Tải bản đầy đủ (.pdf) (51 trang)

Entomology 3rd edition - C.Gillott - Chapter 7 pps

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.54 MB, 51 trang )

7
The Plecopteroid, Blattoid, and
O
rthopteroid Order
s
1
. Intr
oduc
ti
on
Thi
sc
h
apter
d
ea
l
sw
i
t
h
t
h
e
f
o
ll
ow
i
ng 10 or
d


ers: P
l
ecoptera, Em
bi
optera, D
i
ctyoptera,
I
soptera, Gr
y
lloblattodea, Dermaptera, Phasmida, Orthoptera, Zoraptera, and the recentl
y
established Mantophasmatodea. Members of these orders can be distin
g
uished from other
exopterygotes [the hemipteroid orders (Chapter 8)] by the following features: generalized
bi
t
i
ng mout
h
parts, w
i
ng venat
i
on usua
ll
ywe
ll d
eve

l
ope
d
w
i
t
h
numerous crossve
i
ns (t
h
oug
h
l
ess net
lik
et
h
an t
h
at o
f
Pa
l
eoptera), cerc
i
present, term
i
na
li

ao
f
ma
l
e may
b
e asymmetr
i
ca
l
and reduced, man
y
Malpi
g
hian tubules, and
g
eneralized nervous s
y
stem with several dis
-
crete abdominal
g
an
g
lia. However, as discussed in Chapter 2, the existence of these commo
n
features should not be taken as confirmation that these orders constitute a monophyleti
c
group
.

2. Pleco
p
ter
a
S
ynonyms:
P
erlaria, Perlida
C
ommon name:
s
toneflies
M
o
d
erate-s
i
ze
d
to
f
a
i
r
ly l
ar
g
eso
f
t-

b
o
di
e
di
nsects;
h
ea
d
w
i
t
hl
on
g
setaceous antennae, wea
k
mandibulate mouthparts, well-developed compound e
y
es and two or three ocelli; thorax almost
always with two pairs of membranous wings (sometimes reduced), hind pair in most species
wi
t
h
a
l
ar
g
e ana
ll

o
b
e, venat
i
on
f
requent
ly
spec
i
a
li
ze
d
,
l
e
g
s
id
ent
i
ca
l
an
d
w
i
t
h

at
h
ree-se
g
mente
d
tarsus; abdomen of most species terminated by long multiannulate cerci, females lacking a true
o
v
i
pos
i
tor, ma
l
es w
i
t
h
out
g
onost
yl
es an
d
p
h
a
lli
cor
g

ans on a
bd
om
i
na
l
se
g
ment 9
.
L
arvae aquatic, generally resembling adults except for presence of a varied number of tracheal
gill
s
.
More t
h
an 2000 spec
i
es o
f
t
hi
s very anc
i
ent or
d
er
h
ave

b
een
d
escr
ib
e
d
,
i
nc
l
u
di
ng
j
ust
over
6
00 from North America, about 30 from Britain, and 200 from Australia. Thou
g
hth
e
order has re
p
resentatives on all continents exce
p
t Antarctica, most families have a rather
restricted distribution
.
14

7
148
C
H
A
PTER
7
Structur
e
Adult
.
Th
ep
l
ecopteran
h
ea
di
s prognat
h
ous an
db
ears a pa
i
ro
f
e
l
ongate, mu
l

t
i
an
-
n
ulate antennae, well-developed compound e
y
es, three (rarel
y
two) ocelli, and weak, often
n
on-functional bitin
g
-t
y
pe mouthparts. Usuall
y
all the mouthparts are present, but in mem-
bers of a few families the mandibles are vesti
g
ial. The thorax is primitive. Its se
g
ments are
f
ree an
d
t
h
e prot
h

orax
i
s
l
arge. Two pa
i
rs o
f
mem
b
ranous w
i
ngs are near
l
ya
l
ways present,
t
h
oug
hb
rac
h
ypterous an
d
apterous spec
i
es occur at
hi
g

