Tải bản đầy đủ (.doc) (46 trang)

12 ĐỀ THI ĐH CÓ LỜI GIẢI

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (738.11 KB, 46 trang )

KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THƠNG NĂM 2009
Mơn thi : TỐN
I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu 1. (3,0 điểm). Cho hàm số
2x 1
y
x 2
+
=

.
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2) Viết phương trình tiếp tuyến của đồ thị (C),biết hệ số góc của tiếp tuyến bằng -5.
Câu 2. (3,0 điểm)
1) Giải phương trình .
2) Tính tích phân
0
I x(1 cos x)dx
π
= +

.
3) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số
2
f (x) x ln(1 2x)= − −
trên đoạn [-2; 0].
Câu 3. (1,0 điểm). Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên
SA vng góc với mặt phẳng đáy. Biết góc BAC = 120
0
, tính thể tích của khối chóp S.ABC
theo a.


II. PHẦN RIÊNG (3,0 điểm)
Thí sinh học chương trình nào thì chỉ được chọn phần dành riêng cho chương trình đó
(phần 1 hoặc phần 2)
1. Theo chương trình Chuẩn :
Câu 4a (2,0 điểm). Trong khơng gian Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương
trình:
( ) ( ) ( )
2 2 2
(S) : x 1 y 2 z 2 36 và (P) : x 2y 2z 18 0− + − + − = + + + =
.
1) Xác định tọa độ tâm T và tính bán kính của mặt cầu (S). Tính khoảng cách từ T đến mặt
phẳng (P).
2) Viết phương trình tham số của đường thẳng d đi qua T và vng góc với (P). Tìm tọa độ
giao điểm của d và (P).
Câu 5a. (1,0 điểm). Giải phương trình
2
(S) :8z 4z 1 0− + =
trên tập số phức.
2. Theo chương trình Nâng cao:
Câu 4b. (2,0 điểm). Trong khơng gian Oxyz, cho điểm A(1; -2; 3) và đường thẳng d có
phương trình
x 1 y 2 z 3
2 1 1
+ − +
= =

1) Viết phương trình tổng qt của mặt phẳng đi qua điểm A và vng góc với đường
thẳng d.
2) Tính khoảng cách từ điểm A đến đường thẳng d. Viết phương trình mặt cầu tâm A, tiếp
xúc với d.

Câu 5b. (1,0 điểm). Giải phương trình
2
2z iz 1 0− + =
trên tập số phức.
BÀI GIẢI
Câu 1: 1) MXĐ : R \ {2} ; y’ =
2
5
( 2)x


< 0, ∀ x ≠ 2. Hàm luôn luôn nghòch biến trên từng
khoảng xác đònh.
1
2
lim
x
y


= −∞
;
2
lim
x
y
+

= +∞
⇒ x = 2 là tiệm cận đứng

lim 2
x
y
+
→+∞
=
;
lim 2
x
y

→−∞
=
⇒ y = 2 là tiệm cận ngang
BBT :
x −∞ 2
+∞
y'
− −
y 2
-
+∞
-∞ 2
+
Giao điểm với trục tung (0;
1
2

); giao điểm với trục hoành (
1

2

; 0)
Đồ thị :
2) Tiếp tuyến tại điểm có hoành độ x
0
, có hệ số góc bằng –5

2
0
5
5
( 2)x

= −

⇔ x
0
= 3 hay x
0
= 1 ; y
0
(3) = 7, y
0
(1) = -3
Phương trình tiếp tuyến cần tìm là: y – 7 = -5(x – 3) hay y + 3 = -5(x – 1)
⇔ y = -5x + 22 hay y = -5x + 2
Câu 2: 1) 25
x
– 6.5

x
+ 5 = 0 ⇔
2
(5 ) 6.5 5 0
x x
− + =
⇔ 5
x
= 1 hay 5
x
= 5
⇔ x = 0 hay x = 1.
2)
0 0 0
(1 cos ) cosI x x dx xdx x xdx
π π π
= + = +
∫ ∫ ∫
=
2
0
cos
2
x xdx
π
π
+

Đặt u = x ⇒ du = dx; dv = cosxdx, chọn v = sinx
2

x
y


0
2
2
⇒ I =
2
0
0
sin sin
2
x x xdx
π
π
π
+ −

=
2 2
0
cos 2
2 2
x
π
π π
+ = −
3) Ta có : f’(x) = 2x +
2

2 4x 2x 2
1 2x 1 2x
− + +
=
− −
f’(x) = 0 ⇔ x = 1 (loại) hay x =
1
2

(nhận)
f(-2) = 4 – ln5, f(0) = 0, f(
1
2

) =
1
ln 2
4

vì f liên tục trên [-2; 0] nên
[ 2;0]
max f(x) 4 ln5

= −

[ 2;0]
1
minf (x) ln2
4


= −
Câu 3: Hình chiếu của SB và SC trên (ABC) là AB và AC , mà SB=SC nên AB=AC
Ta có : BC
2
= 2AB
2
– 2AB
2
cos120
0
⇔ a
2
= 3AB
2

=
3
a
AB
2
2 2
2
= a SA =
3
3
a a
SA − ⇒

2 2
0

1 1 3 a 3
= . .sin120 = =
2 2 3 2 12
ABC
a
S AB AC

2 3
1 2 3 2
= =
3 12 36
3
a a a
V
(đvtt)
Câu 4.a.:
1) Tâm mặt cầu: T (1; 2; 2), bán kính mặt cầu R = 6
d(T, (P)) =
1 4 4 18
27
9
3
1 4 4
+ + +
= =
+ +
2) (P) có pháp vectơ
(1;2;2)n =
r
Phương trình tham số của đường thẳng (d) :

1
2 2
2 2
x t
y t
z t
= +


= +

= +


(t ∈ R)
Thế vào phương trình mặt phẳng (P) : 9t + 27 = 0 ⇔ t = -3
⇒ (d) ∩ (P) = A (-2; -4; -4)
Câu 5.a.:
2
8z 4z 1 0− + =
;
/ 2
4 4i∆ = − =
; Căn bậc hai của
/


2i±
Phương trình có hai nghiệm là
1 1 1 1

z ihayz i
4 4 4 4
= + = −
Câu 4.b.:
1) (d) có vectơ chỉ phương
(2;1; 1)a = −
r
Phương trình mặt phẳng (P) qua A (1; -2; 3) có pháp vectơ
a
r
:
2(x – 1) + 1(y + 2) – 1(z – 3) = 0 ⇔ 2x + y – z + 3 = 0
2) Gọi B (-1; 2; -3) ∈ (d)
BA
uuur
= (2; -4; 6)
,BA a
 
 
uuur r
= (-2; 14; 10)
3
B
A
S
a
a
a
C
d(A, (d)) =

,
4 196 100
5 2
4 1 1
BA a
a

+ +

= =
+ +
uuur r
r
Phửụng trỡnh maởt cau taõm A (1; -2; 3), baựn kớnh R =
5 2
:
(x 1)
2
+ (y + 2)
2
+ (2 3)
2
= 50
Cõu 5.b.:
2
2z iz 1 0 + =
2
i 8 9 = =
= 9i
2

Cn bc hai ca

l
3i

Phng trỡnh cú hai nghim l
1
z ihay z i
2
= =
.
THI TH I HC , nm 2009
Mụn: TON Khi A-B
Thi gianlm bi: 180 phỳt.
A. PHN CHUNG CHO TT C CC TH SINH: ( 8 im)
Cõu 1: ( 2im)
Cho hm s y = 4x
3
+ mx
2
3x
1. Kho sỏt v v th (C) hm s khi m = 0.
2. Tỡm m hm s cú hai cc tr ti x
1
v x
2
tha x
1
= - 4x
2


