∆
= (1 – E
–1
) – (E – 1) =
1E
E




– (E – 1) = (E – 1) (E
–1
– 1)
= – (E – 1) (1 – E
–1
) = – ∇∆
(d) L.H.S. =
2
1
2
x
y


δ

+






=
()
2
1/2 1/2
1
2
x
EE
y




+



=
1
2
1
2
EE



+−


+






y
x
=
1
2
(E + E
–1
)y
x
.
R.H.S. =
(
)
22
1
+δ µ
y
x
=
()()
{}
1/2
22

1/2 1/2 1/2 1/2
1
1.
4
x
EE EE y
−−

+− +


=
()
1/2
2
1
1
4
EE






+







y
x
=
1/2
22
2
4
EE


++



y
x
=
1
2
EE


+



y
x

Hence, L.H.S. = R.H.S.
(e)
x
y
µδ
=
µ
(E
1/2
– E
–1/2
)y
x
=
µ

22
hh
xx
yy
+−





=
µ

2

h
x
y
+





µ

2
h
x
y





=
1
2
(E
1/2
+ E
–1/2
)
2
h

x
y
+





1
2
(E
1/2
+ E
–1/2
)
2
h
x
y





=
1
2
(y
x+h
+ y

x
) –
1
2
(y
x
+ y
x–h
) =
1
2
(y
x+h
– y
x
) +
1
2
(y
x
– y
x–h
)
=
1
2

()
x
y


+
1
2

()
x
y

=
1
2

()
∆+∇
y
x
Hence,
µδ
=
1
2

()
∆+∇
.
122
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
Example 22. Evaluate: ∆
n

[sin (ax + b)]
Sol. We know
f∆
(x) = f(x + h) – f (x) therefore

sin (ax + b) = sin [a (x + h)+b] – sin)(ax + b)
= 2 sin
2
ah
cos
2
h
ax b


++




= 2 sin
2
ah
sin
2
ah
ax b


++



Therefore,

2
sin (ax + b)=

2sin sin
22
ah
ah
ax b



++




= (2 sin
2
ah
) (2 sin
2
ah
) sin [ax + b +
2
ah +π
+

2
ah +π
]
=
2
2sin
2
ah



sin
2
2
ah
ax b
π
+

++




On continuing in the same manner, we get

3
sin (ax + b) =
3
2sin

2
ah



sin
3( )
2
ah
ax b
π
+

++







n
sin (ax + b) =
2sin
2
n
ah




sin
()
2
nah
ax b
π
+

++




Example 23. Show that: u
0
– u
1
+ u
2
– =
1
2
u
0

1
4


u

0
+
1
8


2
u
0

Sol. On taking left hand side = u
0
– u
1
+ u
2
– u
3
+
= u
0
– Eu
0
+ E
2
u
0
– E
3
u

0
+
= (1 – E + E
2
– E
3
+ )u
0
=
()
1
1 E


−−


u
0
=
1
1 E


+

u
0
=
1

11


++∆

u
0
=
1
2


+∆

u
0
=
1
2

1
1
2



+


u

0
=
1
2

∆∆ ∆
−+−+


23
1
24 8
u
0
=
1
2
u
0

1
4


u
0

1
8


2
u
0

1
16


3
u
0
+ (R.H.S.)
CALCULUS OF FINITE DIFFERENCES
123
Example 24. Prove that:
(1)
() ()
δ


fxgx
=

(x)
()
gx
δ
+
()
gx

µ
()
fx
δ
(2)
()
()
() () () ()

µδ−µδ
δ=



−+


fx gx fx fx gx
11
gx
gx g x
22
Interval of differencing is unity.
Sol.
(1) R.H.S. =

(x)
()
gx
δ

+
()
gx
µ
()
fx
δ
=
1/2 1/2
2
EE

+
f(x). (E
1/2
– E
–1/2
) g(x) +
1/2 1/2
2
EE

+
g(x). (E
1/2
– E
–1/2
) f(x)
=
1

2
[{f(x +
1
2
) + f(x –
1
2
)} {g (x +
1
2
) – g (x –
1
2
)} + {g (x +
1
2
)
+ g (x –
1
2
)} {f (x +
1
2
) – f (x –
1
2
)}]
=
1
2

[{f(x +
1
2
) g (x +
1
2
)– f (x+
1
2
) g (x –
1
2
) + f(x –
1
2
) g (x +
1
2
)
– f (x –
1
2
) g (x –
1
2
)} + {f(x +
1
2
) g (x +
1

2
) + f(x +
1
2
) g (x –
1
2
)
– f (x –
1
2
) g (x +
1
2
) – f (x –
1
2
) g (x –
1
2
)}]
=
1
4
f(x +
1
2
) g(x +
1
2

) – f (x –
1
2
) g (x –
1
2
)
= E
1/2
f (x) g(x) – E
–1/2
f(x) g(x) = (E
1/2
– E
–1/2
) f (x) g(x) =

(x) g(x).
(2) R.H.S. =
() () () ()
11
22
gx f x f x gx
gx gx
µδ−µδ

−+


Now first we solve the numerator of right hand side.