h
a
l
t
i
tu
d
es an
dl
at
i
tu
d
es. T
h
e
hi
n
d
wi
n
g
t
y
p
i
ca
lly h
as a
l

ar
g
e ana
lf
an,
b
ut t
hi
s
i
sre
d
uce
di
nt
h
e more a
d
vance
df
am
ili
es. T
h
e
w
in
g
venation is
g

enerall
y
primitive, but considerable variation is seen within the order.
In members of primitive families a t
y
pical archedict
y
on is developed to a
g
reater or lesser
d
egree;
i
nt
h
ose o
f
a
d
vance
d
groups t
h
e num
b
er o
fb
ranc
h
es o

f
t
h
e
l
ong
i
tu
di
na
l
ve
i
ns an
d
t
h
e num
b
er o
f
crossve
i
ns are great
l
yre
d
uce
d
.T

h
ea
bd
omen conta
i
ns 10 comp
l
ete segments,
wi
t
h
t
h
e 11t
h
represente
dby
t
h
eep
i
proct, paraprocts, an
dl
on
g
cerc
i
. In Nemour
id
ae,

h
ow
-
ev
e
r, the latter are reduced to an unse
g
mented structure used in copulation.
T
he esopha
g
us is ver
y
lon
g
, the
g
izzard rudimentar
y
, and mid
g
ut and hind
g
ut short.
T
h
ere are
b
etween 20 an
d

100 Ma
l
p
i
g
hi
an tu
b
u
l
es. In pr
i
m
i
t
i
ve
f
am
ili
es t
h
e centra
l
nervous
system
i
nc
l
u

d
es t
h
ree t
h
orac
i
can
d
e
i
g
h
ta
bd
om
i
na
l
gang
li
a,
b
ut
i
na
d
vance
d
groups t

he
s
i
xt
h
to e
igh
t
h
a
bd
om
i
na
lg
an
gli
a
f
use. T
h
e trac
h
ea
l
s
y
stem opens to t
h
e exter

i
or v
i
atw
o
thoracic and ei
g
ht abdominal spiracles. In males the testes meet in the midline, but their
products are carried b
y
separate vasa deferentia to a pair of seminal vesicles. Usuall
y
ther
e
i
s a median ejaculatory duct, but in some species the vasa deferentia remain separate unti
l
t
h
ey reac
h
t
h
eme
di
an gonopore
l
ocate
db
e

hi
n
d
t
h
en
i
nt
h
a
bd
om
i
na
l
segment. In
f
ema
l
es
t
h
e pano
i
st
i
covar
i
o
l

es ar
i
se
f
rom a common
d
uct t
h
at
j
o
i
ns t
h
eov
id
ucts o
f
eac
h
s
id
e. A
spermatheca is usuall
y
present
.
L
a
r

va
.
I
n general form larvae resemble adults, except for the absence of wings an
d
t
h
e presence,
i
n most spec
i
es, o
f
severa
l
pa
i
rs o
f
g
ill
s. Pr
i
m
i
t
i
ve
l
yt

h
ere are

ve or s
i
xpa
i
r
s
of
a
bd
om
i
na
l
g
ill
s,
b
ut
i
n mem
b
ers o
f
more a
d
vance
d

groups t
h
ese are re
d
uce
di
n num
b
er
and secondar
yg
ill structures ma
y
appear on more anterior re
g
ions of the bod
y
(mentum,
submentum, neck, thorax, and coxae) or ma
y
encircle the anus. In addition to
g
as exchan
g
e
,
the gills are important osmoregulators, equipped with chloride-uptake cells, as is also seen in
l
arva
l

