Tải bản đầy đủ (.pdf) (22 trang)

Entomology 3rd edition - C.Gillott - Chapter 4 docx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (415.13 KB, 22 trang )

4
S
y
stematics and Taxonom
y
1
. Intr
oduc
t
ion
S
y
stematics ma
y
be defined as the stud
y
of the kinds and diversit
y
of or
g
anisms and th
e
relationships amon
g
them. Taxonom
y
, the theor
y
and practice of identif
y
in


g
, describin
g
,
namin
g
, and classif
y
in
g
or
g
anisms, is an inte
g
ral part of s
y
stematics. Classification is the ar
-
rangement o
f
organ
i
sms
i
nto groups
(
t
ax
a
,

s
i
ngu
l
a
r
t
axo
n
)ont
h
e
b
as
i
so
f
t
h
e
i
rre
l
at
i
ons
hip
s.
I
t

f
o
ll
ows t
h
at
id
ent
ifi
cat
i
on can ta
k
ep
l
ace on
l
ya
f
terac
l
ass
ifi
cat
i
on
h
as
b
een esta

bli
s
h
e
d
.It
s
h
ou
ld b
e emp
h
as
i
ze
d
t
h
at not a
ll
aut
h
ors a
d
opt t
h
ese
d
e


n
i
t
i
ons. Taxonom
yi
so
f
ten use
d
a
s
as
y
non
y
mofs
y
stematics (as defined above), while classification is sometimes used rathe
r
loosel
y
(and incorrectl
y
)asas
y
non
y
m of identification
.

S
ystemat
i
cs
i
sanact
i
v
i
ty t
h
at
i
mp
i
nges on most ot
h
er areas o
fbi
o
l
og
i
ca
l
en
d
eavor. Yet
,
i

ts
i
mportance (an
dfi
sca
l
support
f
or
i
t) seem to
h
ave
di
m
i
n
i
s
h
e
di
n recent years. To some
extent, t
hi
sma
yb
et
h
e

f
au
l
to
f
s
y
stemat
i
sts w
h
o ten
d
to wor
ki
n
i
so
l
at
i
on, o
f
ten
f
ocus
i
n
g
o

n
some small and obscure
g
roup of or
g
anisms. This ma
y
be especiall
y
true of entomolo
g
ica
l
s
y
stematists who, faced with the enormous diversit
y
of the Insecta, tend to be seen as
“counters o
fb
r
i
st
l
es,” “measurers o
fh
ea
d
w
id

t
h
”an
dp
er
f
ormers o
f
ot
h
er act
i
v
i
t
i
es o
fli
tt
l
e
re
l
evance to t
h
e outs
id
ewor
ld
.In

f
act, as Dan
k
s (1988) e
l
egant
l
ypo
i
nte
d
out, not
hi
n
g
cou
ld b
e
f
urt
h
er
f
rom t
h
e trut
h
.S
y
stemat

i
cs
h
as p
l
a
y
e
d
,an
d
cont
i
nues to p
l
a
y
,ama
j
or
role in fundamental evolutionar
y
and ecolo
g
ical studies, for example faunistic surve
y
s,
z
oo
g

eo
g
raphic work, life-histor
y
investi
g
ations and studies of associations between insect
s
an
d
ot
h
er organ
i
sms. In app
li
e
d
entomo
l
ogy goo
d
systemat
i
cwor
ki
st
h
e
b

as
i
s
f
or
d
ec
i
s
i
on
s
on t
h
e management o
f
pests. In
d
ee
d
, Dan
k
s (1988) prov
id
e
d
examp
l
es o
f

pest-management
pro
j
ects
i
nw
hi
c
hi
na
d
equate or
f
au
l
t
y
s
y
stemat
i
cs resu
l
te
di
n
f
a
il
ure, somet

i
mes w
i
t
hg
reat
economic and social cost
(
and see Section 2
).
The taxonom
y
of insects, like that of most other
g
roups of livin
g
or
g
anisms, continue
s
t
o be based primarily on external structure, though limited use has also been made (some-
ti
mes o
f
necess
i
ty, espec
i
a

ll
y
b
etween spec
i
es) o
f
p
h
ys
i
o
l
og
i
ca
l
,
d
eve
l
opmenta
l
,
b
e
h
av
i
ora

l,
an
d
cytogenet
i
c
d
ata. Mo
l
ecu
l
ar
bi
o
l
og
i
ca
l
ana
l
yses o
f
pro
bl
ems
i
n
i
nsect systemat

i
cs
h
ave
increased exponentiall
y
over the past two decades (Caterino
et al
., 2000). These anal
y
ses
,
principall
y
usin
g
mtDNA sequences, have principall
y
focused on the resolution of rela-
t
ionships at lower taxonomic levels, for example, among subspecies, species and species
groups. Mo
l
ecu
l
ar p
h
y
l
ogenet

i
c stu
di
es o
fhi
g
h
er
i
nsect taxa (e.g., re
l
at
i
ons
hi
ps amon
g
91
92
CHAPTER
4
o
rders), thou
g
h far fewer, have nevertheless
g
enerated important, sometimes even contro-
v
ersial, conclusions (see Cha
p

ter 2 for exam
p
les).
T
he purpose of this chapter is to provide a short introduction to the s
y
stematics o
f
i
nsects,
i
nc
l
u
di
ng some o
f
t
h
e tec
h
n
i
ca
l
terms app
li
e
db
ywor

k
ers
i
nt
h
ese

e
ld
s, as a
b
as
is
f
or Chapters
5
–10 inclusive, which deal with individual insect orders.
2
. Namin
g
and Describin
g
Insects
Fo
r
a
v
a
r
i

ety o
f
reasons
b
ut most o
b
v
i
ous
l
yt
h
e enormous
di
vers
i
ty w
i
t
hi
nt
h
ec
l
ass
Insecta an
d
econom
i
c cons

id
erat
i
ons,
i
nsect taxonom
i
sts usua
lly
wor
k
w
i
t
hi
n
f
a
i
r
ly
narro
w
boundaries. Onl
y
b
y
doin
g
this can the

y
acquire the necessar
y
familiarit
y
with a particular
g
roup (includin
g
knowled
g
e of the relevant literature) to determine whether the speci
-
m
en t
h
ey are exam
i
n
i
ng
h
as
b
een
d
escr
ib
e
d

an
d
name
d
or may
b
e new to sc
i
ence. Even
a
f
ter a part
i
cu
l
ar group
h
as
b
een c
h
osen
f
or stu
d
y, t
h
ere are typ
i
ca

ll
y super
i
mpose
dbi
o
-
g
eo
g
rap
hi
c constra
i
nts, t
h
at
i
s, taxonom
i
sts restr
i
ct t
h
e
i
r stu
di
es to part
i

cu
l
ar
g
eo
g
rap
hi
c
re
g
ions
.
M
an
y
frequentl
y
encountered insects, especiall
y
pests, have a “common name” b
y
w
hich they are known. The name may refer to a particular species (e.g., house fly) or
to a
l
arger group (e.g., scorp
i
on
fli

es) an
d
re

ects a c
h
aracter
i
st
i
c
f
eature o
f
t
h
e
i
nsect’
s
appearance or
h
a
bi
ts. Un
f
ortunate
l
y,
i

nsects o
f
w
id
e
l
y
diff
erent groups may
h
ave s
i
m
il
a
r
habits (e.
g
., so-called “leaf miners” ma
y
be larvae of Diptera, Lepidoptera, or H
y
menoptera)
o
r the same common name ma
y
refer to different species of insects in different parts of the
w
o
rld. Thus, to avoid possible confusion, each insect species, like all other organisms bot

h
f
oss
il
an
d
extant,
i
sg
i
venaun
i
que
l
at
i
n
i
ze
dbi
nom
i
a
l
(two-part) name, a system
i
ntro
d
uce
d

b
yL
i
nnaeus
i
nt
h
e ear
l
y 1700s. In t
h
e Lat
i
n name, w
hi
c
hi
sa
l
ways
i
ta
li
c
i
ze
d
,t
h
e


rst wor
d
denotes the
g
enus, the second the species (e.
g
.
,
Mu
s
ca
d
ome
s
tica
f
or the house fl
y
). Rarel
y
,
the name has three parts, the third indicatin
g
the subspecies. (It should be noted, however
,
that some national entomolo
g
ical societies such as those of the United States and Canad
a

p
u
bli
s
hli
sts o
f
t
he
a
pprove
d
common names
f
or spec
i
es
i
nor
d
er to a
ll
ow t
h
e
i
r use, ye
t
a
v

o
id
poss
ibl
em
i
sun
d
erstan
di
ng.)
Spec
i
es are norma
lly di
st
i
n
g
u
i
s
h
e
d
on t
h
e
b
as

i
so
f
a sma
ll
num
b
er o
fk
e
yf
eatures
(
character
s
) that exist in a s
p
ecific
c
haracter stat
e
i
n each species (e.
g
., “number of tarsa
l
se
g
ments” is a character, and “five tarsal se
g

ments” is a character state). Thus, a taxonomist
will b
ase t
h
e
d
escr
i
pt
i
on o
f
a new spec
i
es on t
h
ec
h
aracters a
l
rea
d
y esta
bli
s
h
e
df
or ot
h

e
r
spec
i
es
i
nt
h
e same group to
f
ac
ili
tate compar
i
son w
i
t
h
t
h
em. Care
f
u
l
co
ll
ect
i
on an
d

curat
i
o
n
(
preparat
i
on, preservat
i
on, an
d
ma
i
ntenance) o
f
spec
i
mens are cr
i
t
i
ca
l
to taxonom
y
to ensure
that potentiall
y
important characters (which ma
y

be minute and delicate) are not dama
g
ed.
The specimens must be properl
y
labeled with the date and place of collection (preferabl
y
us
i
ng map coor
di
nates) an
d
t
h
eco
ll
ector’s name. To
f
ac
ili
tate proper ma
i
ntenance, as we
ll
as access
ibili
ty
f
or

f
urt
h
er stu
di
es, spec
i
mens are usua
ll
ysu
b
m
i
tte
d
to a centra
l
repos
i
tory,
t
h
e name o
f
w
hi
c
hi
s
i

nc
l
u
d
e
di
nt
h
epu
bli
s
h
e
dd
escr
i
pt
i
on o
f
t
h
e spec
i
es, to
b
ecome par
t
o
f the reference collection

.
T
he s
p
ecimens whose descri
p
tion leads to the establishment of a new s
p
ecies form
t
h
e
t
ype ser
i
e
s
, one only of which becomes the standard reference specimen, th
e
h
olo-
t
y
p
e
,t
h
eot
h
ers

i
nt
h
e ser
i
es
b
e
i
ng parat
y
pes. T
h
e name g
i
ven to a new spec
i
es must
f
o
ll
ow t
h
eru
l
es an
d
un
i
versa

l
nomenc
l
atura
l
system
l
a
id d
own
b
yt
h
e Internat
i
ona
l
Com-
m
ission on Zoolo
g
ical Nomenclature (published in the International Code of Zoolo
g
ica
l
93
S
Y
S
TEM

A
TI
CS A
ND
TA
XONOM
Y
N
omenclature). The species-specific part of the name ma
y
be a
g
enuine Latin word, as in
t
he dra
g
onfl
y
Hemicordulia

ava (from the Latin “flavus” meanin
gy
ellow, referrin
g
to the
extensive
y
ellow coloration on the bod
y
), or ma

y
be a latinized form of a word, for example,
a name o
f
a person or p
l
ace, as
i
nt
h
e
d
amse
lfl
y
N
eosticta
f
raseri, name
df
or t
h
e Austra
li
a
n
amateur o
d
onato
l

og
i
st, F. C. Fraser. Somet
i
mes, aut
h
ors s
h
ow remar
k
a
bl
e
i
mag
i
nat
i
on
i
n
nam
i
n
g
a spec
i
es, ma
ki
n

g
stu
dy
o
f
t
h
e
d
er
i
vat
i
on o
fi
nsect names (“entomo
l
o
gi
ca
l
et
y
mo
l-
o
gy
”?) a fascinatin
g
sub

j
ect in its own ri
g
ht. Take, for example, the Australian kat
y
di
d
Kawanaphila lexcen
i
R
entz 1993 (in Rentz, 1993), the
g
eneric name of which is derived
f
rom t
h
ea
b
or
i
g
i
na
l
wor
d

k
awana” mean
i

ng

ower, a re
f
erence to t
h
e
f
act t
h
at a
ll k
now
n
spec
i
es
f
requent

owers, w
hil
et
h
e spec
i
es
i
s name
di

n
h
onor o
f
Ben Lexcen,
d
es
i
gner o
f
th
e Amer
i
cas Cup c
h
a
ll
enge
r
A
u
s
tra
l
ia II
,in
whi
c
h
t

h
e
k
ee
li
ss
i
m
il
ar to a structure
(
t
he
sub
g
enital plate) on the female kat
y
did! Similarl
y
, the damselfl
y
Pseudagrion jedda
W
atso
n
and Theischin
g
er 1991 (in Watson
et al.
,

1991
)
receives its name from the 1955 film
J
edda
,
parts of which were shot in Katherine Gorge, Northern Territory, Australia, the
t
ype localit
y
(p
l
ace o
f
co
ll
ect
i
on o
f
t
h
e
h
o
l
otype)
f
or t
h

e spec
i
es! In pu
bli
cat
i
ons, a spec
i
es’ name w
h
en

rst ment
i
one
di
sg
i
ven
i
n
f
u
ll
,an
d
may
b
e
f

o
ll
owe
db
yt
h
e name o
f
t
h
eor
i
g
i
na
ld
escr
ib
er
(authorit
y
), which ma
y
be abbreviated, and sometimes the
y
ear the description was pub-
lished as in the two precedin
g
examples. In some cases, the name of the authorit
y

