Tải bản đầy đủ (.pdf) (10 trang)

A textbook of Computer Based Numerical and Statiscal Techniques part 34 docx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (118.73 KB, 10 trang )

316
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
6.5 TRAPEZOIDAL RULE
Putting n =1 in equation (2) and taking the curve y = f(x) through (x
0
, y
0
) and (x
0
, y
0
) as a polynomial
of degree one so that differences of order higher than one vanish, we get

()()
0
0
00 010 01
1
() 2
22 2
xh
x
hh
fxdx hy y y y y y y
+

=+∆= +−=+






Similarly, for the next sub interval
()
00
,2,
xhx h
++
we get

()
00
00
2
12 1
(1)
( ) ( ) ( )
22
xnh
xh
nn
xh x n h
hh
f x dx y y f x dx y y
+
+

++−
=+ = +
∫∫
Adding the above integrals, we get

()
0
0
012 1
() 2( )
2
xnh
nn
x
h
f x dx y y y y y
+

=+++++


which is known as Trapezoidal rule.
6.6 SIMPSON’S ONE-THIRD RULE
Putting n = 2 in equation (2 ) and taking the curve through
00 11
(,),(,)
xy xy
and
22
(,)
xy
as a
polynomial of degree two so that differences of order higher than two vanish, we get
0
0

2
2
00 0
1
() 2
6
xh
x
fxdx hy y y
+

=+∆+∆




()
010210 012
2
66 (2 ) (4 )
63
hh
yyyyyy yyy

=+−+−−=++

Similarly,
()
0
0

4
234
2
( ) 4 ,
3
xh
xh
h
fxdx y y y
+
+
=++


0
0
21
(2)
() ( 4 )
3
xnh
nnn
xnh
h
fxdx y y y
+
−−
+−
=++


Adding the above integrals, we get
()( )
0
0
0131242
() 4 2( )
3
xnh
nn n
x
h
fxdx y y y y y y y y
+
−−
= + + + ++ + + ++


which is known as Simpson’s one-third rule.
Note: Using the formula, the given interval of integration must be divided into an even number of sub-
intervals.
NUMERICAL DIFFERENTIATION AND INTEGRATION
317
6.7 SIMPSON’S THREE-EIGHT RULE
Putting n = 3 in equation (2) and taking the curve through (x
0
, y
0
), (x
1
, y

1
), (x
2
, y
2
) and (x
3
, y
3
) as a
polynomial of degree three so that differences of order higher than three vanish, we get

0
0
3
23
00 0 0
33 1
() 3
24 8
xh
x
fxdx hy y y y
+

=+∆+∆+∆



()( )

0 10 2 10 3 2 10
3
812 6 2 (33 )
8
h
y yy yyy yyyy

=+−+−++−+−

()
0123
3
33
8
h
yyyy
=+++
Similarly,
()
0
0
6
3456
3
3
( ) 3 3 ,
8
xh
xh
h

fxdx y y y y
+
+
=+++


0
0
6
321
(3)
3
() ( 3 3 )
8
xh
nnnn
xnh
h
fxdx y y y y
+
−−−
+−
=+++

Adding the above integrals, we get
0
0
0) 1245 2 1 36 3
3
( ) [( 3( ) 2( )]

8
xnh
nnnn
x
h
fxdx y y y y y y y y y y y
+
−− −
=+++++++++++

which is known as Simpson’s three-eighth rule.
Note: Using this formula, the given interval of integration must be divided into sub-intervals whose
number n is a multiple of 3.
6.8 BOOLE’S RULE
Putting n = 4 in equation (2) and neglecting all differences of order higher than four, we get
0
0
4
4
23 4
00 0 0 0
0
(1)(1)(2)(1)(2)(3)
()
2! 3! 4!
xh
x
rr rr r rr r r
fxdx h y r y y y y dr
+

−−−−−−

= +∆+ ∆+ ∆+ ∆


∫∫
(By Newton’s forward interpolation formula)