Ep
h
emeroptera. In many spec
i
es t
h
e
l
egs are
f
r
i
nge
d
w
i
t
hh
a
i
rs t
h
at ass
i
st sw
i
mm
i
ng.
L

ife Histor
y
and Habit
s
A
d
u
l
t stone
fli
es are wea
kfl
yers an
d
se
ld
om
f
oun
df
ar
f
rom t
h
e
b
an
k
so
f

streams or e
d
ge
s
of l
a
k
es w
h
ere t
h
e
y
rest, o
f
ten we
ll
camou

a
g
e
d
,onve
g
etat
i
on, roc
k
s,

l
o
g
s, etc. Nocturna
l
species usuall
y
hide in crevices or amon
g
ve
g
etation durin
g
the da
y
. Man
y
stoneflies do no
t
f
eed as adults. Others feed on lichens, acellular al
g
ae, pollen, bark, and rotten wood
.
P
rior to mating, many Arctoperlaria tap the substrate with the tip of the abdome
n
(d
rumm
i

ng). Ma
l
es
i
n
i
t
i
ate t
h
e
d
rumm
i
ng an
d
v
i
rg
i
n
f
ema
l
es respon
d
.T
h
e
d

rumm
i
ng
i
s
spec
i
es-spec
ifi
can
d
serves to
b
r
i
ng t
h
e partners toget
h
er (Stewart an
d
Ma
k
eton, 1990).
Matin
g
usuall
y
occurs in da
y

li
g
ht, on the
g
round, thou
g
h a few species are nocturnal. Lar
g
e
n
umbers of e
gg
s are laid, sin
g
l
y
or, more often, in batches of 100 or more. In fl
y
in
g
specie
s
f
emales hover over the water and dip the abdomen beneath the surface. Brachypterous an
d
apterous
f
orms craw
l
to t

h
e water’s e
d
ge, or
b
e
l
ow t
h
e water sur
f
ace,
i
nor
d
er to ov
i
pos
i
t.
Eggs o
f
many spec
i
es
d
eve
l
op a
dh

es
i
ve propert
i
es on contact w
i
t
h
water. Em
b
ryon
i
c
d
eve
l
-
o
pment is usuall
y
direct, thou
g
he
gg
s of some species ma
y
survive drou
g
ht conditions i
n

149
T
HE
PLECOPTEROID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDERS
d
iapause. A few species are ovoviviparous. Larvae are t
y
picall
y
found in streams or lake
s
w
hose bottom is covered with stones under which the
y
can hide. Development is slow,
frequentl
y
takin
g
more than a
y

ear in the lar
g
er species. Man
y
molts occur, 33 havin
g
been
recor
d
e
d
over a per
i
o
d
o
f
3 years
f
or one spec
i
es. Most stone

y
l
arvae are p
h
ytop
h
agous

,
f
ee
di
ng on
li
c
h
ens, a
l
gae, moss, an
ddi
atoms. Typ
i
ca
ll
yt
h
ese are t
h
e spec
i
es t
h
at a
l
so
f
ee
d

i
nt
h
ea
d
u
l
t sta
g
e. Juven
il
es o
f
ot
h
er spec
i
es are carn
i
vorous,
li
v
i
n
g
on ot
h
er
i
nsects. T

h
es
e
species do not feed as adults. Like that of Odonata and ma
y
flies, emer
g
ence of stoneflies is
frequentl
y
hi
g
hl
y
s
y
nchronized.
Phylogeny and
C
lass
ifi
cat
i
on
Plecoptera, ver
y
primitive insects sometimes described as “fl
y
in
g