Cõu 2: (2im)
1. Gii h phng trỡnh:
2 0
1 4 1 2
x y xy
x y

=


+ =


2. Gii phng trỡnh: cosx = 8sin
3
6
x


+


Cõu 3: (2im)
1. Cho hỡnh chúp S.ABC cú SA vuụng gúc vi mt phng (ABC), tam giỏc ABC vuụng ti C ; M,N l
hỡnh chiu ca A trờn SB, SC. Bit MN ct BC ti T. Chng minh rng tam giỏc AMN vuụng v AT tip
xỳc vi mt cu ng kớnh AB.
2. Tớnh tớch phõn A =
2
ln .ln ex

e
e
dx
x x

Cõu 4: (2 im)
1. Trong khụng gian vi h trc ta Oxyz, cho bn im A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0).
Chng minh cỏc ng thng AB v CD chộo nhau. Vit phng trỡnh ng thng (D) vuụng gúc vi
mt phngOxy v ct c cỏc ng thngAB; CD.
2. Cho ba s thc dng a, b, c tha:
3 3 3
2 2 2 2 2 2
1
a b c
a ab b b bc c c ca a
+ + =
+ + + + + +
Tỡm giỏ tr ln nht ca biu thc S = a + b + c
B. PHN T CHN: Thớ sinh ch chn cõu 5a hoc 5b
Cõu 5a: Theo chng trỡnh chun: ( 2 im)
1. Trong khụng gian vi h trc ta Oxyz, cho im A(4;5;6). Vit phng trỡnh mt phng (P) qua
A; ct cỏc trc ta ln lt ti I; J; K m A l trc tõm ca tam giỏc IJK.
2. Bit (D) v (D) l hai ng thng song song. Ly trờn (D) 5 im v trờn (D) n im v ni cỏc
im ta c cỏc tam giỏc. Tỡm n s tam giỏc lp c bng 45.
Cõu 5b: Theo chng trỡnh nõng cao: ( 2 im)
1. Trong mt phng vi h trc ta Oxy, cho ng thng (D): x 3y 4 = 0 v ng trũn (C): x
2
+
y
2

4y = 0. Tỡm M thuc (D) v N thuc (C) sao cho chỳng i xng qua A(3;1).
4
2. Tìm m để bất phương trình: 5
2x
– 5
x+1
– 2m5
x
+ m
2
+ 5m > 0 thỏa với mọi số thực x.
Hết
BÀI GIẢI TÓM TẮT
A.PHẦN CHUNG:
Câu 1:
1. m = 0 , y = 4x
3
– 3x
- TXĐ: D = R
- Giới hạn:
lim , lim
x x
y y
→+∞ →−∞
= +∞ = −∞
- y’ = 12x
2
– 3 ; y’ = 0 ⇔ x =
1
2

±
Bảng biến thiên:

- y’’ = 24x , y” = ⇔ x = 0 , đồ thị có điểm uốn O(0;0)
- Đồ thị:

2. TXĐ: D = R
- y’ = 12x
2
+ 2mx – 3
Ta có: ∆’ = m
2
+ 36 > 0 với mọi m, vậy luôn có cực trị
Ta có:
1 2
1 2
1 2
4
6
1
4
x x
m
x x
x x


= −



+ = −



= −



9
2
m⇒ = ±
Câu 2:
1.
2 0 (1)
1 4 1 2 (2)
x y xy
x y

− − =


− + − =


Điều kiện:
1
1
4
x
y








Từ (1)
2 0
x x
y y
⇒ − − =


x = 4y
Nghiệm của hệ (2;
1
2
)
5
2. cosx = 8sin
3
6
x
π
 
+
 ÷
 


cosx =
( )
3
3 sinx+cosx

3 2 2 3
3 3 sin 9sin osx +3 3 sinxcos os osx = 0x xc x c x c+ + −
(3)
Ta thấy cosx = 0 không là nghiêm
(3) ⇔
3 2
3 3 tan 8t an x + 3 3 tanx = 0x +

t anx = 0 x = k
π
⇔ ⇔
Câu 3:
1.Theo định lý ba đường vuông góc
BC ⊥ (SAC) ⇒ AN ⊥ BC
và AN ⊥ SC
⇒AN ⊥ (SBC) ⇒ AN ⊥ MN
Ta có: SA
2
= SM.SB = SN.SC
Vây ∆MSN ∼ ∆CSB


TM là đường cao của tam giác STB



BN là đường cao của tam giác STB
Theo định lý ba đường vuông góc, ta có AB ⊥ ST
⇒AB ⊥ (SAT) hay AB⊥ AT (đpcm)

2.
2 2
(ln )
ln (1 ln ) ln (1 ln )
e e
e e
dx d x
A
x x x x x
= =
+ +
∫ ∫
=
2
1 1
(ln )
ln 1 ln
e
e
d x
x x
 

 ÷
+
 


=
2 2
ln(ln ) ln(1 ln )
e e
x x
e e
− +
= 2ln2 – ln3
Câu 4:
1. +)
(4;5;5)BA =
uuur
,
(3; 2;0)CD = −
uuur
,
(4;3;6)CA =
uuur

, (10;15; 23)BA CD
 
= −
 
uuur uuur


, . 0BA CD CA
 


 
uuur uuur uuur
⇒ đpcm
+ Gọi (P) là mặt phẳng qua AB và (P) ⊥ (Oxy)

có VTPT
1
,n BA k
 
=
 
ur uuur r
= (5;- 4; 0)
⇒ (P): 5x – 4y = 0
+ (Q) là mặt phẳng qua CD và (Q) ⊥ (Oxy) có VTPT
1
,n CD k
 
=
 
ur uuur r
= (-2;- 3; 0)
⇒ (Q): 2x + 3y – 6 = 0
Ta có (D) = (P)∩(Q) ⇒ Phương trình của (D)
2. Ta có:
3
2 2
2
3
a a b

a ab b


+ +
(1)
⇔ 3a
3
≥ (2a – b)(a
2
+ ab + b
2
)
⇔ a
3
+ b
3
– a
2
b – ab
2
≥ 0
⇔ (a + b)(a – b)
2


0. (h/n)
Tương tự:
3
2 2
2

3
b b c
b bc c


+ +
(2) ,
3
2 2
2
3
c c a
c ac a


+ +
(3)
Cộng vế theo vế của ba bđt (1), (2) và (3) ta được:
3 3 3
2 2 2 2 2 2
3
a b c a b c
a ab b b bc c c ca a
+ +
+ + ≥
+ + + + + +
Vậy: S ≤ 3

maxS = 3 khi a = b = c = 1
B. PHẦN TỰ CHỌN:

Câu 5a: Theo chương trình chuẩn
6
1. Ta có I(a;0;0), J(0;b;0), K(0;0;c)
( ) : 1
x y z
P
a b c
⇒ + + =
Ta có
(4 ;5;6), (4;5 ;6)
(0; ; ), ( ;0; )
IA a JA b
JK b c IK a c
= − = −
= − = −
uur uur
uuur uur
Ta có:
4 5 6
1
5 6 0
4 6 0
a b c
b c
a c

+ + =


− + =



− + =



77
4
77
5
77
6
a
b
c

=



=



=




ptmp(P)