4
4
2432
23
0
00 0 0
0
(2 3) ( 2) 3 11
43
212 24 5234!
y
nnn nn nnn
hy y y y n



−−
=+∆+ −∆+ ∆+−+−







23 4
0000 0
52 7
42
3390
hyyyy y

= +∆+∆+∆+∆



01234
2
(7 32 12 32 7 )
45
h
yyyyy=++++
Similarly,
08
04
45678
2
( ) (7 32 12 32 7 )
45
h
h
x
x

h
fxdx y y y y y
+
+
=++++

and so on.
318
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
Adding all these integrals from x
0
to x
0
+ nh, where n is a multiple of 4, we get
0
0
012345678
2
( ) (7 32 12 32 14 32 12 32 14 )
45
xnh
x
h
fxdx yyyyyyyyy
+
= ++++++++

This is known as Boole’s rule.
Note: Using Boole’s rule, the number of sub-intervals should be taken as a multiple of 4.
6.9 WEDDLE’S RULE

Putting n = 6 in equation (2) and neglecting all differences of order higher than six, we get
0
0
6
6
23
00 0 0
0
(1) (1)(2)
()
2! 3!
xh
x
rr rr r
fxdx h y ry y y
+
−−−

=+∆+ ∆+ ∆


∫∫
45
00
(1)(2)(3) (1)(2)(3)(4)
4! 5!
rrrr rrrrr
yy
−−− −−−−
+∆+ ∆


6
0
( 1)( 2)( 3)( 4)( 5)
6!
rr r r r r
ydr
−−−−−

+∆



232 4
2323
00 0 0
11
2232 64
rrr r
hry y y r r y

  
=+∆+−∆+−+∆

  

  


54 3 6 4 3

24 5 25
00
1311 1 3550
3212
24 5 2 3 120 6 4 3
rr r r r r
ry r ry
 
+−+−∆+ −+−+∆
 
 

78 4 3
52
6
6
0
0
1 5 225 274
17 60
720 7 2 4 3
rr r r
rry









+−+−+−∆
=
63
9
2
4
41
20
11
20
41
840
00
2
0
3
0
4
0
5
0
6
0
hy y y y y y y
++ + + + +
L
N
M
O

Q
P
∆∆ ∆ ∆ ∆ ∆

2345 6
00 0 0 0 0 0
641
20 60 90 80 41 11
20 42
h
yy y y y y y

= +∆+∆+∆+∆+∆+∆



()( )( )
010 210 3210
3
20 60 90 2 80 3 3
10
h
yyy yyy yyyy

=+−+−++−+−


43210 54 3 210
41(464 )11(510105 )
yyyyy yy y yyy+ −+−++ −+−+−


65 4 3 210
( 6 15 20 15 6 )]
yy y y yyy+−+−+−+

3
41
42
1

L
N
M
O
Q
P

()
0
12 34 56
3
565
10
h
yyyyyyy
= + ++ ++ +
NUMERICAL DIFFERENTIATION AND INTEGRATION
319
Similarly,
()

()
0
0
12
6 7 8 9 10 11 12
6
3
56 5
10
xh
xh
h
fxdx y y y y y y y
+
+
=++++++



0
0
654321
(6)
3
() ( 5 6 5 )
10
xnh
nnynnnn
xnh
h

fxdxyyyyyyy
+
−−−−−−
+−
=++++++

Adding the above integrals, we get
0
0
0 1 2 3 4 5 6 7 8 9 10 11 12
3
() ( 5 6 5 2 5 6 5 2 )
10
xnh
x
h
fxdx yyyyyyyyyyy y y
+
= + ++ ++ + + ++ + + + +

which is known as Weddle’s rule. Here n must be a multiple of 6.
Example 1. Use Trapezoidal rule to evaluate
1
0
1
.
1
dx
x+