(and
d
ate) a
pp
ears in
p
arentheses as, for exam
p
le, in the termite
Por
otermes adamsoni
rr
(
Froggatt
,
1897), s
h
ow
i
ng t
h
at t
h
e spec
i
es was
d
escr
ib
e

dfi
rst un
d
er a
diff
erent genus, su
b
sequent
l
y
s
h
own to
b
e
i
ncorrect. In t
hi
s examp
l
e, Froggatt or
i
g
i
na
ll
yp
l
ace
d

t
h
e spec
i
es
i
nt
h
e genu
s
Calotermes.
A
s noted above, most s
p
ecies are described on the basis of their structure, es
p
e-
ciall
y
external characters. However, on occasion such “morphospecies” are not equiva-
l
ent to
bi
o
l
og
i
ca
l
spec

i
es (repro
d
uct
i
ve
l
y
i
so
l
ate
d
popu
l
at
i
ons); t
h
at
i
s, groups t
h
at can
-
not
b
e
diff
erent

i
ate
d
structura
ll
y may nevert
h
e
l
ess
b
e true
bi
o
l
og
i
ca
l
spec
i
es an
d
are sa
id
t
o
b
e“s
ibli

n
g
spec
i
es.” Suc
h
spec
i
es
h
ave
b
een
d
etecte
dby
avar
i
et
y
o
f
means,
i
nc
l
u
d
-
in

g
their different host preferences (e.
g
., some mosquitoes), matin
g
behavior (courtship
son
g
s in some kat
y
dids), and c
y
to
g
enetics (kar
y
ot
y
pes of some black flies). The reco
g
-
n
i
t
i
on o
f
s
ibli
ng spec

i
es an
d
t
h
e
i
r
h
ost spec
ifi
c
i
ty are cr
i
t
i
ca
ll
y
i
mportant
i
n
bi
o
l
og
i
ca

l
contro
l
programs. For examp
l
e,
i
nt
h
e contro
l
o
f
pr
i
c
kl
y pear
(
O
puntia spp.)
b
y cater-
p
ill
ars o
f
C
acto
bl

astis
(
see C
h
apter 24, Sect
i
on 2.3),
i
t
i
snow
b
e
li
eve
d
t
h
at t
h
e“s
l
ow

start made b
y
the insects ma
y
have been due to introduction of the “wron
g

” siblin
g
species which failed to establish themselves, not an unsuitable climate as su
gg
ested earlier
(McFadyen, 1985)
.
If
a new spec
i
es
i
ssu
ffi
c
i
ent
l
y
diff
erent t
h
at
i
t cannot
b
e ass
i
gne
d

to an ex
i
st
i
ng genus,
a
ne
w
g
enus
i
s propose
d
,
f
o
ll
ow
i
ng t
h
e same cons
id
erat
i
ons as
f
or spec
i
es w

i
t
h
respect
t
o name, authorit
y
, and date as, for example, An
ax
L
each 181
5
, and this species is then
de
n
oted as t
h
e
t
ype spec
i
es for this
g
enus. Since 1930, it has been a requirement for
a
t
ype species to be selected for any new genus. For genera described before this time an
d
l
ac

ki
ng a type spec
i
es, t
h
eCo
d
e spec
ifi
es
h
ow t
h
e type spec
i
es s
h
ou
ld b
e
d
eterm
i
ne
d
.
W
i
t
hi

n a genus, espec
i
a
ll
y one w
i
t
h
many spec
i
es, t
h
ere may
b
ec
l
ear
l
y
d
e

ne
d
group
s
o
f
spec
i

es, an
d
eac
hg
roup ma
yb
e
gi
ven
i
ts own su
bg
ener
i
c name p
l
ace
d
parent
h
et
i
ca
lly
after the
g
enus; e.
g
.
,

Aedes (Chaetocruiomyia)
s
pp. for a species
g
roup of mosquitoe
s
endemic to Australia. Each taxon above the
g
enus level will also have its authorit
y
an
d
d
ate, an
df
or eac
hf
am
il
y(
b
ut not
f
or taxa
hi
g
h
er t
h
an t

hi
s) t
h
ere
i
sa
ty
pe
g
enu
s
,w
hi
c
hb
y
d
e

n
i
t
i
on must
h
ave a name t
h
at
i
s

i
ncorporate
di
nto t
h
e
f
am
il
y name (e.g.
,
Ap
is
i
nt
h
e
b
e
e
f
am
ily
Ap
id
ae).
94
CHAPTER
4
3. Classificatio

n
Bi
o
l
o
gi
ca
l
s
y
stems o
f
c
l
ass
ifi
cat
i
on are
hi
erarc
hi
ca
l
,t
h
at
i
s, t
h

e
l
ar
g
est taxa are su
bdi
-
v
ided into successivel
y
smaller taxa. Thus, each taxon has a particular level (rank) within
the s
y
stem. Groups of the same rank are said to belon
g
to the same taxonomic cate
g
or
y
,to
whi
c
h
a part
i
cu
l
ar name
i
sg

i
ven. Some o
f
t
h
ese categor
i
es are o
bli
gatory (cap
i
ta
li
ze
din
t
h
e examp
l
e
b
e
l
ow), w
hil
eot
h
ers are opt
i
ona

l
.Tos
h
ow t
h
e
hi
erarc
hi
ca
l
arrangement an
d
to
i
ntro
d
uce t
h
e names o
f
t
h
evar
i
ous categor
i
es,
l
et us ta

k
e as an examp
l
et
h
ec
l
ass
ifi
cat
i
on
o
f the hone
y
bee
,
Apis mellifer
a
:
KIN
G
D
O
MAn
i
ma
li
a
PHYL

U
M
U
n
i
ram
i
a
S
u
b
p
hyl
um Hexapo
d
a
C
LA
SS
Insecta
S
ubclass Pter
yg
ota
I
n
f
rac
l
ass Neo

p
ter
a
D
i
v
i
s
i
on O
li
goneoptera
ORDER H
y
menopter
a
S
uborder A
p
ocrit
a
S
uperfamil
y
Apoidea
FAMILY A
pid
a
e
S

u
bf
am
il
yAp
i
na
e
Tr
ibe
Ap
i
n
i
S
ubtribe —
G
ENU
S
A
pi
s
S
ubgenus —
S
PE
C
IE
S
A

pis me
ll
i
f
era
S
u
b
spec
i
e
s
[
In zoo
l
ogy, t
h
esu
b
spec
i
es
i
st
h
e
l
owest category cons
id
ere

d
va
lid
;
i
n
b
otany, var
i
ety,
f
orm,
an
d
su
bf
orm are recogn
i
ze
d
(an
d
g
i
ven
l
at
i
n
i

ze
d
names).
]
C
l
ass
ifi
cat
i
on, t
h
en,
i
s a means o
f
more e
ffi
c
i
ent
ly
stor
i
n
g
(an
d
retr
i

ev
i
n
g
)
i
n
f
ormat
i
on
about or
g
anisms. In other words, it is not necessar
y
to describe all of the characteristics o
f
a species each time that species is referred to. For example, as standard practice, a lar
g
e
proport
i
on o
f
entomo
l
og
i
ca
l

researc
h
art
i
c
l
es
i
nc
l
u
d
e
i
nt
h
e
i
rt
i
t
l
es, a
f
ter t
h
e name o
f
t
he

spec
i
es
b
e
i
ng stu
di
e
d
,t
h
e
f
am
il
y, (super
f
am
il
y), an
d
or
d
er to w
hi
c
h
t
h

e spec
i
es
b
e
l
ongs.
In t
hi
swa
y
, a rea
d
er can
i
mme
di
ate
ly g
a
i
n some
i
ns
igh
t
i
nto t
h
e nature o

f
t
h
e
i
nsect
b
e
i
n
g
studied, even thou
g
hheorshema
y
not be familiar with the species. Related to this last point,
c
lassification is also important in that it enables predictions to be made about incompletel
y
stu
di
e
d
organ
i
sms. For examp
l
e, organ
i
sms are a

l
most a
l
ways c
l
ass
ifi
e
dfi
rst on t
h
e
b
as
is
of
t
h
e
i
r externa
l
structure. However, once an organ
i
sm
h
as
b
een ass
i

gne
d
to a part
i
cu
l
a
r
taxon us
i
n
g
structura
l
cr
i
ter
i
a,
i
tma
y
t
h
en
b
e poss
ibl
etopre
di

ct,
i
n
g
enera
l
terms,
i
ts
h
a
bi
t
s
(
includin
g
life histor
y
), internal features, and ph
y
siolo
gy
, on the basis of what is know
n
c
oncernin
g
other, better studied, members of the taxon
.

A classification may be either artificial or natural. It is possible, for example, to ar
-
range organ
i
sms
i
n groups accor
di
ng to t
h
e
i
r
h
a
bi
tat or t
h
e
i
r econom
i
c
i
mportance. Suc
h
cl
ass
ifi
cat

i
ons may even
b
e
hi
erarc
hi
ca
li
nt
h
e
i
r arrangement. Art
ifi
c
i
a
l
c
l
ass
ifi
cat
i
ons are
usuall
y
desi
g

ned so that or
g
anisms belon
g
in
g
to different taxa within the s
y
stem can b
e
95
S
Y
S
TEM
A
TI
CS A
ND
TA
XONOM
Y
separated on the basis of sin
g
le characters. As a result, such schemes have extremel
y
re-
stricted value and, usuall
y
, can be used onl

y
for the purpose for which the
y
were initiall
y
d
esi
g
ned. More importantl
y
, artificial classifications provide no indication of the “true” or
“natura
l
”re
l
at
i
ons
hip
so
f
t
h
e const
i
tuent s
p
ec
i
es.

A
l
most a
ll
mo
d
ern c
l
ass
ifi
cat
i
ons are natura
l
,t
h
at
i
s, t
h
ey
i
n
di
cate t
h
ea
ffi
n
i

ty (
d
egree
o
f
s
i
m
il
ar
i
t
y
)
b
etween t
h
eor
g
an
i
sms w
i
t
hi
nt
h
ec
l
ass

ifi
cat
i
on. Or
g
an
i
sms p
l
ace
di
nt
h
e sam
e
t
axon (showin
g
the
g
reatest affinit
y
) are said to form a natural
g
roup. There is, however,
considerable controvers
y
amon
g
s

y
stematists over the meanin
g
of “de
g
ree of similarit
y
,”
“natura
l
group,” an
d
“natura
l
c
l
ass
ifi
cat
i
on.” Essent
i
a
ll
y systemat
i
sts
f
a
ll i

nto t
h
ree ma
j
or
groups, accor
di
ng to t
h
e
i
r
i
nterpretat
i
on o
f
t
h
ea
b
ove terms. T
h
ese are t
h
ep
h
y
l
et

i
c
i
sts
,
cladists, and pheneticists. To the cladistic group, led by Hennig (see Hennig, 196
5
, 1966,
1981), belon
g
those s
y
stematists who base classification entirel
y
o
n
genealogy
,
the recenc
y
of common ancestr
y
. Critical to the modus operandi of cladists are the distinction betwee
n
primitive and advanced homologous characters (so-called “character polarit
y

) and the
recogn
i

t
i
on o
f
si
ster
g
roup
s
(see
b
e
l
ow
f
or
f
urt
h
er
di
scuss
i
on o
f
t
h
ese terms). Among t
h
e

var
i
ous ways use
db
yc
l
a
di
sts to ass
i
gn c
h
aracter po
l
ar
i
ty are pa
l
eonto
l
ogy, ontogeny, an
d
out
g
roup comparison. In theor
y
, the stud
y
of fossils should clearl
y

show when a character

rst appears, makin
g
the separation of primitive and advanced characters an eas
y
task
.
However, the fossil record is typically discontinuous and preservation imperfect so tha
t
v
i
ta
l
c
h
aracters are m
i
ss
i
ng. T
h
e
id
ea t
h
at “ontogeny recap
i
tu
l

ates p
h
y
l
ogeny,” suggeste
dby
Haeckel in 18
66
, proposes that an organism’s development will reflect its evolution, givin
g
clues therefore as to which of its features are primitive and which are advanced. Onto
g
en
y
has
b
een relativel
y
little used b
y
cladists, however, perhaps because in development evolutionar
y
steps are compressed, omitted, or masked. Out
g
roup comparison, which is the metho
d
most use
d
,
i

s a compar
i
son o
f
c
h
aracter states
i
nt
h
e group un
d
er stu
d
yw
i
t
h
t
h
ose
i
n
i
ncreas
i
ng
l
y
di

stant s
i
ster groups. T
h
ec
h
aracter state common to t
h
e
l
argest s
i
ster groups
is
g
enera
lly
ta
k
en to
b
et
h
epr
i
m
i
t
i
ve con

di
t
i
on. T
hi
s met
h
o
d
requ
i
res, o
f
course, some prev
i
ous
knowled
g
eofa
g
roup’s ph
y
lo
g
en
y
and has been criticized because of its circularit
y
.As
a

result of their studies, cladists usuall
y
express their results in the form of a cladogram
.
Beginning in the 1950s, some taxonomists, dissatisfied with the perceived subjec
-
ti
ve approac
h
to c
l
ass
ifi
cat
i
on,
b
egan to
d
ev
i
se sc
h
emes
b
ase
d
on t
h
e num

b
er o
f
commo
n
c
h
aracters among organ
i
sms, regar
dl
ess o
f
w
h
et
h
er t
h
ese were pr
i
m
i
t
i
ve or a
d
vance
d
.T

he
pheneticists (ori
g
inall
y
known as numerical taxonomists), led b
y
Sokal and Sneath (se
e
Sokal and Sneath, 1963; Sneath and Sokal, 1973), have as their ma
j
or principles: (1) th
e
more characters studied the better; (2) all characters are of equal weight; and (3) the greate
r
th
e proport
i
on o
f
s
i
m
il
ar c
h
aracters, t
h
ec
l

oser are two groups re
l
ate
d
.P
h
enet
i
c
i
sts usua
ll
y
present t
h
e resu
l
ts o
f
t
h
e
i
r ana
l
yses a
s
p
h
eno

g
ram
s
or scatter
d
ia
g
rams
.
Ph
y
leticists such as Simpson (19
6
1) and Ma
y
r (19
6
9, 1981) ma
y
be considered a
s
formin
g
a “middle-of-the-road”
g
roup, emplo
y
in
g
both cladistic and phenetic information

on which to base their classifications. The
p
ro
p
ortions of cladistic and
p
henetic information
u
se
d
may vary s
i
gn
ifi
cant
l
y
d
epen
di
ng,
f
or examp
l
e, on t
h
e extent o
f
t
h

e
f
oss
il
recor
d
;
in
ot
h
er wor
d
s,
i
n contrast to t
h
ec
l
a
di
st
i
can
d
p
h
enet
i
c met
h

o
d
s, t
h
ep
h
y
l
et
i
c system
d
oes no
t
f
o
ll
ow a set o
f
care
f
u
lly
esta
bli
s
h
e
d
ru

l
es
.
An implicit point of natural classifications, re
g
ardless of how the
y
are derived, is tha
t
t
he
y
are based on
g
enealo
gy
(i.e., relationship b
y
descent). In other words, the
y
show evo-
l
ut
i
onary re
l
at
i
ons
hi

ps among taxa. T
h
us, t
h
e
k
ey step
i
n any natura
l
c
l
ass
ifi
cat
i
on
i
st
he
d
eterm
i
nat
i
on o
f
h
omo
l

o
gy
(w
h
et
h
er
f
eatures common to groups were
d
er
i
ve
df
rom t
h
e sam
e
f
eature
i
nt
h
e most recent common ancestor o
f
t
h
e
g
roups). S

i
m
il
ar,
b
ut non-
h
omo
l
o
g
ous,
9
6
CHAPTER
4
f
eatures are said to sho
w
homoplas
y
(analo
gy
) and are the result of eithe
r
p
arallelis
m
(
the

f
eatures had a distant, common ancestor
)
or
convergence
(
the features are derived fro
m
e
ntirel
y
unrelated ancestral conditions). Once homolo
gy
is established, it is then a matte
r
of d
eterm
i
n
i
ng w
h
et
h
er t
h
ec
h
aracter states un
d

er cons
id
erat
i
on are a
d
vance
d
(
d
er
i
ve
d
)
o
rpr
i
m
i
t
i
ve (ancestra
l
)
(
ap
omor
ph
ies

o
r
pl
esiomor
ph
ies, respect
i
ve
l
y). Bot
h
comparat
i
ve
m
orp
h
o
l
o
gy
o
f
extant
f
orms an
d
t
h
e

f
oss
il
recor
dh
ave
b
een use
d
extens
i
ve
ly i
n suc
hd
eter
-
m
inations. Apomorphies shared b
y
taxa are said to b
e
s
ynapomorphies, while those uni
q
u
e
toata
x
o

n
a
r
e desc
ri
bed as
a
utapomorphies.
N
either auta
p
omor
p
hies nor
p
lesiomor
p
hies ca
n
s
h
ow re
l
at
i
ons
hi
ps
b
etween groups. Broa