2.Ta có: n
2 2
5
5
n
C C+
= 45 ⇒ n
2
+ 3n – 18 = 0 ⇒ n = 3
Câu 5b:
1.M ∈ (D) ⇒ M(3b+4;b) ⇒ N(2 – 3b;2 – b)
N ∈ (C) ⇒ (2 – 3b)
2
+ (2 – b)
2
– 4(2 – b) = 0 ⇒ b = 0;b = 6/5
Vậy có hai cặp điểm: M(4;0) và N(2;2) , M’(38/5;6/5) và N’(-8/5; 4/5)
2. Đặt X = 5
x
⇒ X > 0
Bất phương trình đã cho trở thành: X
2
+ (5 + 2m)X + m
2
+ 5m > 0 (*)
Bpt đã cho có nghiệm với mọi x khi và chỉ khi (*) có nghiệm với mọi X > 0
⇔∆ < 0 hoặc (*) có hai nghiệm X
1
≤ X
2

≤ 0
Từ đó suy ra m
ĐỀ THI THỬ ĐẠI HỌC 2 , năm 2009
Môn: TOÁN – Khối A-B
Thời gianlàm bài: 180 phút.
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)
Câu I (2 điểm) Cho hàm số
4 2
( ) 2y f x x x= = −
1. Khảo sát và vẽ đồ thị (C) của hàm số.
2. Trên (C) lấy hai điểm phân biệt A và B có hoành độ lần lượt là a và b. Tìm điều
kiện đối với a và b để hai tiếp tuyến của (C) tại A và B song song với nhau.
Câu II (2 điểm)
1. Giải phương trình lượng giác:
( )
2 cos sin
1
tan cot 2 cot 1
x x
x x x

=
+ −
2. Giải bất phương trình:
( )
2
3 1 1
3 3
1

log 5 6 log 2 log 3
2
x x x x− + + − > +
Câu III (1 điểm) Tính tích phân:
( )
2
4 4
0
cos 2 sin cosI x x x dx
π
= +

Câu IV (1 điểm) Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh liên
tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường
tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 45
0
. Tính diện tích
xung quanh và thể tích của hình trụ.
Câu V (1 điểm) Cho phương trình
( ) ( )
3
4
1 2 1 2 1x x m x x x x m+ − + − − − =
Tìm m để phương trình có một nghiệm duy nhất.
7
PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)
1. Theo chương trình chuẩn.
Câu VI.a (2 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) và đường thẳng


định
bởi:
2 2
( ): 4 2 0; : 2 12 0C x y x y x y+ − − = ∆ + − =
. Tìm điểm M trên

sao cho từ M vẽ được với
(C) hai tiếp tuyến lập với nhau một góc 60
0
.
2. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2;1;0), B(1;1;3),
C(2;-1;3), D(1;-1;0). Tìm tọa độ tâm và bán kính của mặt cầu ngoại tiếp tứ diện
ABCD.
Câu VII.a (1 điểm) Có 10 viên bi đỏ có bán kính khác nhau, 5 viên bi xanh có bán kính khác
nhau và 3 viên bi vàng có bán kính khác nhau. Hỏi có bao nhiêu cách chọn ra 9 viên bi có đủ
ba màu?
2. Theo chương trình nâng cao.
Câu VI.b (2 điểm)
1. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I
thuộc đường thẳng
( )
: 3 0d x y− − =
và có hoành độ
9
2
I
x =
, trung điểm của một cạnh là
giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật.
2. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương

trình là
2 2 2
( ) : 4 2 6 5 0, ( ) : 2 2 16 0S x y z x y z P x y z+ + − + − + = + − + =
.
Điểm M di động trên (S) và điểm N di động trên (P). Tính độ dài ngắn nhất của đoạn
thẳng MN. Xác định vị trí của M, N tương ứng.
Câu VII.b (1 điểm) Cho
, ,a b c
là những số dương thỏa mãn:
2 2 2
3a b c+ + =
. Chứng minh bất
đẳng thức
2 2 2
1 1 1 4 4 4
7 7 7a b b c c a a b c
+ + ≥ + +
+ + + + + +
Hết
Đáp án.

u
Ý Nội dung Điểm
I 2,00
1 1,00
+ MXĐ:
D = ¡
0,25
+ Sự biến thiên
• Giới hạn:

lim ; lim
x x
y y
→−∞ →+∞
= +∞ = +∞

( )
3 2
0
' 4 4 4 1 ; ' 0
1
x
y x x x x y
x
=

= − = − = ⇔

= ±

0,25
8
• Bảng biến thiên
( ) ( ) ( )
1 2
1 1; 1 1; 0 0
CT CT
y y y y y y= − = − = = − = =



0,25
• Đồ thị
0,25
2 1,00
Ta có
3
'( ) 4 4f x x x= −
. Gọi a, b lần lượt là hoành độ của A và B.
Hệ số góc tiếp tuyến của (C) tại A và B là
3 3
'( ) 4 4 , '( ) 4 4
A B
k f a a a k f b b b= = − = = −
Tiếp tuyến tại A, B lần lượt có phương trình là:
( ) ( ) ( ) ( ) ( )
' ' ( ) af' ay f a x a f a f a x f a= − + = + −
;
( ) ( ) ( ) ( ) ( )
' ' ( ) f' by f b x b f b f b x f b b= − + = + −
Hai tiếp tuyến của (C) tại A và B song song hoặc trùng nhau khi và chỉ khi:
( )
( )
3 3 2 2
4a 4a = 4b 4 1 0 (1)
A B
k k b a b a ab b= ⇔ − − ⇔ − + + − =
Vì A và B phân biệt nên
a b≠
, do đó (1) tương đương với phương trình:
2 2

1 0 (2)a ab b+ + − =
Mặt khác hai tiếp tuyến của (C) tại A và B trùng nhau

( ) ( ) ( ) ( )
( )
2 2
2 2
4 2 4 2
1 0
1 0
' '
3 2 3 2
a ab b
a ab b
a b
f a af a f b bf b
a a b b


+ + − =
+ + − =
 
⇔ ≠ ⇔
 
− = −
− + = − +





,
Giải hệ này ta được nghiệm là (a;b) = (-1;1), hoặc (a;b) = (1;-1), hai nghiệm
này tương ứng với cùng một cặp điểm trên đồ thị là
( )
1; 1− −

( )
1; 1−
.
Vậy điều kiện cần và đủ để hai tiếp tuyến của (C) tại A và B song song với
nhau là
2 2
1 0
1
a ab b
a
a b

+ + − =

≠ ±




II 2,00
1 1,00
9
Điều kiện:
( )

cos .sin 2 .sin . tan cot 2 0
cot 1
x x x x x
x
+ ≠





0,25
Từ (1) ta có:
( )
2 cos sin
1 cos .sin 2
2 sin
sin cos 2 cos
cos
1
cos sin 2 sin
x x
x x
x
x x x
x
x x x

= ⇔ =
+ −
0,25

2sin .cos 2 sinx x x⇔ =
( )
2
2
4
cos
2
2
4
x k
x k
x k
π
π
π
π

= +

⇔ = ⇔ ∈


= − +


¢
0,25
Giao với điều kiện, ta được họ nghiệm của phương trình đã cho là
( )
2

4
x k k
π
π
= − + ∈¢
0,25
2 1,00
Điều kiện:
3x >
0,25
Phương trình đã cho tương đương:
( )
( ) ( )
1 1
2
3
3 3
1 1 1
log 5 6 log 2 log 3
2 2 2
x x x x
− −
− + + − > +
( )
( ) ( )
2
3 3 3
1 1 1
log 5 6 log 2 log 3
2 2 2

x x x x⇔ − + − − > − +
( ) ( ) ( ) ( )
3 3 3
log 2 3 log 2 log 3x x x x⇔ − − > − − + 
 