Sol. Let h = 0.125 and y = f(x) =
1
1 x+
, then the values of y are given for the arguments which
are obtained by dividing the interval [0,1] into eight equal parts are given below:
x 0 0.125 0.250 0.375 0.5 0.625 0.750 0.875 1.0

1
1
y
x
=
+
1.0 0.8889 0.8000 0.7273 0.6667 0.6154 0.5714 0.5333 0.5
y
0
y
1
y
2
y
3
y
4
y
5
y
6
y
7

y
8
Now by Trapezoidal rule

1
0 1234567 8
0
1
[2( )]
12
h
dx y yyyyyyy y
x
= + ++++++ +
+

0.125
[1 2(0.8889 0.800 0.7273 0.6667 0.6154 0.5714 0.5333) 0.5]
2
= + ++++++ +
0.125
[1.5 2(4.803)]
2
=+
=
0.125
2
[11.106] = 0.69413. Ans.
Example 2. Evaluate
1

2
0
1
dx
x+

using
(i) Simpson’s
1
3
rule taking
1
4
h =
(ii) Simpson’s
3
8
rule taking
1
6
h =
(iii) Weddle’s rule taking
1
6
h =
Hence compute an approximate value of π in each case.
320
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
Sol. (i) The values of
2

1
()
1
fx
x
=
+
at
123
0, , , ,1
444
x =
are given below:
()
01234
11 3
01
42 4
16
1 0.8 0.64 0.5
17
x
fx
yyy y y
By Simpon’s
1
3
rule
()
1

04 13 2
2
0
[4()2]
3
1
dx h
yy yy y
x
=++++
+


{}
116
(1 0.5) 4 .64 2(0.8) 0.78539215
12 17

=++++ =


Also,
1
11
2
0
0
tan tan 1
4
1

dx
x
x
−−
π

===

+



0.785392156 3.1415686
4
π
=⇒π≈
. Ans.
(ii) The values of
2
1
()
1
fx
x
=
+
at x = 0,
12345
,,,,,1
66666

are given below:
()
0123456
12345
0 1
66666
36 9 4 9 36 1
1
37 10 5 13 61 2
x
fx
yyyyyyy
By Simpson’s
3
8
rule

[]
1
06 1245 3
2
0
3
()3( )2
8
1
dx h
yy yyyy y
x
=++++++

+

=
3
1
6
8
1
1
2
3
36
37
9
10
9
13
36
61
2
4
5
F
H
I
K
+
F
H
G

I
K
J
++++
R
S
T
U
V
W
+
F
H
G
I
K
J
L
N
M
O
Q
P
= 0.785395862
Also,
1
2
0
4
1

dx
x
π
=
+



0.785395862
4
π
=


π = 3.141583. Ans.
NUMERICAL DIFFERENTIATION AND INTEGRATION
321
(iii) By Weddle’s rule

()
1
0123456
2
0
3
565
10
1
dx h
yyyyyyy

x
=++++++
+


1
3
36949361
6
15 6 5
10 37 10 5 13 61 2



  

= + ++ ++ +
  

  

= 0.785399611
Since
1
2
0
4
1
dx
x

π
=
+



0.785399611
4
π
=

π = 3.141598
Example 3. Evaluate
6
2
0
1
dx
x+

by using
(i) Trapezoidal Rule
(ii) Simpson’s one-third rule
(iii) Simpson’s three-eighth rule
(iv) Weddle’s rule.
Sol. Divide the interval (0, 6) into six parts each of width h = 1.
The value of
2
1
()

1
fx
x
=
+
are given below:
x 01 2 3 4 5 6
f(x) 1 0.5 0.2 0.1
1
17
1
26
1
37
y
0
y
1
y
2
y
3
y
4
y
5
y
6
(i) By Trapezoidal rule,


6
06 12345
2
0
[( ) 2( )]
2
1
dx h
yy yyyyy
x
= + + ++++
+


11 11
120.50.20.1
237 1726

 
=++++++
 

 