dl
y spea
ki
ng, t
h
e greater t
h
e num
b
er o
f
synapo
-
m
orp
hi
es, t
h
ec
l
oser w
ill b
et
h
ere
l
at
i
ons
hi

p
b
etween taxa. Eac
h
taxon, regar
dl
ess o
f
ran
k,
will h
aveas
i
ster group—
i
ts c
l
osest re
l
at
i
ve—so t
h
at t
h
e
d
eve
l
opment o

f
c
l
ass
ifi
cat
i
ons
and ph
y
lo
g
enies is the establishment of successivel
y
lar
g
er sister
g
roups, often depicte
d
as a branchin
g
dia
g
ram known as a phylogenetic tree
(
see the section on Ph
y
lo
g

en
y
an
d
Classification under each order for exam
p
les). An ancestor and all of its descendants form
a
m
onop
hyl
etic group; w
h
en some o
f
t
h
e
d
escen
d
ants are
l
ac
ki
ng, t
h
e rema
i
n

i
ng
d
escen
d
ants
are sa
id
to
b
e parap
hyl
etic. Groups
d
er
i
ve
df
rom more t
h
an one ancestor are sa
id
to
be
polyphyletic
.
It must be emphasized that the actual ancestor of two taxa is rarel
y
known,
thou

g
h its
g
eneral features (the so-called

g
round plan”) will be defined b
y
the plesiomor-
p
hic characters of its descendants. The ter
m
st
em group
re
f
e
r
stoco
ll
ect
i
o
n
so
ff
oss
il
st
h

at
h
ave some p
l
es
i
omorp
hi
cc
h
aracters o
f
a more recent group; t
h
ey may
b
ec
l
ose to,
b
ut are
n
ot
di
rect
l
y on, t
h
e group’s
li

ne o
fd
escent
.
As the followin
g
section (and comparison of the current with previous editions of this
book) shows, ideas on relationships amon
g
insect
g
roups chan
g
e with time, sometimes quite
si
g
nificantl
y
. Thou
g
h partl
y
related to the acquisition of new knowled
g
e, it is also becaus
e
taxonom
i
sts
diff

er
i
nt
h
e
i
r ana
l
ys
i
san
di
nterpretat
i
on o
fd
ata, or use
diff
erent
d
ata sets o
n
whi
c
h
to
b
ase t
h
e

i
r conc
l
us
i
ons
.
3
.1. The Histor
y
of Insect Classification
W
il
son an
d
Doner (
l
937)
h
ave
f
u
ll
y
d
ocumente
d
t
h
e many sc

h
emes t
h
at
h
ave
b
een
d
ev
i
se
df
or t
h
ec
l
ass
ifi
cat
i
on o
fi
nsects, an
di
t
i
s
f
rom t

h
e
i
r account t
h
at t
h
e
f
o
ll
ow
i
ng s
h
or
t
hi
story
i
sma
i
n
l
y comp
il
e
d
. (Papers mar
k

e
d
w
i
t
h
an aster
i
s
k
are c
i
te
df
rom W
il
son an
d
D
oner’s review.) Onl
y
the ma
j
or developments (i.e., those that have had a direct bearin
g
o
n
m
odern schemes) have been included, thou
g

h it should be realized that a
g
ood man
y
mor
e
systems have been proposed.
Insect systemat
i
cs may
b
e cons
id
ere
d
to
h
ave
b
egun w
i
t
h
t
h
ewor
k
o
f
Ar

i
stot
l
e, w
h
o,
according to Kirby and Spence (181
5
–1826),* included the Entoma as a subdivision of
the Anaima (invertebrates). Within the Entoma Aristotle placed the Arthropoda (excludin
g
Crustacea), Echinodermata, and Annelida. Authors who have examined Aristotle’s writin
gs
differ in their conclusions regarding this author’s classification of the insects, but it doe
s
appear c
l
ear t
h
at Ar
i
stot
l
e rea
li
ze
d
t
h
at t

h
ere were
b
ot
h
w
i
nge
d
an
d
w
i
ng
l
ess
i
nsects an
d
t
h
at t
h
ey
h
a
d
two
b
as

i
c types o
f
mout
h
parts, name
l
y, c
h
ew
i
ng an
d
suc
ki
ng
.
Amaz
i
n
gly
,
i
t was not
f
or a
l
most anot
h
er 2000

y
ears t
h
at
f
urt
h
er ser
i
ous attempts to
c
lassif
y
insects were made. Aldrovanus (1
6
02)* divided the so-called “insects” into terres-
trial and aquatic forms and subdivided these accordin
g
to the number of le
g
s the
y
possessed
an
d
on t
h
e presence or a
b
sence an

d
t
h
e nature o
f
t
h
ew
i
ngs. In A
ld
rovanus’ c
l
ass
ifi
cat
i
on
t
h
e term “
i
nsect” encompasse
d
ot
h
er art
h
ropo
d

s, anne
lid
s, an
d
some mo
ll
us
k
s. T
h
ewor
k
o
f Swammerdam (1
66
9)* is of particular interest because it represents the first attempt
97
S
Y
S
TEM
A
TI
CS A
ND
TA
XONOM
Y
t
o classif

y
insects accordin
g
to the de
g
ree of chan
g
e that the
y
under
g
o durin
g
develop-
ment. Althou
g
h Swammerdam’s concept of development was inaccurate, he distin
g
uishe
d
clearl
y
between ametabolous, hemimetabolous, and holometabolous insects. A more elab-
orate sc
h
eme o
f
c
l
ass

ifi
cat
i
on, st
ill b
ase
d
pr
i
mar
il
yont
h
e
d
egree o
f
metamorp
h
os
i
s
b
ut a
l
s
o
i
ncorporat
i

ng suc
hf
eatures as num
b
er o
fl
egs, presence or a
b
sence o
f
w
i
ngs, an
dh
a
bi
tat
,
w
a
s
t
hat of Ra
y
and Willu
g
hb
y
(170
5

).* Ra
y
was the first naturalist to form a concept o
f
a “species,” a term that was to take on more si
g
nificance followin
g
the introduction, b
y
L
innaeus, of the binomial s
y
stem some 30
y
ears later. Between 1735 and 1758, Linnaeus*
gra
d
ua
ll
y
i
mprove
d
on
hi
s system
f
or t
h

ec
l
ass
ifi
cat
i
on o
fi
nsects,
b
ase
d
ent
i
re
l
yon
f
eature
s
o
f
t
h
ew
i
ngs. L
i
nnaeus recogn
i

ze
d
seven or
d
ers o
f

i
nsects,” name
l
y, t
h
e Aptera, Neuroptera,
Co
l
eoptera, Hem
i
ptera, Lep
id
optera, D
i
ptera, an
d
Hymenoptera. O
f
t
h
e seven, t
h
e


rst
f
ou
r
orders each contained a hetero
g
eneous
g
roup of insects (and other arthropods) that toda
y
are separated into man
y
different orders. The Diptera, Lepidoptera, and H
y
menoptera hav
e
remained, however, more or less as Linnaeus envisaged them more than 200 years ago. Like
ear
li
er aut
h
ors, L
i
nnaeus
i
nc
l
u
d

e
di
nt
h
e Aptera (w
i
ng
l
ess
f
orms) sp
id
ers, woo
dli
ce, myr
i
-
apo
d
s, an
d
some non-art
h
ropo
d
an an
i
ma
l
s. He

f
a
il
e
d
a
l
so to
di
st
i
ngu
i
s
hb
etween pr
i
m
i
t
i
ve
ly
and secondaril
y
win
g
less insect
g
roups.

S
urprisin
g
l
y
, perhaps, up to this time no one had made a serious attempt to classif
y
insects on the basis of their mouthparts. However, the Danish entomologist Fabricius, wh
o
wa
sa
s
tu
d
ent o
f
L
i
nnaeus, pro
d
uce
d
severa
l
“c
ib
ar
i
an” or “max
ill

ary” systems
f
or c
l
ass
ifi-
cation during the period 177
5
–1798.* The primary subdivision was into forms with bitin
g
mouthparts and forms with suckin
g
mouthparts. Like Linnaeus, however, Fabricius included
av
a
riet
y
of non-insectan arthropods in his s
y
stem and, furthermore, based his s
y
stems on
a sin
g
le anatomical feature.
De Geer (1778),* w
h
oa
l
so stu

di
e
d
un
d
er L
i
nnaeus, a
pp
ears to
h
ave
b
een one o
f
t
h
e
ear
li
est systemat
i
sts to rea
li
ze t
h
e
i
mportance o
f

us
i
ng a com
bi
nat
i
on o
ff
eatures as a
b
as
i
s
f
or c
l
ass
ifi
cat
i
on. Suc
h
an approac
h
was use
dby
t
h
e Frenc
h

entomo
l
o
gi
st Latre
ill
e, w
h
o,
d
urin
g
the period 179
6
–1831,*
g
raduall
y
produced what he considered to be a natural
arran
g
ement of the Insecta. In 1810 Latreille separated the Crustacea and Arachnida from
th
e “Insecta,”
i
nw
hi
c
hh
e

i
nc
l
u
d
e
d
st
ill
t
h
e Myr
i
apo
d
a. T
h
e
l
atter group was not g
i
ven c
l
ass
status until 182
5
. In the final version of his system Latreille distinguished 12 insect orders.
Th
eL
i

nnaean or
d
er Aptera was sp
li
t
i
nto t
h
eor
d
ers T
h
ysanura, Paras
i
ta
(
=
A
nop
l
ura),
and Siphonaptera, althou
g
h Latreille did not appreciate that the first
g
roup was primitivel
y
w
in
g

less, while the other two were secondaril
y
so. The order Coleoptera of Linnaeus wa
s
subdivided into Coleo
p
tera
(
sensu str
i
ct
o
)
, Derma
p
tera, and Ortho
p
tera. The Phi
p
hi
p
tera
(
=
Streps
i
ptera),
b
e
li

eve
d
to
b
ere
l
ate
d
to t
h
eD
i
ptera
i
nw
hi
c
h
or
d
er t
h
ey
h
a
db
een
i
nc
l

u
d
e
d,
w
ere separate
d
as a
di
st
i
nct group
b
y Latre
ill
e. T
h
e Frenc
h
man was a
l
so among t
h
e ear
li
es
t
s
y
stematists to appreciate the hetero

g
eneit
y
of the Linnaean order Neuroptera, splittin
g
t
he
g
roup into three tribes, the Subulicarnes
(
=
m
odern Odonata and E
p
hemero
p
tera),
Plani
p
ennes (
=
m
odern Pleco
p
tera, Iso
p
tera, Meco
p
tera, and neuro
p

teroid insect
s
1
)
an
d
Pli
c
i
pennes
(
=
mo
d
ern Tr
i
c
h
optera).
Dur
i
n
g
t
h
e

rst
h
a

lf
o
f
t
h
e 19t
h
centur
y
a
l
ar
g
e num
b
er o
f
s
y
stemat
i
sts pro
d
uce
d
t
heir version of how insects should be classified. A ma
j
orit
y

ar
g
ued, like Latreille, that
t
he win
g
s (presence or absence, number, and nature) were the primar
y
feature on which
a classification should be established. Yet others, such as Leach (1815)* and von Siebold
1
Insects t
h
at are
i
nc
l
u
d
e
di
nt
h
emo
d
ern or
d
ers Neuroptera, Me
g
a

l
optera, an
d
Rap
hidi
optera.
98
CHAPTER
4
(
1848),* considered that the nature of metamorphosis was the first-order character, with
w
in
g
s, mouthparts, etc. of secondar
y
importance. If nothin
g
else, the use of metamorphosis
as a separatin
g
character drew further attention to the hetero
g
eneit
y
of the neuropteroid
group, w
hi
c
h

conta
i
ne
db
ot
hh
em
i
-an
dh
o
l
ometa
b
o
l
ous
f
orms. In
d
ee
d
,
i
n
hi
sc
l
ass
ifi

cat
i
on
v
o
n
Si
e
b
o
ld
a
d
opte
d
Er
i
c
h
son’s (1839)* arrangement
i
nw
hi
c
h
t
h
e term
i
tes, psoc

id
s, em
bi
-
id
s, ma
yfli
es,
d
ra
g
on
fli
es, an
dd
amse
lfli
es were remove
df
rom t
h
e Neuroptera an
d
p
l
ace
d
to
g
ether as the suborder Pseudoneuroptera in the order Orthoptera

.
T
he foundations of modern s
y
stems of classification were laid b
y
Brauer (1885),* who
appears to
h
ave
b
een great
l
y
i
n

uence
db
yt
h
epr
i
nc
i
p
l
es o
f
comparat

i
ve anatomy an
d
pa-
l
eonto
l
ogy esta
bli
s
h
e
db
yt
h
e Frenc
h
zoo
l
og
i
st Cuv
i
er, an
db
yt
h
ewor
k
o

f
Darw
i
n. Brauer
di
v
id
e
d
t
h
e Insecta
i
nto two su
b
c
l
asses, t
h
e Apterygogenea, conta
i
n
i
ng t
h
epr
i
m
i
t

i
ve
l
y
w
in
g
less Th
y
sanura and Collembola, the latter havin
g
been
g
iven ordinal status b
y
Lub
-
bock (1873),* and the Pter
yg
o
g
enea, containin
g
16 orders, in which he placed the win
g
ed
and secondarily wingless forms. Three major divisions were established in the Pterygo
-
genea: (1) Menognat
h

a ameta
b
o
l
aan
dh
em
i
meta
b
o
l
a(
i
nsects w
i
t
hbi
t
i
ng mout
h
parts
i
n
b
ot
hj
uven
il

ean
d
a
d
u
l
t stages, or mout
h
parts atrop
hi
e
di
nt
h
ea
d
u
l
tan
d
w
i
t
h
no or part
i
a
l
m
etamorphosis) containin

g
the orders Dermaptera, Ephemerida, Odonata, Plecoptera, Or-
thoptera (includin
g
Embioptera), Corrodentia (which included the termites, psocids, an
d
l
ice), and Thysanoptera; (2) Menorhyncha (insects with sucking mouthparts in both the juve
-
nil
ean
d
a
d
u
l
t stages), conta
i
n
i
ng t
h
eor
d
er R
h
ync
h
ota
(

=
H
em
i
ptera); an
d
(3) Menognat
ha
m
eta
b
o
l
aan
d
Metagnat
h
a meta
b
o
l
a(
i
nsects
h
av
i
ng a comp
l
ete metamorp

h
os
i
s, an
d
w
i
t
h
bitin
g
mouthparts in the
j
uvenile sta
g
e and bitin
g
, suckin
g
, or atrophied mouthparts in the
adult), containin
g
the neuropteroid insects, and the orders Panorpatae
(
=
M
eco
p
tera), Tri
-

c
hoptera, Lepidoptera, Diptera, Siphonaptera, Coleoptera, and H
y
menoptera. Thus, Brauer
apprec
i
ate
d
t
h
e
h
eterogene
i
ty o
f
t
h
e “Neuroptera” an
d
correct
l
y separate
d
t
h
eP
l
ecoptera
,