0,25
( ) ( )
3 3
2
log 2 3 log
3
x
x x
x

 
⇔ − − > 
 ÷
 
+
 
( ) ( )
2
2 3
3
x
x x
x

⇔ − − >

+
2
10
9 1
10
x
x
x

< −
⇔ − > ⇔

>


0,25
Giao với điều kiện, ta được nghiệm của phương trình đã cho là
10x >
0,25
III 1,00
1 1,00
( )
2
2
0
2
2
0
1
cos 2 1 sin 2

2
1 1
1 sin 2 sin 2
2 2
I x x dx
x d x
π
π
 
= −
 ÷
 
 
= −
 ÷
 


0,50

( ) ( )
2 2
2
0 0
3
2 2
0 0
1 1
sin 2 sin 2 sin 2
2 4

1 1
sin 2 sin 2 0
2 12
| |
d x xd x
x x
π π
π π
= −
= − =
∫ ∫
0,50
10
IV 1,00
Gọi M, N theo thứ tự là trung điểm của AB và
CD. Khi đó
OM AB


' DO N C

.
Giả sử I là giao điểm của MN và OO’.
Đặt R = OA và h = OO’. Khi đó:
OMI

vuông cân tại O nên:
2 2 2
.
2 2 2 2 2

h a
OM OI IM h a= = ⇒ = ⇒ =
0,25
Ta có:
2
2
2 2 2
2 2 2 2
2 3a
2 4 4 8 8
a a a a
R OA AM MO
 
 
= = + = + = + =
 ÷
 ÷
 ÷
 
 
0,25
2 3
2
3a 2 3 2
R . . ,
8 2 16
a a
V h
π
π π

⇒ = = =
0,25

2
a 3 2 3
2 Rh=2 . . .
2 2
2 2
xq
a a
S
π
π π
= =
0,25
V 1,00
Phương trình
( ) ( )
3
4
1 2 1 2 1x x m x x x x m+ − + − − − =
(1)
Điều kiện :
0 1x≤ ≤
Nếu
[ ]
0;1x ∈
thỏa mãn (1) thì 1 – x cũng thỏa mãn (1) nên để (1) có nghiệm
duy nhất thì cần có điều kiện
1

1
2
x x x= − ⇒ =
. Thay
1
2
x =
vào (1) ta được:
3
0
1 1
2. 2.
1
2 2
m
m m
m
=

+ − = ⇒

= ±

0,25
* Với m = 0; (1) trở thành:
( )
2
4 4
1
1 0

2
x x x− − = ⇔ =
Phương trình có nghiệm duy nhất.
0,25
* Với m = -1; (1) trở thành
( ) ( )
( )
( )
( )
( )
( ) ( )
4
4
2 2
4 4
1 2 1 2 1 1
1 2 1 1 2 1 0
1 1 0
x x x x x x
x x x x x x x x
x x x x
+ − − − − − = −
⇔ + − − − + + − − − =
⇔ − − + − − =
+ Với
4 4
1
1 0
2
x x x− − = ⇔ =

+ Với
1
1 0
2
x x x− − = ⇔ =
0,25
11
Trường hợp này, (1) cũng có nghiệm duy nhất.
* Với m = 1 thì (1) trở thành:
( ) ( )
( ) ( )
2 2
4 4
4
1 2 1 1 2 1 1 1x x x x x x x x x x+ − − − = − − ⇔ − − = − −
Ta thấy phương trình (1) có 2 nghiệm
1
0,
2
x x= =
nên trong trường hợp này
(1) không có nghiệm duy nhất.
Vậy phương trình có nghiệm duy nhất khi m = 0 và m = -1.
0,25
VI
a
2,00
1 1,00
Đường tròn (C) có tâm I(2;1) và bán kính
5R =

.
Gọi A, B là hai tiếp điểm của (C) với hai tiếp của (C) kẻ từ M. Nếu hai tiếp
tuyến này lập với nhau một góc 60
0
thì IAM là nửa tam giác đều suy ra
2R=2 5IM =
.
Như thế điểm M nằm trên đường tròn (T) có phương trình:
( ) ( )
2 2
2 1 20x y− + − =
.
0,25
Mặt khác, điểm M nằm trên đường thẳng

, nên tọa độ của M nghiệm đúng
hệ phương trình:
( ) ( )
2 2
2 1 20 (1)
2 12 0 (2)
x y
x y

− + − =


+ − =



0,25
Khử x giữa (1) và (2) ta được:
( ) ( )
2 2
2
3
2 10 1 20 5 42 81 0
27
5
x
y y y y
x
=


− + + − = ⇔ − + = ⇔

=

0,25
Vậy có hai điểm thỏa mãn đề bài là:
9
3;
2
M
 
 ÷
 
hoặc
27 33

;
5 10
M
 
 ÷
 
0,25
2 1,00
Ta tính được
10, 13, 5AB CD AC BD AD BC= = = = = =
.
0,25
Vậy tứ diện ABCD có các cặp cạnh đối đôi một bằng nhau. Từ đó ABCD là
một tứ diện gần đều. Do đó tâm của mặt cầu ngoại tiếp của tứ diện là trọng
tâm G của tứ diện này.
0,25
Vậy mặt cầu ngoại tiếp tứ diện ABCD có tâm là
3 3
;0;
2 2
G
 
 ÷
 
, bán kính là
0,50
12
14
2
R GA= =

.
VI
Ia
1,00
Số cách chọn 9 viên bi tùy ý là :
9
18
C
.
0,25
Những trường hợp không có đủ ba viên bi khác màu là:
+ Không có bi đỏ: Khả năng này không xảy ra vì tổng các viên bi xanh và
vàng chỉ là 8.
+ Không có bi xanh: có
9
13
C
cách.
+ Không có bi vàng: có
9
15
C
cách.
0,25
Mặt khác trong các cách chọn không có bi xanh, không có bi vàng thì có
9
10
C
cách chọn 9 viên bi đỏ được tính hai lần.
Vậy số cách chọn 9 viên bi có đủ cả ba màu là:

9 9 9 9
10 18 13 15
42910C C C C+ − − =

cách.
0,50
VI
b
2,00
1 1,00
I có hoành độ
9
2
I
x =

( )
9 3
: 3 0 ;
2 2
I d x y I
 
∈ − − = ⇒
 ÷
 
Vai trò A, B, C, D là như nhau nên trung điểm M của cạnh AD là giao điểm
của (d) và Ox, suy ra M(3;0)
( ) ( )
2 2
9 9

2 2 2 3 2
4 4
I M I M
AB IM x x y y= = − + − = + =
D
12
. D = 12 AD = 2 2.
3 2
ABCD
ABC
S
S AB A
AB
= ⇔ = =
( )
AD d
M AD
⊥





, suy ra phương trình AD:
( ) ( )
1. 3 1. 0 0 3 0x y x y− + − = ⇔ + − =
.
Lại có MA = MD =
2
.