Th
y
sanura,” probabl
y
h
ad their ori
g
ins in the Lower Permian period from a stem
g
roup, the plecopteroid assem-
b
lage, that included the extinct Paraplecoptera and Protoperlaria (Illies, 1965). Some pale
-
oentomo
l
og
i
sts ass
i
gne
d
some o
f
t
h
e Perm
i
an
f
oss

il
P
l
ecoptera to recent
f
am
ili
es, t
h
oug
h
Z
w
i
c
k
(1981) cons
id
ere
d
t
hi
s
i
ncorrect, representat
i
ves o
f
t
h

e
l
atter not appear
i
n
gi
nt
h
e
fossil record until the Eocene (or possibl
y
the Cretaceous).
S
toneflies traditionall
y
were placed in two suborders, Filipalpia (Holo
g
natha) and Seti-
palpia (Systellognatha). Illies (1965), however, considered the extremely primitive Souther
n
Hem
i
sp
h
ere
f
am
ili
es Eust
h

en
iid
ae an
d
D
i
amp
hi
pno
id
ae su
ffi
c
i
ent
l
y
di
st
i
nct
f
rom t
h
e re-
ma
i
n
i
ng F

ili
pa
l
p
i
at
h
at t
h
ey s
h
ou
ld b
e groupe
di
n a separate su
b
or
d
er, t
h
e Arc
hi
per
l
ar
i
a.
B
oth Henni

g
(1981) and Zwick (1981) ar
g
ued that Illies’ arran
g
ement was not soundl
y
b
ased, and Zwick (1980, 1981, 2000), whose classification is followed here,
p
ro
p
osed that
t
he stoneflies could be divided into an exclusively Southern Hemisphere group (suborder
Antarctoper
l
ar
i
a) an
d
a pre
d
om
i
nant
l
y Nort
h
ern Hem

i
sp
h
ere group (su
b
or
d
er Arctoper
-
l
ar
i
a), t
h
e separat
i
on an
d
su
b
sequent evo
l
ut
i
on o
f
t
h
e two groups resu
l

t
i
ng
f
rom t
h
e
b
rea
k
u
p
of the Pan
g
ean landmass (into Laurasia and Gondwanaland) durin
g
the Jurassic period.
A
few Arctoperlaria occur in the Southern Hemisphere, presumabl
y
as a result of secondar
y
invasions. Figure 7.1 provides a suggested phylogeny for the order
.
S
uborder Antarctoperlari
a
I
n Zwick’s classification this suborder includes the su
p

erfamilies Eusthenioidea (fam
-
ilies EUSTHENIIDAE and DIAMPHIPNOIDAE) and Gripopter
yg
oidea (AUSTROPER
-
L
IDAE and GRIPOPTERYGIDAE). Illies (1965) considered members of the small family
E
ust
h
en
iid
ae, w
hi
c
hi
s restr
i
cte
d
to eastern Austra
li
a, New Zea
l
an
d
,an
d
C

hil
e, to represent
th
e protot
y
pe o
f
p
l
ecopteran or
g
an
i
zat
i
on. T
h
e
y
are
l
ar
g
e, co
l
or
f
u
li
nsects

h
av
i
n
g
w
i
n
gs
w
ith numerous crossveins and an anal fan in the hind win
g
with ei
g
ht or nine anal veins.
L
arvae are carnivorous and have four to six pairs of abdominal
g
ills. The Gripopter
yg
ida
e
is a large family (about 150 species) mostly found in Australia, with a few species in New
Z
ea
l
an
d
an
d

Sout
h
Amer
i
ca. T
h
ea
d
u
l
ts are most
l
y
d
u
ll i
nco
l
or; t
h
e
l
arvae, w
hi
c
h
ar
e
s
l

u
ggi
s
h
an
d
t
y
p
i
ca
lly f
oun
d
un
d
er roc
k
san
dd
e
b
r
i
s
i
n
f
ast-mov
i

n
g
water,
h
aveatu
f
to
f
g
ills around the anus. Larvae of a few species are terrestrial and lack
g
ills (Zwick, 2000).
S
uborder Arcto
p
erlari
a
Z
w
i
c
k
(2000)
di
v
id
e
d
t
hi

ssu
b
or
d
er
i
nto t
h
e
i
n
f
raor
d
ers Syste
ll
ognat
h
aan
d
Eu-
h
olo
g
natha. The former contains the superfamilies Perloidea (families PERLODIDAE,
150
C
H
A
PTER

7
F
I
GU
RE 7.1.
P
roposed ph
y
lo
g
en
y
of the Plecoptera. [Modified from P. Zwick, 1980, Plecoptera (Sternflie
g
en)
,
i
n
:
H
andbuch der Zoolo
g
i
e
,
V
ol. IV, Insecta Lfg.
VV
26
:1–115. By permission of Walter de Gruyter and Co.