Od
onata, an
d
Ep
h
emer
id
a
f
rom t
h
e neuroptero
id
s, Mecoptera, an
d
Tr
i
c
h
optera. He
f
a
il
e
d,
h
owever, to reco
g
n
i

ze t
h
e
h
etero
g
ene
i
t
y
o
f
t
h
eor
d
ers Ort
h
optera an
d
Corro
d
ent
i
a.
B
etween 1885 and 1900, a number of modifications to Brauer’s s
y
stem were su
g-

g
ested. Most of these were concerned solel
y
with the subdivision or a
gg
re
g
ation of order
s
accor
di
ng to t
h
e aut
h
or’s v
i
ewsont
h
ea
ffi
n
i
ty o
f
t
h
e groups. T
h
ere were,

h
owever, two
proposa
l
st
h
at
h
ave a more
di
rect
b
ear
i
ng on mo
d
ern systems. In 1888 Lang* propose
d
t
h
at
t
h
e terms Apterygota an
d
Pterygota
b
esu
b
st

i
tute
df
or Apterygogenea an
d
Pterygogenea,
respectivel
y
. Sharp (1899) refocused attention on the importance of metamorphosis, but
,
c
laimin
g
that the terms Ametabola, Hemimetabola, and Holometabola were not sufficientl
y
definite for taxonomic purposes, proposed new terms describing whether the wings de-
v
e
l
ope
di
nterna
ll
y or externa
ll
y. H
i
s arrangement was as
f
o

ll
ows: Apterygota (pr
i
m
i
t
i
ve
l
y
wi
ng
l
ess
f
orms); Anapterygota (secon
d
ar
il
yw
i
ng
l
ess
f
orms); Exopterygota (
f
orms
i
nw

hi
c
h
the win
g
s develop externall
y
); Endopter
yg
ota (forms in which the win
g
s develop internall
y
).
S
harp was criticized for
g
roupin
g
to
g
ether the secondaril
y
win
g
less orders (Mallopha
g
a
,
A

no
p
lura, Si
p
hona
p
tera), as these contained both hemi- and holometabolous forms, and the
term Anapterygota was
di
scar
d
e
d
.T
h
e terms Exopterygota an
d
En
d
opterygota were w
id
e
ly
accepte
d
,
h
owever, an
db
ecame synonymous w

i
t
h
Hem
i
meta
b
o
l
aan
d
Ho
l
ometa
b
o
l
a, re
-
s
pect
i
ve
ly
. It was not unt
il
t
h
ewor
k

o
f
Crampton an
d
Mart
y
nov
i
nt
h
e 1920s (see
b
e
l
ow)
that it was realized that these terms had no ph
y
lo
g
enetic si
g
nificance but were merel
y
de
-
s
criptive, indicatin
g

g

rades of or
g
anization.” Sharp reco
g
nized 21 orders of insects. Hi
s
s
ystem
i
mprove
d
on Brauer’s ma
i
n
l
y
i
nt
h
esp
li
tt
i
ng o
f
t
h
e Corro
d
ent

i
aan
d
Ort
h
optera,
t
h
ere
b
yg
i
v
i
ng or
di
na
l
status to t
h
e Isoptera, Em
bi
optera, Psocoptera, Ma
ll
op
h
aga, an
d
Si
p

h
uncu
l
ata
.
99
S
Y
S
TEM
A
TI
CS A
ND
TA
XONOM
Y
T
ow
a
rd the end of the 19th centur
y
the full force of Darwin’s ideas on evolution an
d
t
he importance and usefulness of fossils be
g
an to make themselves felt in insect classifi
-
cation. Gone was the old idea that evolution was a sin

g
le pro
g
ressive series of events, and
i
n
i
ts p
l
ace came t
h
e apprec
i
at
i
on t
h
at evo
l
ut
i
on was a process o
fb
ranc
hi
ng. T
h
us,
i
nsec

t
c
l
ass
ifi
cat
i
on entere
d
,att
h
e
b
eg
i
nn
i
ng o
f
t
h
e 20t
h
century, t
h
ep
h
y
l
ogenet

i
cp
h
ase o
fi
t
s
d
evelopment, althou
g
h Haeckel (18
66
)* had been the first to use a ph
y
lo
g
enetic tree t
o
indicate the relationships of the Insecta. Unfortunatel
y
his ideas on
g
enealo
gy
were incor-
rect. Most recent s
y
stems have been influenced to some de
g
ree b

y
the work of an Austrian
pa
l
eoentomo
l
og
i
st, Han
dli
rsc
h
,w
h
ocr
i
t
i
c
i
ze
d
ear
li
er wor
k
ers
f
or t
h

e
i
r one-s
id
e
d
systems,
i
nw
hi
c
h
as
i
ng
l
ec
h
aracter was use
df
or separat
i
on o
f
t
h
ema
j
or su
bdi

v
i
s
i
ons. Anot
h
e
r
f
a
il
ure o
f
t
h
e 19t
h
century aut
h
ors was,
h
ec
l
a
i
me
d
,t
h
e

i
r
i
na
bili
ty to
di
st
i
ngu
i
s
hb
etween
parallel and conver
g
ent evolution of similar features. Finall
y
, he pointed out that almost n
o
one had taken into account fossil evidence. Handlirsch’s first scheme,
p
roduced in 1903,
w
as, at the time, regarded as revolutionary. He raised the Collembola, Campodeoidea
(
=
D
i
p

l
ura), an
d
T
h
ysanura eac
h
to t
h
e
l
eve
l
o
f
c
l
ass. (Pr
i
or to t
hi
st
h
eD
i
p
l
ura
h
a

db
ee
n
cons
id
ere
d
usua
ll
yasasu
b
or
d
er o
f
t
h
eT
h
ysanura.) He a
l
so ra
i
se
d
t
h
e Pterygogenea o
f
B

rauer to the level of class and arran
g
ed the 28 orders of win
g
ed insects in 11 subclasses
.
His second scheme, published in 1908, was identical with the first except for some sli
g
ht
changes in the names of orders. In 1925 Handlirsch published his modified views on insect
c
l
ass
ifi
cat
i
on. In t
hi
ssc
h
eme
h
ere
i
ntro
d
uce
d
Brauer’s two su
b

c
l
asses, Apterygogenea an
d
Pterygogenea. In t
h
e
f
ormer group
h
ep
l
ace
d
t
h
eor
d
ers T
h
ysanura, Co
ll
em
b
o
l
a, D
i
p
l

ura
,
and the recentl
y
discovered Protura. In the Pter
yg
o
g
enea he listed 29 orders (includin
g
th
e
Z
oraptera, first described in 1913) arran
g
ed in 11 superorders (his former subclasses). Th
e
most si
g
nificant point in Handlirsch’s work was his reco
g
nition of the hetero
g
eneous natur
e
o
f
t
h
e Ort

h
optera, t
h
e contents o
f
w
hi
c
hh
esp
li
t
i
nto or
d
ers an
d
regroupe
d
w
i
t
h
ot
h
er or
d
ers
i
n two superor

d
ers, Ort
h
optera (conta
i
n
i
ng t
h
eor
d
ers Sa
l
tator
i
a, P
h
asm
id
a, Dermaptera
,
D
i
p
l
o
gl
ossata, an
d
T

hy
sanoptera) an
d
B
l
attae
f
orm
i
a (conta
i
n
i
n
g
t
h
eB
l
attar
i
ae, Manto
d
ea
,
I
soptera, Zoraptera, Corrodentia, Mallopha
g
a, and Siphunculata). He did not appreciate
,

h
owever, the orthopteroid nature of the Plecoptera and placed the
g
roup in a superorder
o
fi
ts own. Han
dli
rsc
h
was a
l
so
i
n error
i
n regar
di
ng t
h
e Corro
d
ent
i
a, Ma
ll
op
h
aga, an
d

S
i
p
h
uncu
l
ata as ort
h
optero
id
groups. T
h
ey are un
d
ou
b
te
dl
y more c
l
ose
l
yre
l
ate
d
to t
h
e
Hem

i
ptera. Han
dli
rsc
h
’s arrangement was strong
l
ycr
i
t
i
c
i
ze
db
yB¨orner (1904), w
h
osa
id
that it did not express the true phylogenetic relationships of the Insecta. B¨
orner consid-
¨
ered that fossil win
g
s did not have much value in insect s
y
stematics, and, in an
y
case
,

t
here were far too few fossils for paleontology to have much bearing on classification.
Comparat
i
ve anatom
i
ca
l
stu
di
es o
f
recent
f
orms, B¨orner argue
d
,wou
ld
g
i
ve a more ac-
curate p
i
cture. B¨orner, w
h
ose system was w
id
e
l
y accepte

d
, arrange
d
t
h
e19or
d
ers o
f
w
in
g
ed insects that he reco
g
nized in five sections. Three of these correspond with th
e
“paleopteran orders,” “orthopteroid orders,” and “hemipteroid orders” reco
g
nized toda
y
.
I
n other words, B
orner correctly assigned the Corrodentia, Mallophaga, and Siphuncu-
¨
l
ata w
i
t
h

t
h
e Hem
i
ptera. T
h
e two rema
i
n
i
ng sect
i
ons conta
i
ne
d
t
h
een
d
opterygote or
d
ers,
th
oug
h
B¨orner’s
id
eas on t
h

e
i
ra
ffi
n
i
t
i
es were to
b
es
h
own
b
yT
ill
yar
d
(see
b
e
l
ow) to
b
e
i
ncorrect
.
C
omstock (1918, and earlier), an American entomolo

g
ist, supported Brauer’s arran
g
e-
ment as a result of his comparative studies of the win
g
venation of livin
g
insects. Comstock
w
a
s
th
e

rst person to ma
k
e extens
i
ve use o
f
w
i
ng venat
i
on
i
n
d
eterm

i
n
i
ng a
ffi
n
i
t
i
es. He
emp
h
as
i
ze
d
,
h
owever, t
h
at c
l
ass
ifi
cat
i
ons s
h
ou
ld b

e
b
ase
d
on many c
h
aracters an
d
not w
i
ng
s
a
l
one
.
100
CHAPTER
4
D
urin
g
a period of more than 20
y
ears, be
g
innin
g
in 1917, Till
y

ard expounded hi
s
v
iews on insect ph
y
lo
g
en
y
, stemmin
g
from his extensive research into the fossil insect
s
o
f Australia and North America. Althou
g
h he made important contributions concernin
g
t
h
eor
i
g
i
nan
d
re
l
at
i

ons
hi
ps o
f
many
i
nsect or
d
ers, T
ill
yar
d
’s (1918–1920) wor
k
on t
he
e
n
d
opterygotes
i
s part
i
cu
l
ar
l
ywe
ll k
nown. In t

hi
swor
kh
es
h
owe
d
t
h
at t
h
e Hymenopter
a
an
d
Co
l
eoptera (w
i
t
h
t
h
e Streps
i
ptera)
f
orm two rat
h
er

di
st
i
nct or
d
ers, on
ly di
stant
ly
re
l
ate
d
to the other endopter
yg
ote
g
roups which collectivel
y
formed the panorpoid complex. Withi
n
the com
p
lex, the Meco
p
tera, Tricho
p
tera, Le
p
ido

p
tera, Di
p
tera, and Si
p
hona
p
tera form
a
w
e
ll d
e

ne
d
group, w
i
t
h
t
h
e neuroptero
id
or
d
ers c
l
ear
l

y
di
st
i
nct
f
rom t
h
em. In
f
act, as note
d
i
n Chapter 2, Hinton (19
5
8) made a strong case for excluding these orders entirely from the
panorpo
id
comp
l
ex an
d
p
l
ac
i
ng t
h
em c
l

oser to t
h
eCo
l
eoptera.
While Till
y
ard was concentratin
g
on the ph
y
lo
g
en
y
of the endopter
yg
otes, hi
s
A
merican contemporar
y
, Crampton, was directin
g
his efforts toward solution of the prob
-
l
ems of exopterygote relationships, especially the position of the Zoraptera, Embioptera
,
Gry

ll
o
bl
att
id
ae, an
d
Dermaptera. Fo
ll
ow
i
ng
hi
s anatom
i
ca
l
stu
d
yont
h
enew
l
y
di
scovere
d
wi
nge
d

zorapteran Zorot
y
pus
h
u
bb
ar
d
i, Crampton (1920) conc
l
u
d
e
d
t
h
at t
h
e Zoraptera were
related to the orthopteroid orders, and he placed them in a
g
roup (superorder Panisoptera)
that also contained the Isoptera, Blattida, and Mantida. However, the followin
gy
ear
Cram
p
ton revised his views and transferred the Zora
p
tera to the

p
socoid (hemi
p
teroid) su
-
peror
d
er, a
f
ter cons
id
erat
i
on o
f
t
h
e
i
rw
i
ng venat
i
on. In 1922 Crampton p
l
ace
d
t
h
e Zorapter

a
i
nt
h
eor
d
er Psocoptera an
d
suggeste
d
t
h
at
i
twas
f
rom psoco
idlik
e ancestors t
h
at t
h
emo
d
er
n
hemipteroid orders evolved. Ori
g
inall
y

, Crampton (191
5
) had placed the Gr
y
lloblattidae in
a separate order, Notoptera, in the orthopteroid
g
roup. Five
y
ears later he concluded that th
e
g
r
y
lloblattids were closer to the Orthoptera (
s
ensu str
i
ct
o
)
than the blattoid
g
roups and made
t
h
e Gry
ll
o
bl

atto
d
eaasu
b
or
d
er o
f
t
h
e Ort
h
optera. T
h
emo
d
ern v
i
ew
i
st
h
at t
h
e gry
ll
o
bl
att
ids

are pro
b
a
bl
y surv
i
vors o
f
t
h
e protot
h
opteran stoc
kf
rom w
hi
c
hb
ot
h
t
h
e ort
h
opteran an
d
bl
atto
id li
nes

d
eve
l
ope
d
. Crampton cons
id
ere
d
t
h
at t
h
ec
l
osest re
l
at
i
ves o
f
t
h
eEm
bi
opter
a
w
ere the Plecoptera, placin
g

the two
g
roups in the superorder Panplecoptera. In his earl
y
schemes Crampton also placed the Dermaptera in the Panplecoptera. He later chan
g
ed this
vi
ew an
di
nc
l
u
d
e
d
t
h
em
i
nt
h
e ort
h
optero
id
superor
d
er,att
h

e same t
i
me po
i
nt
i
ng out t
h
at
t
h
eD
i
p
l
og
l
ossata (Hem
i
mer
id
a) are paras
i
t
i
c Dermaptera
.
A
l
most s

i
mu
l
taneous
l
y
i
n 1924 Crampton an
d
t
h
e Russ
i
an pa
l
eoentomo
l
og
i
st Martynov
proposed an apparentl
y
natural division of the win
g
ed insects on the basis of th
e
abilit
y
to flex the win
g

s horizontall
y
over the bod
y
when at rest. In the Paleoptera
(
=
P
aleopterygot
a
=
Archipterygota) are the orders Ephemeroptera and Odonata whos
e
m
em
b
ers
d
o not possess a w
i
ng-
f
o
ldi
ng mec
h
an
i
sm. It must
b

e emp
h
as
i
ze
d
,
h
owever, t
h
at
t
h
etwoor
d
ers are on
l
y very
di
stant
l
yre
l
ate
d
t
h
roug
h
t

h
e
i
rpa
l
eo
di
ctyopteran ancestry.
The remainin
g
orders, whose members are able to fold their win
g
s over the bod
y
, are
p
laced in the Neo
p
tera
(
=
N
eopter
yg
ota). The latter contains three natural subdivisions, the
P
olyneoptera (orthopteroid orders), Paraneoptera (hemipteroid orders), and Oligoneoptera
(
en
d

opterygote or
d
ers)
.
E
ven recent
l
y, v
i
gorous
d
e
b
ate
h
as cont
i
nue
d
over t
h
e taxonom
i
c ran
k
o
f
,an
d
natur