Vậy tọa độ A, D là nghiệm của hệ phương trình:
( )
( ) ( ) ( )
2 2 2
2
2
2
3 0
3 3
3 2 3 3 2
3 2
x y
y x y x
x y x x
x y
+ − =

= − + = − +
 
  
⇔ ⇔
  
− + = − + − =
− + =
 

 

3 2
3 1 1

y x x
x y
= − =
 
⇔ ⇔
 
− = ± =
 
hoặc
4
1
x
y
=


= −

.Vậy A(2;1), D(4;-1),
0,50
9 3
;
2 2
I
 
 ÷
 
là trung điểm của AC, suy ra:
2 9 2 7
2

2 3 1 2
2
A C
I
C I A
A C C I A
I
x x
x
x x x
y y y y y
y
+

=

= − = − =



 
+ = − = − =


=


Tương tự I cũng là trung điểm BD nên ta có: B(5;4).
Vậy tọa độ các đỉnh của hình chữ nhật là (2;1), (5;4), (7;2), (4;-1).
0,50

2 1,00
13
Mặt cầu (S) tâm I(2;-1;3) và có bán kính R = 3.
Khoảng cách từ I đến mặt phẳng (P):
( )
( )
( )
2.2 2. 1 3 16
, 5
3
d d I P d R
+ − − +
= = = ⇒ >
.
Do đó (P) và (S) không có điểm chung.Do vậy, min MN = d –R = 5 -3 = 2.
0,25
Trong trường hợp này, M ở vị trí M
0
và N ở vị trí N
0
. Dễ thấy N
0
là hình
chiếu vuông góc của I trên mặt phẳng (P) và M
0
là giao điểm của đoạn
thẳng IN
0
với mặt cầu (S).
Gọi


là đường thẳng đi qua điểm I và vuông góc với (P), thì N
0
là giao
điểm của

và (P).
Đường thẳng

có vectơ chỉ phương là
( )
2;2; 1
P
n = −
r
và qua I nên có
phương trình là
( )
2 2
1 2
3
x t
y t t
z t
= +


= − + ∈



= −

¡
.
0,25
Tọa độ của N
0
ứng với t nghiệm đúng phương trình:
( ) ( ) ( )
15 5
2 2 2 2 1 2 3 16 0 9 15 0
9 3
t t t t t+ + − + − − + = ⇔ + = ⇔ = − = −
Suy ra
0
4 13 14
; ;
3 3 3
N
 
− −
 ÷
 
.
0,25
Ta có
0 0
3
.
5

IM IN=
uuuur uuur
Suy ra M
0
(0;-3;4)
0,25
VI
Ib
1,00
Áp dụng bất đẳng thức
1 1 4
( 0, 0)x y
x y x y
+ ≥ > >
+
Ta có:
1 1 4 1 1 4 1 1 4
; ;
2 2 2a+b+ca b b c a b c b c c a a b c c a a b
+ ≥ + ≥ + ≥
+ + + + + + + + + +
0,50
Ta lại có:
( ) ( ) ( )
2 2 2
2 2 2 2
2 2 2
1 2 2
2 4 4 2 2 0
2 2 4 7

2 1 1 1 0
a b c a b c
a b c a b c a
a b c
≥ = ⇔ + + + − − − ≥
+ + + + + +
⇔ − + − + − ≥
Tương tự:
2 2
1 2 1 2
;
2 7 2 7b c a b c a b c
≥ ≥
+ + + + + +
Từ đó suy ra
2 2 2
1 1 1 4 4 4
7 7 7a b b c c a a b c
+ + ≥ + +
+ + + + + +
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
0,50
ĐỀ THI THỬ ĐẠI HỌC 3 , năm 2009
Môn: TOÁN – Khối A-B
Thời gianlàm bài: 180 phút.
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm)

Câu I (2 điểm) Cho hàm số
( )
3 2

( ) 3 1 1y f x mx mx m x= = + − − −
, m là tham số
14
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1.
2. Xác định các giá trị của m để hàm số
( )y f x=
không có cực trị.
Câu II (2 điểm)
1. Giải phương trình :
( )
4 4
sin cos 1
tan cot
sin 2 2
x x
x x
x
+
= +
2. Giải phương trình:
( ) ( )
2 3
4 8
2
log 1 2 log 4 log 4x x x+ + = − + +
Câu III (1 điểm) Tính tích phân
3
2
2
1

2
1
dx
A
x x
=


Câu IV (1 điểm) Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường
sinh, biết SO = 3, khoảng cách từ O đến mặt phẳng SAB bằng 1, diện tích tam giác SAB
bằng 18. Tính thể tích và diện tích xung quanh của hình nón đã cho.
Câu V (1 điểm) Tìm m để hệ bất phương trình sau có nghiệm
( )
2
2
7 6 0
2 1 3 0
x x
x m x m
− + ≤
− + − + ≥





PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)
1. Theo chương trình chuẩn.
Câu VI.a (2 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình các đường

thẳng chứa các cạnh AB, BC lần lượt là 4x + 3y – 4 = 0; x – y – 1 = 0. Phân giác trong
của góc A nằm trên đường thẳng
x + 2y – 6 = 0. Tìm tọa độ các đỉnh của tam giác ABC.
2. Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng
( ) ( )
: 2 2z + 5 = 0; Q : 2 2z -13 = 0.P x y x y+ − + −
Viết phương trình của mặt cầu (S) đi qua gốc tọa độ O, qua điểm A(5;2;1) và tiếp xúc
với cả hai mặt phẳng (P) và (Q).
Câu VII.a (1 điểm) Tìm số nguyên dương n thỏa mãn các điều kiện sau:
4 3 2
1 1 2
4 3
1 1
5
4
7
15
n n n
n
n n
C C A
C A
− − −

+ +

− <








(Ở đây
,
k k
n n
A C
lần lượt là số chỉnh hợp và số tổ hợp chập k của n phần tử)
2. Theo chương trình nâng cao.
Câu VI.b (2 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x – 5y – 2 = 0 và đường
tròn (C):
2 2
2 4 8 0x y x y+ + − − =
.Xác định tọa độ các giao điểm A, B của đường tròn (C)
và đường thẳng d (cho biết điểm A có hoành độ dương). Tìm tọa độ C thuộc đường tròn
(C) sao cho tam giác ABC vuông ở B.
2. Cho mặt phẳng (P):
2 2 1 0x y z− + − =
và các đường thẳng
1 2
1 3 5 5
: ; :
2 3 2 6 4 5
x y z x y z
d d
− − − +
= = = =

− −
.
Tìm các điểm
1 2
d , dM N∈ ∈
sao cho MN // (P) và cách (P) một khoảng bằng 2.
Câu VII.b (1 điểm) Tính đạo hàm f’(x) của hàm số
( )
3
1
( ) ln
3
f x
x
=

và giải bất phương trình
15
2
0
6
sin
2
'( )
2
t
dt
f x
x
π

π
>
+

Hết
Đáp án
Câu Ý Nội dung Điểm
I 2,00
1 1,00
Khi m = 1 ta có
3 2
3 1y x x= + −
+ MXĐ:
D = ¡
0,25
+ Sự biến thiên:
• Giới hạn:
lim ; lim
x x
y y
→−∞ →+∞
= −∞ = +∞

2
' 3 6y x x= +
;
2
' 0
0
x

y
x
= −

= ⇔

=

0,25
• Bảng biến thiên
( ) ( )
2 3; 0 1
CT
y y y y= − = = = −

0,25
• Đồ thị
0,25
2 1,00
16
+ Khi m = 0
1y x⇒ = −
, nên hàm số không có cực trị. 0,25
+ Khi
0m ≠

( )
2
' 3 6 1y mx mx m⇒ = + − −
Hàm số không có cực trị khi và chỉ khi

' 0y =
không có nghiệm hoặc có nghiệm
kép
0,50
( )
2 2
' 9 3 1 12 3 0m m m m m⇔ ∆ = + − = − ≤
1
0
4
m⇔ ≤ ≤
0,25
II 2,00
1 1,00
( )
4 4
sin cos 1
tan cot
sin 2 2
x x
x x
x
+
= +
(1)
Điều kiện:
sin 2 0x