= 1.410798581. Ans.
(ii) By Simpson’s one-third rule,

()( )
6
06 135 24

2
0
[4 2()]
3
1
dx h
yy yyy yy
x
=++++++
+


11 1 1
140.50.120.2
337 26 17

  
=++ ++++
  

  

= 1.366173413. Ans.
322
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
(iii) By Simpson’s three-eighth rule,
6
06 1245 3
2
0

3
[( ) 3( ) 2 ]
8
1
dx h
yy yyyy y
x
=++++++
+

=
31 11
1 3 0.5 0.2 2(0.1)
837 1726

 
++ ++++
 

 

= 1.357080836. Ans.
(iv) By Weddle’s rule,
6
0123456
2
0
3
(5 6 5 )
10

1
dx h
yyyyyyy
x
=++++++
+


3111
1 5(0.5) 0.2 6(0.1) 5
10 17 26 37


=+ ++ ++ +





1.373447475.=
Ans.
Example 4. Using Simpson’s one-third rule, find
6
2
0
(1 )
dx
x+

. (B. Tech. 2002)

Sol. Divide the interval [0,6] into 6 equal parts with
60
6
h

=
= 1. The values of
2
1
(1 )
y
x
=
+
at
each points of sub-divisions are given by
x 01 2 3 4 5 6
2
1
(1 )
y
x
=
+
1 0.25 0.11111 0.0625 0.04 0.02778 0.02041
y
0
y
1
y

2
y
3
y
4
y
5
y
6
By Simpson’s one-third rule, we get

[]
6
0 135 24 6
2
0
4( ) 2( )
3
(1 )
dx h
y yyy yy y
x
=++++++
+

=
[]
1
1 4(0.25 0.0625 0.02778) 2(0.11111 0.04) 0.02041
3

+++ + ++
=
[]
1
1.02041 4(0.34028) 2(0.15111)
3
++
=
[]
11
1.02041 1.36112 0.30222 (2.68375)
33
++
= 0.89458. Ans.
Example 5. Evaluate
4
2
0
1
dx
x
x+

using Boole’s rule taking
(i) h = 1 (ii) h = 0.5
Compare the rusults with the actual value and indicate the error in both.
NUMERICAL DIFFERENTIATION AND INTEGRATION
323
Sol. (i) Dividing the given interval into 4 equal subintervals (i.e. h = 1), the table is as below:
x 01234

y 1
1
2
1
5
1
10
1
17
y
0
y
|
y
2
y
3
y
4
Using Boole’s rule,
1
4
0234
0
2
(7 32 12 32 7 )
45
h
ydx y y y y y=++++


=
21
45
71 32
1
2
12
1
5
32
1
10
7
1
17
()
()+
F
H
I
K
+
F
H
I
K
+
F
H
I

K
+
F
H
I
K
L
N
M
O
Q
P
= 1.289412 (approx.)


4
2
0
1.289412.
1
dx
x
=
+

Ans.
(ii) Dividing the given interval into 8 equal subintervals (i.e. h = 0.5), the table is as below:
x 0 0.5 1 1.5 2 2.5 3 3.5 4
y 1.0 0.8 0.5
4

13
0.2
4
29
0.1
4
53
1
17
y
0
y
1
y
2
y
3
y
4
y
5
y
6
y
7
y
8
Using Boole’s rule,

[]

4
012345678
0
2
7321232143212327
45
h
ydx y y y y y y y y y
=++++++++

=
() () ()
14441
7(1) 32(8) 12(5) 32 7 .2 7 .2 32 12 .1 32 7
45 13 29 53 17
 
  
+++ +++ + + +
  
 
  