e
of
t
h
eevo
l
ut
i
onar
y
re
l
at
i
ons
hi
ps amon
g
,
h
exapo
dg
roups (see C
h
apter 1, Sect
i
on 3.3.1
[
apter
yg

otes], and Chapter 2, Section 3.2 [pter
yg
otes] for a fuller discussion). For exam-
ple, most authors consider the Collembola and Protura to be sister
g
roups and sometimes
un
i
te t
h
em
i
nt
h
ec
l
ass E
llip
ura (
=
Para
i
nsecta). However, t
h
e
p
os
i
t
i

on o
f
t
h
eD
ipl
ura
is
l
ess c
l
ear; Kr
i
stensen (1991) p
l
ace
d
t
h
em c
l
ose to t
h
eE
lli
pura pr
i
nc
i
pa

ll
yont
h
e
b
as
i
s
101
S
Y
S
TEM
A
TI
CS A
ND
TA
XONOM
Y
of the ento
g
nathous condition, whereas Kukalov´a-Peck (1991), puttin
g
more emphasis on
features of the thorax, su
gg
ested that the
y
are true Insecta. A

g
ain, the monoph
y
letic na
-
t
ure, or otherwise, of the Paleo
p
tera is controversial. Sharov (1966) and Kukalov´a-Peck
(198
5
, 1991) argued strongly that Ephemeroptera and Odonata had a common ances-
t
or, w
h
ereas Kr
i
stensen (1991)
l
umpe
d
t
h
eO
d
onata w
i
t
h
t

h
e Neoptera, t
hi
s assem
bl
age
th
ere
by b
ecom
i
n
g
t
h
es
i
ster
g
roup o
f
t
h
eEp
h
emeroptera. T
h
e status o
f
t

h
ePo
ly
neoptera
likewise remains questionable. Some workers believe that this is a monoph
y
letic
g
roup
,
w
hile others insist that the
g
roup is pol
y
ph
y
letic, the term “pol
y
neopterous” simpl
y
de
-
scr
ibi
ng a gra
d
eo
f
organ

i
zat
i
on. Certa
i
n
l
yt
h
e pos
i
t
i
on o
f
t
h
e Zoraptera
i
sen
i
gmat
i
c
,
thi
s sma
ll
or
d

er
h
av
i
ngam
i
xture o
f
ort
h
optero
id
an
dh
em
i
ptero
id
c
h
aracters. One re
-
cent suggest
i
on
i
st
h
at zorapterans may
b

et
h
es
i
ster group o
f
t
h
eEm
bi
optera,
i
tse
lf
an
order of uncertain affinit
y
showin
g
similarities with Plecoptera, Dermaptera, and Phas-
mida! Of all the ma
j
or
g
roups, the Paraneoptera is the one that is widel
y
accepted t
o
b
e monophyletic, though there is argument over whether the Psocoptera and Phthirapter

a
s
h
ou
ld b
e
li
n
k
e
d
asas
i
ng
l
eor
d
er (Psoco
d
ea) or rema
i
n separate. Most mo
d
ern aut
h
ors
a
l
so cons
id

er t
h
een
d
opterygote or
d
ers (except
f
or t
h
e Streps
i
ptera) to
b
e monop
h
y
l
et
i
c
,
t
he two ma
j
or sister
g
roups bein
g
the Coleoptera-neuropteroids and the H

y
menoptera-
panorpoids. However, members of the small Southern Hemisphere famil
y
Nannochoris-
t
idae are clearly set apart from the other scorpionflies, with which they have been tradi-
ti
ona
ll
y groupe
di
nt
h
eor
d
er Mecoptera, an
df
urt
h
er stu
d
y may resu
l
t
i
nt
h
e
f

am
il
y
b
e
i
n
g
p
l
ace
di
n
i
ts own or
d
er (Nannomecoptera) as suggeste
db
yH
i
nton (1981). L
ik
ew
i
se, t
h
e
primitive th
y
sanuran Tricholepidion

g
ertsch
i
i
s considered b
y
Boudreaux (1979) to be dis-
t
inct enou
g
h to warrant its own order. The s
y
stem adopted in the present volume is
g
iven
b
elo
w:
Superc
l
ass Hexapo
d
a.
1
. CLASS. Co
ll
em
b
o
l

a
ORDERS. Arthropleona, Neelipleona, and S
y
mph
y
pleon
a
2
.
C
LA
SS
AND
O
RDER. Protur
a
3. CLASS AND ORDER. D
ipl
ura
4.
C
LA
SS
. Insect
a
I. SUBCLASS. Apterygota
ORDERS. Microcor
y
phia and Z
yg

entoma
II.
S
UB
C
LA
SS
. Pter
yg
ota
A
. INFRACLASS. Paleo
p
tera
O
RDERS. Ep
h
emeroptera an
d
O
d
onat
a
B. INFRACLASS. Neoptera
a. DIVISION. Pol
y
neoptera (orthopteroid orders)
ORDERS. Orthoptera, Gr
y
lloblattodea, Dermaptera, Plecoptera

,
E
mbioptera. Dict
y
optera, Isoptera, Phasmida,
M
anto
ph
asmato
d
ea, an
d
Zora
p
tera
b.
D
IVISION. Paraneoptera (
h
em
i
ptero
id
or
d
ers
)
ORDERS. Psocoptera, P
h
t

hi
raptera, Hem
i
ptera, an
d
T
hy
sanopter
a
c
. DIVISION. Oli
g
oneoptera (endopter
yg
ote orders)
ORDERS. Meco
p
tera, Le
p
ido
p
tera, Tricho
p
tera, Di
p
tera. Si
p
hona
p
tera,

N
europtera, Mega
l
optera, Rap
hidi
optera, Co
l
eoptera
,
Streps
i
ptera, an
d
Hymenoptera
102
CHAPTER
4
4
.I
de
ntifi
ca
ti
on
In pr
i
nc
i
p
l

et
h
e
id
ent
ifi
cat
i
on o
fi
nsects
i
st
h
e same as t
h
at o
f
an
y
ot
h
er an
i
ma
l
.I
n
practice it is more difficult, for two ma
j

or reasons. First, the enormous number of specie
s
that occur means that often ver
y
minor differences in structure must be used to distin
g
uis
h
b
etween
f
orms, an
d
secon
d
,t
h
e sma
ll
s
i
ze o
f
most
i
nsects
f
requent
l
y means t

h
at t
h
e
id
ent
i
-
f
y
i
ng c
h
aracters are not eas
il
y seen. T
h
ere are var
i
ous met
h
o
d
s
f
or
id
ent
if
y

i
ng organ
i
sms
:
(
1) t
h
e spec
i
men may
b
e sent to an expert, (2)
i
t may
b
e compare
d
w
i
t
h
t
h
e spec
i
mens
i
n
a labeled collection, (3) it ma

y
be compared with pictures or descriptions, or (4) it ma
y
be identified b
y
use of a ke
y
. Pictorial ke
y
s, which can be valuable to both specialists an
d
n
on-specialists, include not only printed material but also user-friendly computer-based in-
teract
i
ve systems suc
h
as t
h
ose
d
eve
l
ope
db
yB
i
s
h
o

p
e
ta
l.
(1989), Lawrenc
e
et a
l.
(
1993)
,
an
d
Wee
ks
et a
l
. (1999). Most o
f
ten,
h
owever, on
l
y convent
i
ona
l
wr
i
tten

k
eys are ava
il
a
bl
e.
A
tentative identification from a ke
y
should be confirmed b
y
comparin
g
the specimen’
s
c
haracters with the dia
g
nosis or description for the species.
T
here are different ways of arranging a key, though all involve the same general prin
-
ci
p
l
e, name
l
y, t
h
e stepw

i
se e
li
m
i
nat
i
on o
f
c
h
aracters unt
il
a name
i
s reac
h
e
d
.Keysmay
be
d
ev
i
se
d
so as to re

ect t
h

eevo
l
ut
i
onary re
l
at
i
ons
hi
ps
b
etween t
h
e taxa
id
ent
ifi
e
d
. However,
because character state differences between closel
y
related taxa ma
y
be sli
g
ht, the use of
ap
h

y
lo
g
enetic ke
y
with “weak” or “difficult” couplets ma
y
make identification difficult
.
Thus, most keys are quite arbitrary, as they have as their only objective, ease of identifi-
c
at
i
on. In t
hi
sar
bi
trary system t
h
e same taxon may
k
ey out at severa
l
po
i
nts
i
nt
h
e

k
ey,
wh
ereas
i
nap
h
y
l
ogenet
i
c
k
ey, t
h
e taxon wou
ld
appear on
l
y once
.
Ty
p
i
ca
lly
,a
k
e
yi

s
i
nt
h
e
f
orm o
f
a ser
i
es o
f
coup
l
ets (occas
i
ona
lly
tr
i
p
l
ets ma
ybe
i
ncluded) of contrastin
g
character states. For maximum usefulness, the couplets should
p
resent clear-cut alternatives for the characters under consideration. The sim

p
lest for
m
of
sequence w
i
t
hi
na
k
ey
i
s one
i
nw
hi
c
h
eac
h
coup
l
et
i
nc
l
u
d
es on
l

yas
i
ng
l
ec
h
aracter.
T
h
e
d
raw
b
ac
k
o
f
suc
h
monot
h
et
i
c
k
eys
i
st
h
at t

h
ey
d
o not wor
kf
or organ
i
sms
i
nw
hi
c
h
ac
h
aracter
d
oes not
f
o
ll
ow t
h
e norm. T
h
ea
l
ternat
i
ve

i
sapo
ly
t
h
et
i
c
k
e
yi
nw
hi
c
h
at
l
eas
t
some cou
p
lets include several statements, each about a different character. Sneath and Soka
l
(
1973) su
gg
est three reasons for usin
g
pol
y

thetic ke
y
s: (1) one or more characters ma
y
not
b
eo
b
serva
bl
e (e.g.,
if
t
h
e spec
i
men
i
s
i
ncomp
l
ete,
d
amage
d
,oratt
h
e “wrong”
lif

e stage)
,
(
2) some spec
i
es may
b
e except
i
ona
lf
or a part
i
cu
l
ar c
h
aracter, an
d
(3) t
h
e user o
f
a
k
ey may
e
rr
i
n

d
ec
idi
n
g
a
b
outac
h
aracter. B
yh
av
i
n
g
severa
l
c
h
aracters
i
n eac
h
coup
l
et w
i
t
h
w

hi
c
h
to
w
ork, a user can operate on a “ma
j
orit
y
vote” basis, that is, select the branch of the couplet
that overall most closel
y
describes the characters of the specimen. A disadvanta
g
e of such
an arrangement
i
st
h
at a
d
ec
i
s
i
on on w
hi
c
hb
ranc

h
to se
l
ect may not
b
ec
l
ear-cut (espec
i
a
ll
y
if
t
h
e spec
i
men
i
s except
i
ona
li
n one o
f
t
h
ec
h
aracters

li
ste
d
). Furt
h
er, t
h
e “ru
l
es” to
b
e
f
o
ll
owe
di
napo
ly
t
h
et
i
c
k
e
y
must
b
e care

f
u
lly
state
d
[
i
.e.,
d
oa
ll
c
h
aracters
i
n a coup
l
e
t
have equal value, or does one (the first) or more carr
yg
reater wei
g
ht—and, if so, how
m
uch?].
A ser
i
ous
d

raw
b
ac
k
to many
k
eys
i
st
h
at
i
nor
d
er not to
b
ecome unw
i
e
ld
yt
h
ey are
c
onstructe
d
e
i
t
h

er spec
ifi
ca
ll
y
f
or
id
ent
ifi
cat
i
on o
f
spec
i
mens
i
n a part
i
cu
l
ar geograp
hic
area or
f
or
id
ent
ifi

cat
i
on o
f
spec
i
mens to a
hi
g
h
er taxonom
i
c
l
eve
l
on
l
y, typ
i
ca
ll
yto
f
am
il
y
.
This is especiall
y

true of insect ke
y
s because of the
g
reat diversit
y
of the insect fauna. In
short, their use ma
y
be rather limited. The arran
g
ement in this text is the provision of a
polythetic key for identification of insects to the level of order, rarely the suborder. A list
of k
eys
f
or
id
ent
ifi
cat
i
on
b
eyon
d
t
h
eor
di

na
ll
eve
li
st
h
en prov
id
e
d
un
d
er t
h
e
d
escr
i
pt
i
on o
f
103
S
Y
S
TEM
A
TI
CS A

ND
TA
XONOM
Y
each order (see Chapters
5
–10). This list is b
y
no means exhaustive, and it is anticipated
t
hat instructors will direct students to useful ke
y
s for the
g
eo
g
raphic area or insect
g
roup of
interest
.
4.1. Ke
y
to the
O
rders o
f
Insect
s
T

h
e
f
o
ll
ow
i
ng
k
ey, mo
difi
e
df
rom Brues et a
l
. (1954), is in accordance with the clas
-
s
ifi
cat
i
on use
di
nt
hi
s
b
oo
k
.A

f
ew comments are necessary regar
di
ng
i
ts use. T
h
e
k
ey
is
su
i
ta
bl
e
f
or use w
i
t
h
t
h
ea
d
u
l
tan
d
most

l
arva
lf
orms o
fi
nsects. However
,
t
h
e
l
arva
lf
orms
of the endopter
yg
ote orders are often difficult to identif
y
and, if at all possible, the
y
should
b
e allowed to metamorphose to the adult sta
g
e. In some cases it is important to know th
e
original habitat of the specimen, and care should be taken to note this when the collec
-
ti
on

i
sma
d
e. T
h
oug
h
not
i
nsects, t
h
eCo
ll
em
b
o
l
a, Protura, an
d
D
i
p
l
ura are
i
nc
l
u
d
e

df
or
th
esa
k
eo
f
comp
l
eteness. Or
d
ers mar
k
e
d
w
i
t
h
an aster
i
s
k
are un
lik
e
l
yto
b
e encountere

d
in a
g
eneral collection. Because of its novelt
y
and size [three species, each known onl
y
from sin
g
le specimens (Zompro
et al.
,
2002)], the order Manto
p
hasmatodea has not been
included
.
K
e
y
to
t
he Orders of Insect
a
1. W
i
ngs
d
eve
l

ope
d

2
W
i
ng
l
ess, or w
i
t
h
vest
i
g
i
a
l
w
i
ngs, or w
i
t
h
ru
di
mentary w
i
ngs no
t

s
u
i
ta
bl
e
f
or
fligh
t(w
i
n
gl
ess a
d
u
l
ts an
di
mmature sta
g
es) 3
1
2. Fore win
g
s horn
y
, leather
y
, or parchmentlike, at least at base; hind win

g
s
membranous (occasionall
y
absent). Prothorax lar
g
e and not fused with
mesothorax (exce
p
t in Stre
p
si
p
tera)
.
.
3
F
ore w
i
ngs mem
b
ranous
.
11
3. Fore w
i
ngs conta
i
n

i
ng ve
i
ns, or at
l
east
hi
n
d
w
i
ngs not
f
o
ld
e
d
crossways
when hidden under fore win
gs
4
F
ore win
g
s veinless, of uniform horn
y
consistenc
y
; hind win
g

s, whe
n
p
resent, folded crossways as well as lengthwise when at rest and
hidd
en
b
eneat
hf
ore w
i
ngs; mout
h
parts man
dib
u
l
ate
.

l0
4. Mout
h
parts
f
orm
i
ng a
j
o

i
nte
db
ea
k
,

tte
df
or p
i
erc
i
ng an
d
suc
ki
ng.
B
u
gs

H
EMIPTERA
(
Pa
g
e
210)
M

outhparts with mandibles fitted for chewin
g
and movin
g
laterall
y
.
5
5
. Hind win
g
s not folded, similar to fore win
g
s; thickened basal part o
f
w
i
ngs very s
h
ort, separate
df
rom rest o
f
w
i
ng
b
y a pre
f
orme

d
transverse suture; soc
i
a
l
spec
i
es,
li
v
i
ng
i
nco
l
on
i
es. Term
i
te
s


I
SOPTERA (Pa
g
e1
6
3
)

Hind win
g
s foldin
g
, fanlike, broader than fore win
g
s
.