0,25
2

1
1 sin 2
1 sin cos
2
(1)
sin 2 2 cos sin
x
x x
x x x

 
⇔ = +
 ÷
 
0,25
2
2
1
1 sin 2
1 1
2
1 sin 2 1 sin 2 0
sin 2 sin 2 2
x
x x
x x

⇔ = ⇔ − = ⇔ =
Vậy phương trình đã cho vô nghiệm.
0,50

2 1,00
( ) ( )
2 3
4 8
2
log 1 2 log 4 log 4x x x+ + = − + +
(2)
Điều kiện:
1 0
4 4
4 0
1
4 0
x
x
x
x
x
+ ≠

− < <


− > ⇔
 
≠ −


+ >


0,25
( ) ( )
( )
( )
2
2 2 2 2 2
2 2
2 2
(2) log 1 2 log 4 log 4 log 1 2 log 16
log 4 1 log 16 4 1 16
x x x x x
x x x x
⇔ + + = − + + ⇔ + + = −
⇔ + = − ⇔ + = −
0,25
+ Với
1 4x− < <
ta có phương trình
2
4 12 0 (3)x x+ − =
;
( )
2
(3)
6
x
x
=




= −

lo¹i
0,25
17
+ Với
4 1x
− < < −
ta có phương trình
2
4 20 0x x− − =
(4);
( )
( )
2 24
4
2 24
x
x

= −


= +


lo¹i
Vậy phương trình đã cho có hai nghiệm là
2x =

hoặc
( )
2 1 6x = −

0,25
III 1,00
Đặt
2 2 2
2
1 1 2 2
dx tdt
t x t x tdt xdx
x x
= − ⇒ = − ⇒ = − ⇒ = −
2 2
1 1
dx tdt tdt
x t t
⇒ = − =
− −
+ Đổi cận:
1 3
2 2
3 1
2 2
x t
x t
= ⇒ =
= ⇒ =
0,50

1 3
3
2 2
2
1
2 2
1
2
3
2
2
1 1 1 7 4 3
ln ln
1 1 2 1 2 3
|
dt dt t
A
t t t
 
+ +
= = = =
 ÷
 ÷
− − −
 
∫ ∫
0,50
IV 1,00
Gọi E là trung điểm của AB, ta có:
,OE AB SE AB⊥ ⊥

,
suy ra
( )
SOE AB⊥
.
Dựng
( )
OH SE OH SAB⊥ ⇒ ⊥
, vậy OH là khoảng cách
từ O đến (SAB), theo giả thiết thì OH = 1.
Tam giác SOE vuông tại O, OH là đường cao, ta có:
2 2 2 2 2 2
2
1 1 1 1 1 1 1 8
1
9 9
9 3
8
2 2
OH SO OE OE OH SO
OE OE
= + ⇒ = − = − =
⇒ = ⇒ =
2 2 2
9 81 9
9
8 8
2 2
SE OE SO SE= + = + = ⇒ =
0,25

2
1 36
. 8 2
9
2
2 2
SAB
SAB
S
S AB SE AB
SE
= ⇔ = = =
( )
2
2
2 2 2 2
1 9 9 265
4 2 32
2 8 8 8
OA AE OE AB OE
 
= + = + = + = + =
 ÷
 
0,25
Thể tích hình nón đã cho:
2
1 1 265 265
. . .3
3 3 8 8

V OA SO
π π π
= = =
0,25
18
Diện tích xung quanh của hình nón đã cho:

2 2 2
265 337 337
9
8 8 8
265 337 89305
. . .
8 8 8
xq
SA SO OA SA
S OA SA
π π π
= + = + = ⇒ =
= = =
0,25
V 1,00
Hệ bất phương trình
( )
2
2
7 6 0 (1)
2 1 3 0 (2)
x x
x m x m


− + ≤


− + − + ≥


( )
1 1 6x⇔ ≤ ≤
. Hệ đã cho có nghiệm khi và chỉ khi tồn tại
[ ]
0
1;6x ∈
thỏa mãn (2).
0,25
( ) ( )
( )
[ ]
2
2
2 3
2 2 3 2 1 ( 1;6 2 1 0)
2 1
x x
x x x m m do x x
x
− +
⇔ − + ≥ + ⇔ ≥ ∈ ⇒ + >
+
Gọi

[ ]
2
2 3
( ) ; 1;6
2 1
x x
f x x
x
− +
= ∈
+
0,25
Hệ đã cho có nghiệm
[ ]
0 0
1;6 : ( )x f x m⇔ ∃ ∈ ≥
( )
( )
( )
( )
2
2
2 2
2 4
2 2 8
'
2 1 2 1
x x
x x
f x

x x
+ −
+ −
= =
+ +
;
( )
2
1 17
' 0 4 0
2
f x x x x
− ±
= ⇔ + − = ⇔ =

[ ]
1;6x∈
nên chỉ nhận
1 17
2
x
− +
=
0,25
Ta có:
2 27 1 17 3 17
(1) , (6) ,
3 13 2 2
f f f
 

− + − +
= = =
 ÷
 ÷
 
Vì f liên tục và có đạo hàm trên [1;6] nên
27
max ( )
13
f x =
Do đó
[ ]
[ ]
0 0
1;6
27
1;6 : ( ) max ( )
13
x
x f x m f x m m

∃ ∈ ≥ ⇔ ≥ ⇔ ≥
0,25
VIa 2,00
1 1,00
Tọa độ của A nghiệm đúng hệ phương trình:
( )
4 3 4 0 2
2;4
2 6 0 4

x y x
A
x y y
+ − = = −
 
⇔ ⇒ −
 
+ − = =
 
0,25
Tọa độ của B nghiệm đúng hệ phương trình
( )
4 3 4 0 1
1;0
1 0 0
x y x
B
x y y
+ − = =
 
⇔ ⇒
 
− − = =
 
0,25
Đường thẳng AC đi qua điểm A(-2;4) nên phương trình có dạng:
( ) ( )
2 4 0 2 4 0a x b y ax by a b+ + − = ⇔ + + − =
Gọi
1 2 3

: 4 3 4 0; : 2 6 0; : 2 4 0x y x y ax by a b∆ + − = ∆ + − = ∆ + + − =
Từ giả thiết suy ra
( )
·
( )
·
2 3 1 2
; ;∆ ∆ = ∆ ∆
. Do đó
0,25
19
( )
·
( )
·
( )
2 3 1 2
2 2
2 2
|1. 2. | | 4.1 2.3|
cos ; cos ;
25. 5
5.
0
| 2 | 2 3 4 0
3 4 0
a b
a b
a
a b a b a a b

a b
+ +
∆ ∆ = ∆ ∆ ⇔ =
+
=

⇔ + = + ⇔ − = ⇔

− =

+ a = 0
0b⇒ ≠
. Do đó
3
: 4 0y∆ − =
+ 3a – 4b = 0: Có thể cho a = 4 thì b = 3. Suy ra
3
: 4 3 4 0x y∆ + − =
(trùng với
1

).
Do vậy, phương trình của đường thẳng AC là y - 4 = 0.
Tọa độ của C nghiệm đúng hệ phương trình:
( )
4 0 5
5;4
1 0 4
y x
C

x y y
− = =
 
⇔ ⇒
 
− − = =
 
0,25
2 1,00
Gọi I(a;b;c) là tâm và R là bán kính của mặt cầu (S). Từ giả thiết ta có:
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
, , ,
, ,
OI AI
OI AI d I P d I Q OI d I P
d I P d I Q