=
1/2 1/2
2
EE

+
g(x) (E
1/2
– E
–1/2
) f(x) –
1/2 1/2
2
EE

+
f(x) (E
1/2
– E
–1/2
) g(x)
=
1
2
[{g(x +
1
2
) + g(x –
1
2

)} {f(x +
1
2
) – f(x –
1
2
)} – {f(x +
1
2
)
+ f(x –
1
2
)} {g(x +
1
2
) – g(x –
1
2
)}]
=
111 11 11 1 1
[( )( ) ( )( ) ( )( ) ( ) ( )]
222 22 22 2 2
f x gx f x gx fx gx f x gx++++−−−+−− −

111 11 11 1 1
[( )( ) ( )( ) ( )( ) ( ) ( )]
222 22 22 2 2
fx gx fx gx fx gx f x gx++−+−+−+−− −

= f (x +
1
2
) g(x –
1
2
) – f(x –
1
2
) g(x +
1
2
)
124
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
Therefore right hand side as
=
11 11
()()()()
22 22
11
()()
22
fx gx fx gx
gx g x
+−−−+
−+
=
1
()

2
1
()
2
fx
gx
+
+

1
()
2
1
()
2
fx
gx


= E
1/2
()
()
fx
gx



– E
–1/2

()
()
fx
gx



= (E
1/2
– E
–1/2
)
()
()
fx
gx



=
()
()
fx
gx

δ


.
Example 25. Evaluate: (a)

x
2
(x 1)!

+
; differencing 1. (b)
∆(log)
ax
ebx
.
Sol.
(a) Let f(x)= 2
x
, g(x) = (x + 1)!, therefore
1
() 2 2 2
xxx
fx
+
∆= −=
and
g∆
(x) = (x + 1 + 1)! – (x + 1)! = (x + 1) (x + 1)!
()
()
fx
gx





=
∆− ∆
+
() () () ()
( )()
gx fx fx gx
gx hgx
=
(1)!.22.(1)(1)!
( 1 1)!( 1)!
xx
xxx
xx
+−++
++ +
(Because h = 1)
=
2 ( 1) (!(1 1)
2
(2)!(1)! (2)!
x
x
xx
x
xx x
+−−
=−
++ +
.

(b) Again let, f(x)= e
ax
, g(x) = log bx, therefore
∆f(x)=
()
(1)
ax h ax ax ah
eeee
+
−= −
∆g(x)=
+− = +log ( ) log log(1 )
h
bx h bx
x
We know that
()()fxgx∆
=
( ) () () ()fx h gx gx fx+∆ + ∆
Therefore
(log)
ax
ebx

=
()
+

++ −



)
log 1 (log ) ( 1)
ax h
ax ah
h
ebxee
x
∆(e
ax
log bx)= e
ax
[e
ah
log
1
h
x

+


+ (e
ah
–1) log bx].
Example 26. Prove that, hD =– log (1 –

) = sin h
–1
(µδ).

Sol. Because, E
–1
=1 –

therefore,
hD = log E = – log (E
–1
) = – log (1 –

)
CALCULUS OF FINITE DIFFERENCES
125
Also, µ =
1/2 1/2
1
()
2
EE

+
δ = E
1/2
– E
–1/2
Therefore, µδ =
−−
−= − =
1
11
()( )sin()

22
hD hD
EE e e hhD
hD = sin h
–1
(µδ).
Example 27. Show that ∆ log f(x) =


+


f(x)
log 1
f(x)
Sol. L.H.S.
log ( )fx∆
=
log ( ) log ( )fx h fx+−
=
() ()
log log
() ()
fx h Efx
fx fx

+
=



=
(1 ) ( )
log
()
fx
fx

+∆


=
() ()
log
()
fx fx
fx

+∇


=
()
log 1
()
fx
fx


+



Example 28. Evaluate (1)




n
1
x
(2)
n

(ab
cx
).
Sol.
(1) We have,
1
n
x




= ∆n
–1

1
x




.
Now, ∆
1
x



=
1
1x
+

1
x
=
()
()
1
1
xx
xx
−+
+
=
()
()
1
1xx


+

2
1
x



= ∆∆
1
x



= ∆
()
()
1
1xx




+


= (–1) ∆
()
1

1xx



+


= (–1)
()()()
11
12 1xx xx




++ +


= (–1)
()
()()
2
12
xx
xx x
−+
++
=
()()
()()

−−
++
12
12xx x

3
1
x



=
()()()
()()()
123
123xx x x
−−−
+++

×