6
6. Usuall
y
rather lar
g
e or moderatel
y
lar
g
e species; antennae usuall
y
l
engt
h
ene
d
an
d
t
h
rea

dlik
e; prot
h
orax
l
arge an
df
ree
f
rom mesot
h
orax
;
cerc
i
present;
f
ore w
i
ngs rare
l
ym
i
nute, usua
ll
y
l
ong
7
Very sma

ll
act
i
ve spec
i
es; antennae s
h
ort w
i
t
hf
ew
j
o
i
nts, at
l
east on
e
j
oint bearin
g
a lon
g
lateral process; no cerci; fore win
g
s minute
;
p
rothorax small. Rare, short-lived insects,

p
arasites of other insects,
u
sually wasps and bees

M
ales of STREPSIPTERA* (Page 326
)
104
CHAPTER
4
7. Hind femora not lar
g
er than fore femora; bod
y
more or less flattene
d
with win
g
s superposed when at rest; ter
g
ites and sternites subequal
.

8
Hind femora almost alwa
y
s much lar
g
er than fore femora,

j
umpin
g
s
pec
i
es,
if
not (Gry
ll
ota
l
p
id
ae)
f
ront
l
egs
b
roa
d
ene
df
or
b
urrow
i
ng
;

s
pec
i
es usua
ll
y capa
bl
eo
f
c
hi
rp
i
ng or ma
ki
ng a crea
ki
ng no
i
se;
b
o
dy
more or
l
ess c
yli
n
d
r

i
ca
l
,w
i
n
g
s
h
e
ld
s
l
op
i
n
g
a
g
a
i
nst s
id
e
s
of the bod
y
when at rest, ter
g
ites usuall

y
lar
g
er than sternites.
G
rasshoppers, kat
y
dids, crickets
OR
THOPTERA (Page 184)
R
R
8. Bo
d
ye
l
ongate;
h
ea
df
ree, not concea
l
e
df
rom a
b
ove
b
yt
h

e prot
h
orax
;
d
e
lib
erate mo
v
ers
9
B
o
d
yova
l
, muc
hfl
attene
d
;
h
ea
d
near
l
y concea
l
e
db

eneat
h
t
h
eova
l
p
ronotum; le
g
s identical, coxae lar
g
e and tibiae noticeabl
y
spin
y
or bristl
y.

Cockroache
s
.
.

.
DICTYOPTERA, Suborder BLATTODEA (Page 160
)
9
. Prot
h
orax muc

hl
onger t
h
an mesot
h
orax;
f
ront
l
egs a
l
most a
l
ways
h
eav
il
ysp
i
ne
d
,
f
orme
df
or se
i
z
i
ng prey; cerc

i
usua
ll
yw
i
t
h
severa
l
j
oints. Mantids .

D
ICTYOPTERA, Suborder MANTODEA (Pa
g
e1
6
1)
P
rothorax short; le
g
s similar, formed for walkin
g
; cerci un
j
ointed
.
S
tick and leaf insects
.


PHA
S
MIDA
(
Page
1
7
9)
10. A
bd
omen term
i
nate
db
ymova
bl
e, a
l
most a
l
ways
h
eav
il
yc
hi
t
i
n

i
ze
d
f
orceps; antennae
l
ong an
d
s
l
en
d
er;
f
ore w
i
ngs s
h
ort,
l
eav
i
ng most
of abdomen uncovered, hind win
g
s nearl
y
circular, delicate,
r
adiall

y
folded from near the center; elon
g
ate insects. Earwi
g
s
.



D
ERMAPTERA (Pa
g
e 175)
A
bd
omen not term
i
nate
db
y
f
orceps; antennae o
f
var
i
ous
f
orms
b

u
t
u
sua
ll
yw
i
t
h
11 su
bdi
v
i
s
i
ons;
f
ore w
i
ngs usua
ll
y comp
l
ete
l
y
sh
eat
hi
n

g
t
h
ea
bd
omen;
g
enera
lly h
ar
d
-
b
o
di
e
d
spec
i
es. Beet
l
es



COLEOPTERA (Pa
g
e 305)
11. With four win
gs

12
W
i
t
h
on
l
y mesot
h
orac
i
cw
i
ngs, usua
ll
y outsprea
d
w
h
en at res
t
.
2
9
12. W
i
ngs
l
ong, very narrow, t
h

e marg
i
ns
f
r
i
nge
d
w
i
t
hl
ong
h
a
i
rs, a
l
most
v
e
i
n
l
ess; tars
i
1- or 2-
j
o
i

nte
d
,w
i
t
h
swo
ll
en t
i
ps; mout
h
parts
a
s
y
mmetrical without bitin
g
mandibles, fitted for laceratin
g
and
s
uckin
g
plant tissues; no cerci; minute species.
Thri
ps

T
HY

S
AN
O
PTERA
(
Page
233)
W
i
ngs
b
roa
d
er an
d
most o
f
ten w
i
t
h
ve
i
ns;
if
w
i
ngs rare
l
y somew

h
a
t
li
near, tars
ih
ave more t
h
an two
j
o
i
nts an
dl
ast tarsa
lj
o
i
nt
i
sno
t
s
wolle
n
.

13
13. Win
g

s, le
g
s, and bod
y
covered, at least in part, with elon
g
ate flattene
d
s
cales (often intermixed with hairs) that nearly always form a color
p
attern on t
h
ew
i
ngs; mout
h
parts (rare
l
y vest
i
g
i
a
l
)
f
orm
i
ngaco

il
e
d
t
ongue compose
d
o
f
t
h
e max
ill
ae;
bi
t
i
ng man
dibl
es present on
l
y
in
M
i
cropter
igid
ae. Mot
h
san
db

utter
fli
es .
.

L
EPIDOPTERA (Pa
g
e27
6)
Win
g
s, le
g
s, and bod
y
not covered with scales, althou
g
h sometimes
h
air
y
and havin
g
a few scales intermixed; sometimes covered wit
h
b
r
i
st

l
es, espec
i
a
ll
yon
l
egs, or rare
l
yw
i
t
h
wax

a
k
es or
d
ust; co
l
or
p
attern w
h
en present exten
di
ng to w
i
ng mem

b
rane
.
14
105
S
Y
S
TEM
A
TI
CS A
ND
TA
XONOM
Y
1
4. Hind win
g
s with anal area separated, folded fanlike when at rest, nearl
y
a
lwa
y
s wider and noticeabl
y
lar
g
er than fore win
g

s; antennae prominent
;
win
g
veins usuall
y
numerous
.
1
5
H
i
n
d
w
i
ngs w
i
t
h
out a separate
d
ana
l
area, not
f
o
ld
e
d

an
d
not
l
arger
t
h
an
f
ore w
i
ngs 17
15
. Tarsi five-
j
ointed; cerci not pronounced
.
1
6
T
arsi three-
j
ointed; cerci well developed, usuall
y
lon
g
and man
y
j
ointed; prothorax lar

g
e, free; species of moderate to lar
g
e size
.
S
tone
fli
e
s

P
LECOPTERA (Page 147
)
16
. Wings with a number of subcostal crossveins; prothorax rather large;
s
pec
i
es o
f
mo
d
erate to
l
arge s
i
ze. A
ld
er

fli
es
.


ME
G
AL
O
PTERA
(
Pa
g
e
29
7
)
W
in
g
s without subcostal crossveins, with surface hair
y
; pro thorax
s
mall; s
p
ecies of small to moderate size. Caddisflies
.
.


T
RICHOPTERA (Page 268)
1
7. Antennae s
h
ort an
di
nconsp
i
cuous; w
i
ngs netve
i
ne
d
w
i
t
h
numerous
c
rossveins; mouthparts mandibulat
e

18
Antennae lar
g
e; if antennae small, win
g
s have few crossveins o

r
mouthparts form a jointed sucking beak
19
1
8. H
i
n
d
w
i
ngs muc
h
sma
ll
er t
h
an
f
ore w
i
ngs; a
bd
omen en
di
ng
i
n
l
on
g

t
h
rea
dlik
e processes; tars
i
norma
ll
y
f
our- or

ve-
j
o
i
nte
d
;s
l
ugg
i
s
h
fliers. Ma
y
flies.
.

E

PHEMER
O
PTERA
(
Pa
g
e
12
7
)
H
ind win
g
s nearl
y
like fore win
g
s; no caudal setae; tarsi three-
j
ointed
;
v
i
g
orous, active fliers, often of lar
g
e size. Dra
g
onflies, damselflies


ODONATA (Page 136)
1
9. Hea
d
e
l
ongate
d
ventra
ll
y
f
orm
i
ng a rostrum, at t
i
po
f
w
hi
c
h
ar
e
man
dib
u
l
ate mout
h

parts;
hi
n
d
w
i
n
g
s not
f
o
ld
e
d
;w
i
n
g
s usua
lly
w
i
t
h
c
olor pattern, crossveins numerous; male
g
enitalia usuall
yg
reatl

y
s
wollen, formin
g
a reflexed bulb. Scorpionflies.

MECOPTERA (Page 239)
H
ea
d
not
d
rawn out as a man
dib
u
l
ate rostrum
;
ma
l
ea
bd
omen
n
ot
f
orc
i
pat
e

.
2
0
20. Mouthparts modified for suckin
g
(occasionall
y
reduced or absent);
mandibles absent or in form of lon
g
bristles; no cerci; crossveins few
.
21
Mouthparts for biting [occasionally for sucking (highe
r
H
ymenoptera)]; man
dibl
es a
l
ways present an
dh
av
i
ng typ
i
ca
l
bi
t

i
ng
f
or
m
.
22
21. Win
g
s not covered with scales, not outspread when at rest; prothora
x
l
ar
g
e; antennae with few subdivisions; mouthparts formin
g
a
j
ointed
p
iercing beak. Bugs

H
EMIPTERA
(
Page
210)
Wi
ngs an
db

o
d
y covere
d
w
i
t
h
co
l
ore
d
sca
l
es t
h
at
f
orm a
d
e

n
i
te
p
attern on w
i
ngs; antennae great
l

ysu
bdi
v
id
e
d
; mout
h
parts w
h
en
p
resent
f
orm
i
n
g
aco
il
e
d
ton
g
ue. Mot
h
san
db
utter
fli

es
.

L
EPIDOPTERA (Pa
g
e27
6
)
22. Tarsi five-
j
ointed; if rarel
y
three- or four-
j
ointed, hind win
g
s are
s
ma
ll
er t
h
an
f
ront ones an
d
w
i
ngs

li
e

at over
b
o
d
y; no cerc
i
.
2
3
T
ars
i
two-, t
h
ree-, or
f
our-
j
o
i
nte
d
;ve
i
ns an
d
crossve

i
ns not numerous
.
2
6
106
CHAPTER
4
2
3. Prothorax small or onl
y
moderatel
y
lon
g
. (In Mantispidae prothorax
is ver
y
lon
g
, but front le
g
s are stron
g
l
y
raptorial.)
24
P
rothorax ver

y
lon
g
and c
y
lindrical, much lon
g
er than head; front le
gs
norma
l
; antennae w
i
t
h
more t
h
an 11 su
bdi
v
i
s
i
ons; crossve
i
ns numerous.
S
na
k
e

fli
es

R
APHIDIOPTERA (Page 299)
2
4. W
i
n
g
ss
i
m
il
ar, w
i
t
h
man
y
ve
i
ns an
d
crossve
i
ns; prot
h
orax mor
e

or less fre
e
25
Win
g
s with relativel
y
few an
g
ular cells, costal cell without crossveins
;
hi
n
d
w
i
ngs sma
ll
er t
h
an
f
ore pa
i
r; prot
h
orax
f
use
d

w
i
t
h
mesot
h
orax
;
abd
omen
f
requent
l
y constr
i
cte
d
at
b
ase an
d
en
di
ng
i
nast
i
ng o
r
s

pec
i
a
li
ze
d
ov
i
pos
i
tor. Ants, wasps,
b
ees, etc
.
.


HYMEN
O
PTERA
(
Pa
g
e
330)
2
5. Costal cell, at least in fore win
g
, almost alwa
y

s wit
h
many crossveins. Lacewings, antlions
.

N
EUR
O
PTERA
(
Page
301)
Costa
l
ce
ll
w
i
t
h
out crossve
i
ns. Scorp
i
on
fli
es
.

M

ECOPTERA (Page 239)
26
. Wings equal in size, or rarely hind wings larger, held superposed o
n
t
op of abdomen when at rest; media fused with radial sector for
a
s
hort distance near middle of win
g
; tarsi three-, four-, or five-
j
ointed .
2
7
Hind wings smaller than fore wings; wings held at rest folded back
a
ga
i
nst a
bd
omen; ra
di
us an
d
me
di
a not
f
us

i
ng; tars
i
two- o
r
th
ree-
j
o
i
nte
d
28
2
7. Tarsi apparentl
y
four-
j
ointed; cerci usuall
y
minute; win
g
s with a
t
ransverse preformed suture near the base; social species, livin
g
in colonies
.
Termites



ISOPTERA (Pa
g
e 163)
T
ars
i
t
h
ree-
j
o
i
nte
d
,
f
ront metatars
i
swo
ll
en; cerc
i
consp
i
cuous; usua
ll
y
s
o

li
tary spec
i
es. We
b
sp
i
nners

EMBIOPTERA* (Page 1
5
3)
2
8. Cerc
i
a
b
sent; tars
i
two- or t
h
ree-
j
o
i
nte
d
;w
i
n

g
s rema
i
n
i
n
g
attac
h
e
d
t
hrou
g
hout life; radial sector and media branched, except when
fore win
g
s are much thickened. Book lic
e

PSOCO
PTERA
(
Pa
g
e
199)
Cerc
i
present; tars

i
two-
j
o
i
nte
d
;w
i
ngs s
h
e
d
at matur
i
ty, venat
i
on
g
reat
l
yre
d
uce
d
;ra
di
a
l
sector an

d
me
di
as
i
mp
l
e, un
b
ranc
h
e
d



ZORAPTERA* (Page 19
5)
2
9. Mouthparts not functional; abdomen with a pair of caudal filaments
.

30
M
outhparts formin
g
a proboscis, onl
y
exceptionall
y

vesti
g
ial; abdome
n
without caudal filaments; hind wings replaced by knobbed halteres.
T
r
ue flies

D
IPTERA (Page 243)
3
0. No
h
a
l
teres; antennae
i
nconsp
i
cuous; cross ve
i
ns a
b
un
d
ant. A
f
ew
r

are ma
y
flies.