=


= = = ⇔ =



=


0,25
Ta có:
( ) ( ) ( )
2 2 2
2 2 2 2 2
5 2 1
10 4 2 30 (1)
OI AI OI AI a b c a b c
a b c
= ⇔ = ⇔ + + = − + − + −
⇔ + + =
( )
( )
( )
( )
2
2 2 2 2 2 2
| 2 2 5 |
, 9 2 2 5 (2)
3
a b c
OI d I P a b c a b c a b c
+ − +
= ⇔ + + = ⇔ + + = + − +
( )

( )
( )
( )
| 2 2 5 | | 2 2 13|
, ,
3 3
2 2 5 2 2 13 ( )
2 2 4 (3)
2 2 5 2 2 13
a b c a b c
d I P d I Q
a b c a b c
a b c
a b c a b c
+ − + + − −
= ⇔ =
+ − + = + − −

⇔ ⇔ + − =

+ − + = − − + +

lo¹i
Từ (1) và (3) suy ra:
17 11 11 4a
; (4)
3 6 3
a
b c


= − =
0,25
Từ (2) và (3) suy ra:
2 2 2
9 (5)a b c+ + =
Thế (4) vào (5) và thu gọn ta được:
( ) ( )
2 221 658 0a a− − =
Như vậy
2a
=
hoặc
658
221
a =
.Suy ra: I(2;2;1) và R = 3 hoặc
658 46 67
; ;
221 221 221
I
 

 ÷
 

R = 3.
0,25
Vậy có hai mặt cầu thỏa mãn yêu cầu với phương trình lần lượt là:
( ) ( ) ( )
2 2 2

2 2 1 9x y z− + − + − =

2 2 2
658 46 67
9
221 221 221
x y z
     
− + − + + =
 ÷  ÷  ÷
     
0,25
VIIa 1,00
20
Điều kiện:
1 4 5n n
− ≥ ⇔ ≥
Hệ điều kiện ban đầu tương đương:
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( )
1 2 3 4 1 2 3
5
2 3
4.3.2.1 3.2.1 4
1 1 2 3
7
1 1
5.4.3.2.1 15

n n n n n n n
n n
n n n n n
n n n
− − − − − − −

− < − −




+ − − −

≥ + −


0,50
2
2
9 22 0
5 50 0 10
5
n n
n n n
n

− − <

⇔ − − ≥ ⇔ =





0,50
VIb 2,00
1 1,00
Tọa độ giao điểm A, B là nghiệm của hệ phương trình
2 2
0; 2
2 4 8 0
1; 3
5 2 0
y x
x y x y
y x
x y
= =

+ + − − =


 
= − = −
− − =


0,50
Vì A có hoành độ dương nên ta được A(2;0), B(-3;-1).

·

0
90ABC =
nên AC là đường kính đường tròn, tức là điểm C đối xứng với
điểm A qua tâm I của đường tròn. Tâm I(-1;2), suy ra C(-4;4).
0,50
2 1,00
Phương trình tham số của d
1
là:
1 2
3 3
2
x t
y t
z t
= +


= −


=

. M thuộc d
1
nên tọa độ của M
( )
1 2 ;3 3 ;2t t t+ −
.
Theo đề:

( )
( )
( )
( )
1 2
2
2 2
|1 2 2 3 3 4 1|
|12 6 |
, 2 2 12 6 6 1, 0.
3
1 2 2
t t t
t
d M P t t t
+ − − + −

= = ⇔ = ⇔ − = ± ⇔ = =
+ − +
0,25
+ Với t
1
= 1 ta được
( )
1
3;0;2M
;
+ Với t
2
= 0 ta được

( )
2
1;3;0M
0,25
+ Ứng với M
1
, điểm N
1

2
d∈
cần tìm phải là giao của d
2
với mp qua M
1
và // mp
(P), gọi mp này là (Q
1
). PT (Q
1
) là:
( ) ( )
3 2 2 2 0 2 2 7 0 (1)x y z x y z− − + − = ⇔ − + − =
.
Phương trình tham số của d
2
là:
5 6
4
5 5

x t
y t
z t
= +


=


= − −

(2)
Thay (2) vào (1), ta được: -12t – 12 = 0

t = -1. Điểm N
1
cần tìm là N
1
(-1;-
4;0).
0,25
+ Ứng với M
2
, tương tự tìm được N
2
(5;0;-5). 0,25
VII
b
1,00
21

Điều kiện
( )
3
1
0 3
3
x
x
> ⇔ <

( )
( ) ( )
3
1
( ) ln ln1 3ln 3 3ln 3
3
f x x x
x
= = − − = − −

;
( )
( )
1 3
'( ) 3 3 '
3 3
f x x
x x
= − − =
− −

0,25
Ta có:
( ) ( ) ( )
2
0
0 0
6 6 1 cos 3 3
sin sin sin 0 sin 0 3
2 2
|
t t
dt dt t t
π π
π
π π
π π π π

= = − = − − − = 
 
∫ ∫
0,25
Khi đó:
2
0
6
sin
2
'( )
2
t

dt
f x
x
π
π
>
+

( ) ( )
2 1
3 3
2
0
3 2
3 2
1
3
3; 2
3; 2
2
x
x
x x
x x
x
x x
x x


< −



<
>
 

− +
⇔ ⇔ ⇔
− +
 

< <
 
< ≠ −
< ≠ −



0,50

ĐỀ THI THỬ ĐẠI HỌC 4 , năm 2009
Môn: TOÁN – Khối A-B
Thời gianlàm bài: 180 phút.
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm)
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I. (2 điểm). Cho hàm số y = x
4
– 2(2m
2
– 1)x

2
+ m (1)
1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
2/ Tìm m để đồ thị của hàm số (1) tiếp xúc với trục hòanh.
Câu II. (2 điểm)
1/ Giải phương trình:
7)27()27)(8(6416
3
2
3
3
2
=+++−−+−
xxxxx
2/ Giải phương trình:
12cos
2
1
2cos
2
1
44
=++−
xx
Câu III. (1 điểm). Tính tích phân I =

+
+
4
0

.
2sin3
cossin
π
dx
x
xx
Câu IV. (1 điểm). Khối chóp tam giác S.ABC có đáy ABC là tam giác vuông cân đỉnh C và SA vuông góc
mp(ABC), SC = a. Hãy tìm góc giữa hai mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất.
Câu V. (1 điểm). Tìm m để bất phương trình sau nghiệm đúng mọi x
[∈
0 ; 2].
(
)
( )
52log42log
2
2
2
2
≤+−++−
mxxmxx
II. PHẦN RIÊNG. (3 điểm)
1.Theo chương trình chuẩn.
Câu VI a.(2 điểm).
1/ Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại C. Biết A(-2 ; 0),
B( 2 ; 0) và khỏang cách từ trọng tâm G của tam giác ABC đến trục hòanh bằng
3
1
. Tìm tọa độ đỉnh C.