 
= 1.326373

dx
x1
2
0
4
+

z
= 1.326373
But the actual value is

()
0
4
4
11
2
0
tan tan (4) 1.325818
1
dx
x
x
−−
===
+

Error in I result =
1.325818 1.289412
100 2.746%
1.325818


×=


Error in II result =

1.325818 1.326373
100 0.0419%
1.325818


×=−


324
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES
Example 6. Evaluate the integral
6
3
0
1
dx
x+

by using Weddle’s rule.
Sol. Divide the interval [0,6] into 6 equal parts each of width
60
1
6
h

==
. The value of
3
1
1

y
x
=
+
at each points of sub-divisions are given below:
x 0123456
y 1.0000 0.5000 0.1111 0.0357 0.0153 0.0079 0.0046
y
0
y
1
y
2
y
3
y
4
y
5
y
6
By Weddle’s Rule, we get

[]
6
0152436
3
0
3
5( ) 6

10
1
dx h
yyyyyyy
x
=++++++
+

[]
3
1.0000 5(0.5000 0.0079) 0.1111 0.0153 6(0.357) 0.0046
10
=++++++
()()
3
1.131 5 0.5079 6 0.0357
10
=+ +


[]
3
1.131 2.5395 0.2142
10
=++
3
(3.8847) 1.1654.
10
==
Ans.

Example 7. Evaluate the integral
3
1.5
0
1
x
x
dx
e


by using Weddle’s rule.
Sol. Dividing the interval [0, 1, 5] into 6 equal parts of each of width
1.5 0
0.25
6
h

==
and the
values of
3
1
x
x
y
e
=

at each points of sub-interval are given by

x 0 0.25 0.50 0.75 1.00 1.25 1.50
y 0 0.0549 0.1927 0.3777 0.5820 0.7843 0.9694
y
0
y
1
y
2
y
3
y
4
y
5
y
6
Now by Weddle’s rule, we get

[]
3
1.5
0152436
0
3
5( ) 6
10
1
x
xh
dx y y y y y y y

e
=++++++



[]
3(0.25
0 5(0.0549 0.7843) 0.1927 0.5820 0.9694 6(0.3777)
10
= + + ++++
= 0.075[1.7441 + 5(0.8392) +6(0.3777)]
NUMERICAL DIFFERENTIATION AND INTEGRATION
325
= 0.075[1.7441 + 4.196 + 2.2662] = 0.075(8.2063)
= 0.6155. Ans.
Example 8. Evaluate the integral
5.2
4
log ,
xdx

using Weddle’s rule.
Sol. Divide the interval [4, 5.2] into 6 equal sub-interval of each width
5.2 4
0.2
6

==
and
values of y = log x are given below:

x 4.0 4.2 4.4 4.6 4.8 5.0 5.2
y 1.3862 1.4350 1.4816 1.5261 1.5686 1.6094 1.6486
y
0
y
1
y
2
y
3
y
4
y
5
y
6
By Weddle’s Rule, we get

5.2
0152436
4
3
log [ 5( ) 6 ]
10
h
xdx y y y y y y y= + + +++ +


3(0.2)
[1.3862 5(1.4350 1.6094) 1.4816 1.5686 6(1.5261) 1.6486]

10
=++++++

0.6
[1.3862 5(3.0444) 1.4816 1.5686 6(1.526) 1.6486]
10
= + +++ +

0.6
[6.085 5(3.0444) 6(1.5261)]
10
=++

0.6
[6.085 15.222 9.1566]
10
=++

==
0.6
(30.4636) 1.8278
10
Ans.
Example 9. A river is 80 m wide. The depth y of the river at a distance ‘x’ from one bank is given by the
following table:
x
01020304050607080
y
0 4 7 9 12 15 14 8 3
Find the approximate area of cross section of the river using

(i) Boole’s rule.
(ii) Simpson’s one-third rule.
Sol. The required area of the cross-section of the river.

80
0
ydx=

(1)
Here no. of sub intervals is 8
(i) Boole’s rule,
[]
= ++++++++

80
012345678
0
2
7321232143212327
45
h
ydx yyyyyyyyy

×