EPHEMER
O
PTERA
(
Pa
g
e
12
7
)
Hind win
g
s represented b
y
minute hooklike halteres; antenna
e
evident; venation reduced to a forked vein; crossveins lacking
;
m
i
nute
d
e
li
cate
i

nsects. Ma
l
es o
f
sca
l
e
i
nsects

H
EMIPTERA (Page 210)
31. Bo
d
yw
i
t
h
more or
l
ess
di
st
i
nct
h
ea
d
,t
h

orax an
d
a
bd
omen, an
d
j
o
i
nte
dl
e
g
s; capa
bl
eo
fl
ocomot
i
o
n
.

32
Without distinct bod
y
parts or without
j
ointed le
g

s, or incapable
o
fl
oco
m
ot
i
o
n
.
7
5
32. Terrestr
i
a
l
,
b
reat
hi
ng t
h
roug
h
sp
i
rac
l
es; rare
l

yw
i
t
h
out spec
i
a
l
r
esp
i
ratory organs
33
Aquat
i
c, usua
lly gill
-
b
reat
hi
n
g
,
l
arva
lf
orms
.


6
2
107
S
Y
S
TEM
A
TI
CS A
ND
TA
XONOM
Y
Parasites on warm-blooded animals
.
7
0
33. Mouthparts retracted into head and scarcel
y
or not at all visible;
u
nderside of abdomen with st
y
les or other appenda
g
es; less tha
n
t
h

ree
j
o
i
nts on max
ill
ary pa
l
ps
if
antennae present;
d
e
li
cate
,
s
ma
ll
or m
i
nute
i
nsects
34
M
out
h
parts consp
i

cuous
ly
v
i
s
ibl
e externa
lly
;
if
mout
h
parts man
dib
u
l
ate
,
maxillar
y
palps more than two-
j
ointed; antennae alwa
y
s present
;
u
nderside of abdomen rarel
y
with st

y
les
36
34. Antennae a
b
sent; no
l
ong cerc
i
,p
i
ncers, spr
i
ng
i
ng apparatus, or anter
i
o
r
v
entra
l
suc
k
er on a
bd
omen;
h
ea
d

pear-s
h
ape
d

.
PR
O
TURA (Page 118
)
Antennae consp
i
cuous; p
i
ncers,
l
ong cerc
i
,or
b
asa
l
ventra
l
suc
k
e
r
p
resent on abdome

n
.
35
35. Abdomen consistin
g
of six se
g
ments or less, with a forked sucke
r
a
t base of abdomen below; no terminal pincers or long cerci; usuall
y
w
i
t
h
consp
i
cuous spr
i
ng
i
ng apparatus near en
d
o
f
a
bd
omen
.

S
pr
i
ngta
il
s

C
OLLEMBOLA (Page 114
)
Abdomen consistin
g
of more than ei
g
ht visible se
g
ments, with lon
g
multi-
j
ointed cerci or stron
g
pincers at the end; e
y
es and ocell
i
abse
n
t


DIPLURA
(
Page
120)
36. Mouthparts mandibulate, formed for chewing
37
M
out
h
parts
h
auste
ll
ate,
f
orme
df
or suc
ki
ng
59
37. Bod
y
usuall
y
covered with scales; abdomen with three prominent
caudal filaments and bearin
g
at least two pairs of ventral st
y

les
.

38
B
od
y
never covered with scales; never with three caudal filaments
;
v
entra
l
sty
l
es a
b
sent on a
bd
omen
.
3
9
38. Hea
d
w
i
t
hl
arge compoun
d

eyes an
d
oce
lli
;
l
egs w
i
t
h
t
h
ree tarsa
l
s
e
g
ments; pa
i
re
d
st
yli
present on eac
h
a
bd
om
i
na

l
se
g
ment
.
Bristletails

MI
C
R
OCO
RYPHIA
(
Pa
g
e
122)
Compound e
y
es small or absent; le
g
s with two to four tarsal se
g
ments;
p
a
i
re
d
sty

li
on a
bd
om
i
na
l
segments 7–9 (rare
l
y 2–9). S
il
ver

s
h
,

re
b
rats

ZYGENTOMA (Page 123
)
39. Un
d
ers
id
eo
f
a

bd
omen ent
i
re
l
yw
i
t
h
out
l
egs 40
Abdomen bearin
g
false le
g
s beneath, which differ from those of
thorax; bod
y
caterpillarlike, c
y
lindrical; thorax and abdomen no
t
distinctly separated; larval forms
57
40. Antennae
l
ong an
ddi
st

i
nct
.
.
41
Antennae s
h
ort, not pronounce
d
;
l
arva
lf
orms
5
4
41. Abdomen terminated b
y
stron
g
movable forceps; prothorax free
.
Earwi
g
s

DERMAPTERA (Pa
g
e 175
)

Abdomen not ending in forceps
42
42 A
bd
omen strong
l
y constr
i
cte
d
at
b
ase; prot
h
orax
f
use
d
w
i
t
h
mesot
h
orax. Ants
,
etc
.

H

YMENOPTERA (Page 330
)
A
bd
omen not stron
gly
constr
i
cte
d
at
b
ase;
b
roa
dly j
o
i
ne
d
to t
h
ora
x

43
43. Head not elon
g
ated ventrall
y

.
.
44
Head elon
g
ated ventrall
y
formin
g
a rostrum, at tip of which ar
e
man
dib
u
l
ate mout
hp
arts. Scor
pi
on
fli
es
.
MECOPTERA (Page 239
)
44. Very sma
ll
spec
i
es;

b
o
d
yso
f
tan
d
wea
kl
ysc
l
erot
i
ze
d
; tars
i
two- or
t
h
ree-
j
o
i
nte
d
.
4
5
108

CHAPTER
4
Usuall
y
much lar
g
er species; tarsi usuall
y
with more than three
j
oints,
or, if not, bod
y
is hard and heavil
y
sclerotized and cerci are
abse
n
t
.
4
6
45
.
C
erci absent. Book lice
.
P
SOCOPTERA (Page 199)
Cerc

i
un
j
o
i
nte
d
, prom
i
nen
t

Z
ORAPTERA* (Page 19
5
)
46
. Hind femora enlar
g
ed; win
g
pads of larva when present in inverse
position, that is, metathoracic overlappin
g
m
esot
h
o
r
ac

i
c

OR
THOPTERA (Page 184)
R
R
H
i
n
dl
egs not en
l
arge
df
or
j
ump
i
ng; w
i
ng pa
d
s,
if
present,
i
n norma
l
p

os
i
t
i
o
n
4
7
4
7. Prot
h
orax muc
hl
onger t
h
an mesot
h
orax;
f
ront
l
egs

tte
df
or grasp
i
ng
p
re

y
. Mantids DICTYOPTERA, Suborder MANTODEA (Pa
g
e1
6
1)
P
rothorax not
g
reatl
y
len
g
thened
.

48
4
8. Cerci present; antennae usually with more than 15 subdivisions, often
mu
l
t
i
p
l
ysu
bdi
v
id
e

d

.
.
4
9
N
o cerc
i
;
b
o
d
yo
f
ten
h
ar
d
-s
h
e
ll
e
d
; antennae usua
ll
yw
i
t

h
11 su
bdi
v
i
s
i
ons.
B
eetles

C
OLEOPTERA (Pa
g
e30
5
)
4
9. Cerci with more than three
j
oints
.
50
Cerci short, with one to three joints
52
5
0. Body flattened and oval; head inflexed; prothorax oval.
C
oc
k

roac
h
es .

DICTYOPTERA, Suborder BLATTODEA (Page 1
6
0)
B
od
y
elon
g
ate; head nearl
y
horizonta
l
.

51
51. Cerci lon
g
; ovipositor ri
g
id and exserted; tars
i

ve-
j
ointe
d

.

GR
YLLOBLATTODEA* (Page 173)
R
R
Cerc
i
s
h
ort; no ov
i
pos
i
tor; tars
if
our-
j
o
i
nte
d
; soc
i
a
lf
orms,
li
v
i

ng
in
co
l
on
i
es. Term
i
tes

ISOPTERA (Page 1
6
3)
5
2. Tarsi five-
j
ointed; bod
y
usuall
y
ver
y
slender and lon
g
. Stick
insect
s

P
HA

S
MIDA
(
Pa
g
e
1
7
9)
T
arsi two- or three-jointed; body not elongate
T
T

53
53. Front tarsi with first joint swollen, containing a silk-spinning gland,
p
ro
d
uc
i
ngawe
bi
nw
hi
c
h
t
h
e

i
nsects
li
ve;
b
o
d
y
l
ong an
d
s
l
en
d
er.
W
e
b
sp
i
nners

EMBIOPTERA* (Page 1
5
3
)
F
ront tarsi not swollen, without silk-spinnin
gg

land; bod
y
much
s
touter; social s
p
ecies. Termite
s

ISOPTERA (Pa
g
e 163
)
54. Body cylindrical, caterpillarlike
.

55
B
o
d
y more or
l
ess
d
epresse
d
, not caterp
ill
ar
lik

e
.

56
55
. Head with six ocelli on each side; labium with spinnerets;
a
ntennae inserted in membranous area at base of
m
a
n
d
i
b
l
es

L
arvae of some LEPIDOPTERA (Pa
g
e 276
)
Head with more than six ocelli on each side; metathoracic leg
s
di
st
i
nct
l
y

l
arger t
h
an prot
h
orac
i
c
l
egs



Larvae o
f
Bore
id
ae (MECOPTERA) (Page 239
)
5
6. Mandibles united with correspondin
g
maxillae to form suckin
g
organs

L
arvae of NEUROPTERA (Pa
g
e 301

)
M
andibles almost alwa
y
s separate from maxilla
e
.
.
.
.

.
Larvae of COLEOPTERA (Page 305);
R
APHIDIOPTERA (Page 299); STREPSIPTERA
*
(Page 32
6
)
;
DIPTER
A
(Pa
ge
2
43
)
109
S
Y

S
TEM
A
TI
CS A
ND
TA
XONOM
Y
5
7. False le
g
s (prole
g
s) numberin
g
five pairs or fewer, located on various
a
bdominal se
g
ments, but not on first, second, or seventh; false le
g
s
tipped with man
y
minute hooks (hookless prole
g
s rarel
y
on second

a
n
d
sevent
h
segments)
L
arvae of most LEPIDOPTERA (Page 276
)
F
a
l
se
l
egs num
b
er
i
ng
f
rom s
i
x to ten pa
i
rs, one pa
i
ro
f
w
hi

c
h
occurs
o
n secon
d
a
bd
om
i
na
l
se
g
ment; pro
l
e
g
s not t
i
ppe
d
w
i
t
h
m
i
nute
h

ooks
.
58
5
8. Head with a sin
g
le ocellus on each side
.
Larvae o
f
some HYMENOPTERA (Page 330
)
Hea
dwi
t
h
se
v
era
l
oce
lli
on eac
h
s
id
e
.

Larvae o

f
MECOPTERA (Page 239
)
5
9. Body bare or with few scattered hairs, or with waxy coating
.

6
0
B
od
y
densel
y
covered with hair or scales; proboscis if present
c
oiled under head
.
Moth
s

LEPIDOPTERA (Pa
g
e 276
)
60. Last tarsal joint swollen; mouth consisting of a triangular unjointed
b
ea
k
;m

i
nute spec
i
es. T
h
r
i
p
s

THYSANOPTERA (Page 233
)
T
ars
i
not
bl
a
dd
er
lik
eatt
i
p, an
d
w
i
t
hdi
st

i
nct c
l
aws
61
6
1. Prothorax distinct. Bu
g
s.
.

H
EMIPTERA
(
Pa
g
e
210)
Prothorax small, hidden when viewed from above. True flies


DIPTERA
(
Page
243)
62. Mouthparts mandibulate
63
M
out
h

parts suctor
i
a
l
,
f
orm
i
ng a strong po
i
nte
di
n

exe
d
beak

Larvae of HEMIPTERA (Pa
g
e 210
)
6
3. Mandibles exserted strai
g
ht forward and united with the correspondin
g
maxillae to form piercin
gj
aws


Larvae of NEUROPTERA (Pa
g
e 301
)
M
an
dibl
es norma
l
,mov
i
ng
l
atera
ll
yto
f
unct
i
on as
bi
t
i
ng
j
aw
s
.


64
6
4. Body not encased in a shell made of sand, pebbles, leaves, etc
.

65
C
ase-
b
ear
i
n
gf
orms; trac
h
ea
l gill
s usua
lly
present .
.

L
arvae of TRICHOPTERA (Pa
g
e2
6
8)
65. Abdomen furnished with external lateral
g

ills of respirator
y
p
rocesses (a
f
ew Co
l
eo
p
tera an
d
Tr
i
c
h
o
p
tera
l
arvae
h
ere a
l
so)
66
A
bd
omen w
i
t

h
out externa
l
g
ill
s
.

6
7
66
. Abdomen terminated by two or three long caudal
filaments

L
arvae of EPHEMEROPTERA (Pa
g
e 127
)
Abdomen with short end
p
rocesses

Larvae of MEGALOPTERA (Pa
g
e 297
)
67. Labium strong, extensible, and furnished with a pair of opposable
hooks


L
arvae of ODONATA (Page 136
)
L
a
bi
um not capa
bl
eo
fb
e
i
ng t
h
rust
f
orwar
d
an
d
not
h
oo
k
e
d
.

68
6

8. Abdomen without false le
g
s
.
.

69
Abdomen bearin
g
paired false le
g
sonsevera
l
s
egments
.
A fe
w
larvae of LEPIDOPTERA (Page 276
)
69. The three divisions of thorax loosely united; antennae and caudal
fil
aments
l
ong an
d
s
l
en
d

e
r

L
arvae o
f
PLECOPTERA (Page 147
)
Th
orac
i
c
di
v
i
s
i
ons not constr
i
cte
d;
antennae an
d
cau
d
a
lfil
aments
s
hort (also some a

q
uatic larvae of Di
p
tera and a few Tricho
p
tera
h
ere
)

L
arvae of COLEOPTERA (Pa
g
e 305
)
70. Bo
d
y

attene
d
(or
l
arva
l
maggots
)
.
71
B

o
d
y strong
l
y compresse
d
; mout
hf
orme
d
asas
h
arp
i
n

exe
db
ea
k
;
j
ump
i
n
g
spec
i
es. F
l

eas

SIPHONAPTERA (Pa
g
e2
6
4
)
110
CHAPTER
4
7
1. Mandibulate mouthparts

7
2
M
outhparts formed for piercin
g
and suckin
g

.
7
3
7
2. Mouth inferior; cerci lon
g
; ectoparasites of bats or rodents
.

.
.
.

.
R
are DERMAPTERA* (Page 17
5)
M
out
h
anter
i
or; no cerc
i
; genera
ll
ye
l
ongate-ova
li
nsects w
i
t
h
somew
h
a
t
t

r
i
an
g
u
l
ar
h
ea
d
; ectoparas
i
tes o
fbi
r
d
s (occas
i
ona
lly
mamma
l
s).
Chewin
g
lice

PHTHIRAPTERA, in part (Pa
g
e 203)

7
3. Antennae exserted, visible, thou
g
h rather short

7
4
A
ntennae
i
nserte
di
np
i
ts, not v
i
s
ibl
e
f
rom a
b
ove (a
l
so
l
arva
l
maggots
,

wi
t
h
out antennae
)

Pup
i
parous DIPTERA (Page 243)
7
4. Bea
k
(mout
h
parts) un
j
o
i
nte
d
; tars
if
orme
d
as a
h
oo
kf
or grasp
i

ng
h
airs of the host (Fi
g
ure 3.24C); permanent parasites. Suckin
g
lice
.