2/ Trong không gian với hệ tọa độ Oxyz cho A(0 ; 1 ; 2), B(-1 ; 1 ; 0) và mặt phẳng
(P): x – y + z = 0. Tìm tọa độ điểm M trên mặt phẳng (P) sao cho tam giác MAB vuông cân tại B.
22
Câu VII a. (1 điểm). Cho x, y, z > 0 thỏa mãn
1
=++
zxyzxy
. Tìm giá trị nhỏ nhất của biểu thức P
=
xz
z
zy
y
yx
x
+
+
+
+
+
222
2. Theo chương trình nâng cao.
Câu VI b. (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy cho elip (E):
1
4
2
2
=+ y
x

và đường thẳng (d): y = 2. Lập
phương trình tiếp tuyến với (E), biết tiếp tuyến tạo với (d) một góc 60
0
.
2/ Trong không gian với hệ tọa độ Oxyz cho M(2 ; 1 ; 2) và đường thẳng (d) :
1
1
1
2
1

=
+
=
zyx
. Tìm trên (d) hai điểm A và B sao cho tam giác MAB đều.
Câu VII b. (1 điểm). Giải bất phương trình sau:
(
)
(
)
xxxx
−+>++
1log.log1log.log
2
5
13
2
5
3

1
……………….o0o………………
ĐỀ THI THỬ ĐẠI HỌC 5 , năm 2009
Môn: TOÁN – Khối A-B
Thời gianlàm bài: 180 phút.
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm)
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH. (7 điểm)
Câu I. (2 điểm). Cho hàm số y =
1

x
x
(1).
1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2/ Tìm m để đường thẳng d: y = -x + m cắt đồ thị của hàm số (1) tại hai điểm A, B sao cho AB =
10
.
Câu II. (2 điểm)
1/ Giải phương trình:
54057
44
=++−
xx
2/ Cho tam giác ABC. Chứng minh rằng:
2
cot.
2
tan.
2
tan

1coscoscos
sinsinsin CBA
CBA
CBA
=
+−+
−+
.
Câu III. (1 điểm). Tính tích phân I =

2
4
6
sin
π
π
x
dx
Câu IV.(1 điểm). Một hình nón đỉnh S có đường cao h = 20 và bán kính đáy là R(R > h). Mặt phẳng đi qua
đỉnh và cách tâm O của đáy một khỏang bằng 12 cm cát hình nón theo thiết diện là tam giác SAB. Tính bán
kính R của đáy hình nón biết diên tích tam giác SAB bằng 500cm
2
.
Câu V.(1 điểm) Cho x, y, z > 0 thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của biểu thức
P =
111 +
+
+
+
+ z

z
y
y
x
x
II. PHẦN RIÊNG. (3 điểm)
1.Theo chương trình chuẩn.
Câu VI a. (2 điểm)
23
1/ Trong mặt phẳng với hệ tọa độ Oxy, cho điểm I(1 ; 2) và hai đường thẳng
d
1
: x – y = 0, d
2
: x + y = 0. Tìm các điểm A trên Ox, B trên d
1
và C trên d
2
sao cho tam giác ABC
vuông cân tại A đồng thời B và C đối xứng với nhau qua điểm I.
2/ Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:
2
1
1
1
2
+
=

=

zyx
và hai mặt phẳng
022:)(,052:)( =++−=+−+ zyxzyx
βα
. Lập phương trình mặt cầu (S) có tâm trên d và
tiếp xúc với hai mặt phẳng đã cho.
Câu VI a. (1 điểm) Chọn ngẫu nhiên một số có 3 chữ số. Tìm xác suất để số chẳn và các chữ số đều khác
nhau.
2. Theo chương trình nâng cao.
Câu VI b. (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x – y – 3 = 0 và điểm
M( 2cos
2
t ; 2(1 + sint.cost) ( t là tham số). Chứng minh rằng tập hợp của điểm M là đường tròn (C). Hãy viết
phương trình đường tròn (C’) đối xứng với (C) qua d.
2/ Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d
1
:





=
=
−=
tz
y
tx
3

22
d
2
:
21
1
1
2 zyx
=

=

. Viết phương trình đường thẳng d song song với Oz cắt cả d
1
và d
2
.
Câu VII b. (1 điểm).Giải hệ phương trình :



=+−+
=−
1)(log)(log
2
32
22
yxyx
yx
…………………o0o……………….

ĐỀ THI THỬ ĐẠI HỌC 6 , năm 2009
Môn: TOÁN – Khối A-B
Thời gianlàm bài: 180 phút.
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm)
I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7điểm).
Câu I (2 điểm) Cho hàm số y =
1
2

+
x
x
(1)
1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2/ Cho điểm M(0 ; a). Xác định a để từ M kẻ được hai tiếp tuyến đến đồ thị của hàm số (1) sao cho
hai tiếp tuyến tương ứng nằm về hai phía đối với trục Ox.
Câu II. (2 điểm).
1/ Giải phương trình :
61224
3
=−++ xx
.
2/ Cho phương trình :
mxx
=+
sin2cos3
2
(1).
a) Giải (1) khi m = 2
b) Tìm m để (1) có ít nhất một nghiệm







−∈
4
;
4
ππ
x
.
Câu III. (1 điểm). Tính tích phân I =

++
2
0
sincos1
π
xx
dx
.
24
Câu IV. (1 điểm).Cho hình nón có bán kính đáy R và thiết diện qua trục là tam giác đều. Một hình trụ nội
tiếp hình nón có thiết diện qua trục là hình vuông . Tính thể tích của khối trụ theo R.
Câu V. (1 điểm). Cho ba số thực không âm x, y, z thỏa x + y + z = 1. Tìm giá trị lớn nhất của biểu thức
P =
zyx
zx

zyx
yz
zyx
xy
++
+
++
+
++
222
II. PHẦN RIÊNG.(3 điểm)
1.Theo chương trình chuẩn.
Câu VI a. (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy cho hai đường tròn (C
1
): x
2
+ y
2
= 13 và (C
2
): (x -6)
2
+ y
2
=
25 cắt nhau tại A(2 ; -3). Lập phương trình đường thẳng đi qua A và cắt hai đường tròn theo hai dây cung có
độ dài bằng nhau.
2/ Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d
1

:
21
1
1
2 zyx
=


=

và d
2
:





=
=
−=
tz
y
tx
3
22
.
a) Lập phương trình mặt phẳng (P) song song cách đều d
1
và d

2
.
b) Lập phương trình mặt càu (S) tiếp xúc với d
1
và d
2
lần lượt tại A(2 ; 1 ; 0), B(2 ; 3 ; 0).
Câu VII a.(1 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
13
3
+−
xx
trên đọan [ -3 ;
0 ].
2. Theo chương trình nâng cao.
Câu VI b. (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy. Viết phương trình đường thẳng d qua M(8 ; 6) và cắt hai trục
tọa độ tại A, B sao cho
22
11
OBOA
+
có giá trị nhỏ nhất.
2/ Trong không gian với hệ tọa độ Oxyz cho hai điểm A(1 ; 2 ; 1), B(3 ; -1 ; 5).
a) Tìm tọa độ hình chiếu vuông góc của gốc tọa độ O lên AB.
b) Viết phương trình mặt phẳng (P) vuông góc với AB và hợp với các mặt phẳng tọa độ thành
một tứ diện có thể tích bằng
.
2
3

Câu VII b. (1 điểm). Giải phương trình
( )
2loglog
37
+= xx
…………… o0o……………
ĐỀ THI THỬ ĐẠI HỌC 7 , năm 2009
Môn: TOÁN – Khối A-B
Thời gianlàm bài: 180 phút.
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm)
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I (2 điểm). Cho hàm số y = x(x – 3)
2
(1)
1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1)
2/ Tìm tất cả các giá trị của a để đường thẳng (d): y = ax + b không thể tiếp xúc với đồ thị của hàm số
(1).
Câu II (2 điểm)
1/ Tìm m để hệ phương trình :



=+−+
=+−+
022
03)12(
22
yxyx
ymmx
có nghiệm duy nhất.

2/ Giải phương trình : cos3x + sin7x =
2
9
cos2
2
5
4
sin2
22
xx







+
π
25

×