P
HTHIRAPTERA, in part (Pa
g
e 203)
B
eak jointed; tarsi not hooked; temporary
paras
i
tes

S
ome HEMIPTERA (Page 210)
75
. Legless grubs, maggots or borers; locomotion effected by a squirmin
g
motio
n

L
arvae of STREPSIPTERA* (Pa

g
e32
6
)
;
SIPHONAPTERA (Pa
g
e 264); and of some COLEOPTERA (Pa
g
e 305)
(see also couplet 56); DIPTERA (Page 243); LEPIDOPTERA (Page 276)
;
a
n
d
HYMENOPTERA (Page 330). (I
fli
v
i
ng
i
n
b
o
dy
o
f
wasps an
db
ees, w

i
t
hfl
attene
dh
ea
d
expose
d
, compare
f
ema
l
es
of STREPSIPTERA* (Pa
g
e32
6
); if aquatic wri
gg
lers, se
e
larvae and pupae of mosquitoes, etc.) Sedentar
y
forms, incapable
o
fl
oco
m
ot

i
o
n
.
7
6
7
6. Small degraded forms bearing little superficial resemblance to insects
,
w
i
t
hl
ong s
l
en
d
er
b
ea
k
,an
d
usua
ll
y covere
d
w
i
t

h
a waxy sca
l
e, pow
d
er
,
or cotton
y
tu
f
ts;
li
v
i
n
g
on var
i
ous p
l
ants. Sca
l
e
i
nsects



HEMIPTERA

(
Pa
g
e
210)
B
od
y
quiescent, but able to bend from side to side; not capable of feedin
g,
enc
l
ose
di
nas
ki
nw
hi
c
hi
st
i
g
h
t
l
y
d
rawn over a
ll

appen
d
ages, or w
hi
c
h
l
eaves
li
m
b
s
f
ree
b
ut
f
o
ld
e
d
aga
i
nst
b
o
d
y; somet
i
mes

f
ree; somet
i
me
s
enc
l
ose
di
n cocoon or
i
ns
h
e
ll f
orme
df
rom
d
r
i
e
dl
arva
l
s
ki
ns
.
7

7
7
7. Skin encasin
g
le
g
s, win
g
s, etc., holdin
g
appenda
g
es ti
g
htl
y
a
g
ainst bod
y;
p
rothorax small; proboscis showin
g
7
8
L
egs, wings, etc., more or less free from body; biting mouthpart
s
sh
ow

i
ng
.
7
9
78. Pro
b
osc
i
s usua
ll
y
l
ong, rare
l
ya
b
sent;
f
our w
i
ng cases; somet
i
mes
i
n
cocoon

Pupae of LEPIDOPTERA (Pa
g

e27
6)
P
roboscis short; two win
g
cases, pupa often enclosed in oval shell
(
p
u
p
arium) formed of hardened larval skin.



P
upae o
f
DIPTERA (Page 243)
79. Prot
h
orax sma
ll
,
f
use
di
nto one p
i
ece w
i

t
h
mesot
h
orax; somet
i
mes
enc
l
ose
di
n
l
oose cocoon


Pupae o
f
HYMENOPTERA (Pa
g
e 330)
P
rothorax lar
g
er and not closel
y
fused with mesothorax
80
80. Win
g

cases with few or no veins.
.

P
upae of COLEOPTERA (Pa
g
e 305
)
W
i
ng cases w
i
t
h
severa
lb
ranc
h
e
d
ve
i
n
s
.


P
upae o
f

NEUROPTERA (Page 301
)
111
S
Y
S
TEM
A
TI
CS A
ND
TA
XONOM
Y
5
. Lit
e
r
a
t
u
r
e
For an
e
xce
ll
ent
i
ntro

d
uct
i
on to t
h
e
b
as
i
cs o
f
taxonom
y
an
d
s
y
stemat
i
cs, rea
d
ers s
h
ou
ld
consult Cransto
n
et al.
(1991). The ar
g

uments for and a
g
ainst the cladistic, phenetic, an
d
ph
y
letic approaches to classification are discussed b
y
Simpson (1961), Skal and Sneat
h
(1963), Hennig (1965, 1966, 1981), Mayr (1969, 1981), Wagner (1969), Michener (1970),
Sneat
h
an
d
So
k
a
l
(1973), Ross (1974), an
d
Goto (1982). Bou
d
reaux (1979), Henn
i
g (1981),
Kristensen (1981, 1989, 1991), and Kukalov´a-Peck (198
5
, 1987, 1991) provide extensiv
e

reviews of the ph
y
lo
g
en
y
of insects
.
B
ishop, A. L., Holtkamp, R. H., Waterhouse, D. B., and Lowes, D., 1989, PESTKEY: An expert s
y
stem based ke
y
f
or identification of the pests and beneficial arthropods in lucerne
,
Gen. A
pp
l. Entomol
.
21
:25–32.
B
orner, C., 1904, Zur Systematik der Hexapoda,
¨
Z
oo
l
. Anz.
27

:5
11–
5
33
.
B
oudreaux
,
H. B.
,
1979
,
A
rthropod Phylogeny, with Special Re
f
erence to 1nsect
s
,W
iley, New York.
W
W
B
rues, C. T., Melander, A. L., and Carpenter, F. M., 1954, C
l
assification of Insects
,
2n
d
e
d

., Museum o
f
Comparat
i
v
e
Zoo
l
o
gy
, Cam
b
r
idg
e, MA.
Caterino, M. S., Cho, S., and Sperlin
g
, F. A. H., 2000, The current state of insect molecular s
y
stematics: A thrivin
g
To
w
er o
f
Ba
b
e
l
,

A
nnu. Rev. Entomo
l.
45
:1–54.
Comstoc
k,
J. H.
,
1918
,
Th
e Wings of Insect
s
,
Comstoc
k,
New Yor
k.
Crampton, G. C., 1915, The thoracic sclerites and the systematic position o
f
Grylloblatta campodei
f
ormis
W
alker
,
a remar
k
a

bl
e annectant ort
h
optero
id i
nsect, Entomo
l
.New
s
26
:337–350
.
Crampton, G. C., 1920, Some anatom
i
ca
ld
eta
il
so
f
t
h
e remar
k
a
bl
ew
i
n
g

e
d
zorapteran, Zorotypus
h
u
bb
ar
d
i
C
au
d
e
ll,
w
ith notes on its relationships
,
Proc. Entomol.
S
oc.
W
ash.
2
2:
9
8–106.
Crampton, G. C., 1922, Ev
id
ences o
f

re
l
at
i
ons
hi
p
i
n
di
cate
db
yt
h
e venat
i
on o
f
t
h
e
f
ore w
i
ngs o
f
certa
i
n
i

nsects
wi
t
h
es
p
ec
i
a
l
re
f
erence to t
h
e Hem
ip
tera-Homo
p
tera
,
Psyc
he
29
:23–41.
Crampton, G. C., 1924, The phylogeny and classification of insects
,
P
omona
J
. Entomol. Zool.

16
:33
–47
.
C
ranston, P.
S
.,
G
u
ll
an, P. J., an
d
Tay
l
or, R. W., 1991, Pr
i
nc
i
p
l
es an
d
pract
i
ce o
f
systemat
i
cs,

i
n
:
T
h
e 1nsects of
A
ustra
l
i
a
,2n
d
e
d
., Vo
l
. I (CSIRO, e
d
.), Me
lb
ourne Un
i
vers
i
t
y
Press, Car
l
ton, V

i
ctor
i
a
.
D
anks, H. V., 1988, Systematics in support of entomology
,
A
nnu. Re
v
. Entomol.
33
:
271–296
.
G
oto, H. E.,
1982
, Anima
l
Taxonomy
,
Arno
ld
, Lon
d
on.
Han
dli

rsc
h
, A., 1903, Zur P
hyl
o
g
en
i
e
d
er Hexapo
d
en
,
S
itz. Nat. K
l
asse Aca
d
.Wis
s
112
:71
6
–738.
Handlirsch, A., 1906–1908, Die
f
ossilen Insecten und die Phylogenie der rezenten Formen
,
Engelman, Leipzig.

Handlirsch, A., 192
5
, Geschichte, Litteratur, Technik, Palaontologie, Phylogenie und Systematik der Insecten, in
:
Han
db
uc
hd
er Entomo
l
ogie (C. Sc
h
r¨o
d
er, e
d
.), Vo
l
.3,
pp
. 1–1201, F
i
sc
h
er, Jena.
Hennig, W., 1965, Phylogenetic systematics
,
Annu. Re
v
. Entomol.

10
:
97–116
.
Henni
g
, W., 19
66
,
Ph
y
l
ogenetic Systematics
,
Un
i
vers
i
t
y
o
f
I
lli
no
i
s Press, Ur
b
ana
.

Henni
g
, W., 1981, 1nsect Ph
y
lo
g
en
y
,W
iley, New York.
WW
Hinton, H. E., 1958, The phylogeny of the panorpoid orders
,
Annu. Re
v
. Entomol
.
3
:1
8
1–2
06
.
H
i
nton
,
H. E.
,
1981

,
B
io
l
ogy of Insect Egg
s
,3
vo
l
umes, Per
g
amon Press, E
l
ms
f
or
d
,NY
.
Kristensen, N. P., 1981, Ph
y
lo
g
en
y
of insect orders
,
Annu. Re
v
. Entomol.

26
:
1
35
–1
5
7
.
Kristensen, N. P., 1989, Insect phylogeny based on morphological evidence, in
:
T
he Hierarchy o
f
Li
fe
(
B. Fernholm,
K. Bremer, an
d
H. Jornva
ll
,e
d
s.), E
l
sev
i
er, Amster
d
am

.
Kristensen, N. P., 1991, Ph
y
lo
g
en
y
of extant hexapods, in
:
T
he Insects o
f
Australi
a
,
2nd ed., Vol. I
(
CSIRO, ed.
)
,
Melbourne University Press, Carlton, Victoria.
Ku
k
a
l
ov
a-Peck, J., 1985, Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic
´
m
orpholo

gy
,ph
y
lo
g
en
y
, and metamorphosis of pter
yg
ote insects (Insecta, Ephemerida)
,
C
an.
J
. Zool
.
63
:9
33–
9
55.
Ku
k
a
l
ov
a-Peck, J., 1987, New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground plan, and the
´
role of thoracic side lobes in the ori
g

in of win
g
s (Insecta),
C
an
J
. Zool
.
65
:2
3
27–2
3
4
5
.
Kukalov´a-Peck, J., 1991, Fossil history and the evolution of hexapod structures, in: The Insects o
f
Australia,2n
d
ed
., Vo
l
. 1 (CSIRO, e
d
.), Me
lb
ourne Un
i
vers

i
t
y
Press, Car
l
ton, V
i
ctor
i
a.
L
awrence, J. F., Hastin
g
s, A. M., Dallwitz, M. J., and Paine, T. A., 1993
,
Beetle Larvae o
f
the World: Interactive
I
denti

cation and 1n
f
ormation Retrieval
f
or Families and Sub
f
amilies. CD-ROM; Version 1.0 for MS-DOS,
C
SIRO

,
Me
lb
ourne
.
112
CHAPTER
4
Mart
y
nov, A. V., 1924, The interpretation of the win
g
venation and tracheation of the Odonata and A
g
natha
,
R
u
ss.
E
nt. Obo
z
l: 1
8
:145–174. [Original in Russian. Translated, with an introductory note, by F. M. Carpenter in
P
syc
h
e
37

(
1930
)
:24
5
–280.]
Ma
y
r, E., 1969,
P
rinciples o
f
Systematic Zoology
,
McGraw-Hill
,
New York.
Mayr, E., 1981, Biological classification: Toward a synthesis of opposing methodologies,
S
cience
214
:510–516.
McFad
y
en, R. E., 198
5
, Larval characteristics of
C
acto
bl

astis
s
pp. (Lep
id
optera: P
y
ra
lid
ae) an
d
t
h
ese
l
ect
i
on o
f
species for biolo
g
ical control of prickl
y
pears
(
Op
unti
a
s
pp
.)

,
B
ull. Entomol. Re
s
. 7
5
:
15
9
–168
.
Michener, C. D., 1970, Diverse approaches to systematics,
E
vol. Biol.
4
:
1

38
.
Rentz
,
D. C. F.
,
1993
,
A Monograp
h
of t
h

e Tettigonii
d
ae of Austra
l
i
a
,V
ol. 2 (The Austrosaginae, Zaprochilinae
V
V
a
nd Phasmodinae
)
, CSIRO, Melbourne
.
Ross, H. H.,
19
7
4
, Bio
l
ogica
l
Systematics
,
A
ddi
son-Wes
l
ey, Rea

di
ng, MA.
Sharov
,
A. G.
,
19
66,
Basic Art
h
ropo
d
an Stoc
k
,
Per
g
amon Press, E
l
ms
f
or
d
,NY
.
Shar
p
, D., 1899, Some
p
oints in the classification of the Insecta Hexa

p
oda
,
Proc. 4th Int. Con
g
r. Zool
.
,pp
. 246–249.
Simpson, G. G., 1961,
P
rincip
l
es of Anima
l
Taxonom
y
,Co
l
um
bi
aUn
i
vers
i
ty Press, New Yor
k.
Sneat
h,
P. H. A.

,
an
d
So
k
a
l,
R. R.
,
1973
,
Numerica
l
Taxonomy—T
h
e Princip
l
es an
d
Practice of Numerica
l
Classi

catio
n
, Freeman, San Francisco.
Sokal, R. R., and Sneath, P. H. A., 19
6
3,
P

rincip
l
es of Numerica
l
Taxonom
y
, Freeman, San Franc
i
sco.
T
illy
ar
d
, R. J., 1918–1920, T
h
e panorpo
id
comp
l
ex. A stu
dy
o
f
t
h
e
h
o
l
ometa

b
o
l
ous
i
nsects w
i
t
h
spec
i
a
l
re
f
erence
to the sub-classes Panorpoidea and Neuropteroidea
,
Proc. Linn.
S
oc. N.
S
.
W
.
43
:265–284, 395–408,
6
26–657
;

44
:
533–718; 4
5
:214

21
7
.
Wa
g
ner, W. H., Jr., 19
6
9, The construction of a classification, in:
S
ystematic Bio
l
ogy
,
Nat
i
ona
l
Aca
d
em
y
o
f
Sc

i
ence,
W
ashington, D.C., Publ. No. 1692.
Watson, J. A. L., T
h
e
i
sc
hi
nger, G., an
d
A
bb
ey, H. M., 1991
,
Th
e Austra
l
ian Dragonflie
s
, CSIRO, Me
lb
ourne
.
Wee
k
s, P. J. D., O’Ne
ill
, M. A., Gaston, K. J., an

d
Gau
ld
, I. D., 1999, Automat
i
n
gi
nsect
id
ent
ifi
cat
i
on: Exp
l
or
i
n
g
the limitations of a prototype system,
J
.
App
l. Entomol
.
12
3
:
1–
8.

W
il
son, H. F., an
d
Doner, M. H., 1937
,
Th
e Historica
l
Deve
l
opment of Insect C
l
assification
,
Ma
di
son, WI.
Zom
p
ro, O., A
di
s, J., an
d
We
i
tsc
h
at, W., 2002, A rev
i

ew o
f
t
h
eor
d
er Manto
ph
asmato
d
ea, Zoo
l
. Anz.
241
:
269–279.

×