]
P
ERLIDAE, and CHLOROPERLIDAE) and Pteronarcyoidea (families PTERONARCYI
-
DAE
an
d
PELTOPERLIDAE). Inc
l
u
d
e
di
nt
h
eEu
h
o
l
ognat
h
a
i
sas
i
ng
l
e super
f
am

il
y
Nemouro
id
ea
(f
am
ili
es TAENIOPTERYGIDAE, NOTONEMOURIDAE, NEMOURI
-
D
AE, CAPNIIDAE, and LEUCTRIDAE) and the ver
y
small famil
y
SCOPURIDAE. The
S
copuridae forms the sister
g
roup to the nemuroids
.
T
he Pteronarc
y
idae (Fi
g
ure 7.2A) is a small, primitive famil
y
whose members includ
e

t
h
e
l
argest stone
fli
es an
dh
ave w
i
ngs w
i
t
h
numerous crossve
i
ns. It
i
spr
i
mar
il
y a Nort
h
A
mer
i
can group t
h
at

h
as
i
nva
d
e
d
eastern As
i
a
i
nre
l
at
i
ve
l
y recent t
i
mes. T
h
e
h
er
bi
vorous
o
r
d
etr

i
t
i
vorous
l
arvae are
f
oun
di
nme
di
um- to
l
ar
g
e-s
i
ze
d
r
i
vers. Anot
h
er sma
ll f
am
ily
,
the Peltoperlidae, has a similar distribution to the Pteronarc
y

idae, and the larvae, which
are somewhat cockroachlike in a
pp
earance, also feed on
p
lant material or detritus. The
P
er
l
o
did
ae (F
i
gure 7.2B,C)
i
sa
l
arge
h
o
l
arct
i
c group
(
>
200 s
p
ec
i

es) o
f
me
di
um-s
i
ze
d
stone
fli
es w
h
ose
l
arvae are carn
i
vorous,
l
ac
k
g
ill
s, an
d
are typ
i
ca
ll
y
f

oun
di
ns
l
ow
l
y

ow
i
n
g
rivers. The Perlidae is the lar
g
est famil
y
in the order with some 3
5
0 species. Thou
gh
primaril
y
a holarctic-oriental
g
roup, the famil
y
has representatives in South America and
151
THE
PLE

CO
PTER
O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDER
S
F
IGURE 7.2. P
l
ecoptera. (A) Pteronarcys ca
l
ifornic
a
(Pteronarcy
id
ae) a
d
u
l
t; (B
)
Isoper

l
a confus
a
(Per
l
o
did
ae)
a
d
u
l
t; an
d(
C
)
I. con
f
usa
l
arva. [A,
f
rom A. R. Gau

n, W. E. R
i
c
k
er,M.M
i

ner,P.M
il
am, an
d
R. A. Ha
y
es, 1972
,
T
he stoneflies (Plecoptera) of Montana
,
Tr
ans. Am. Entomol. Soc.
rr
98
:1–161. By permission of the American
E
ntomological Society. B, C, from T. H. Frison, 1935, The stoneflies, or Plecoptera, of Illinois,
B
u
ll
.I
ll
. Nat. Hist
.
S
ur
v
.
20

(4). B
y
perm
i
ss
i
on o
f
t
h
eI
lli
no
i
s Natura
l
H
i
stor
y
Surve
y
.
]
A
f
r
i
ca. T
h

at t
hi
s
i
s a rat
h
er a
d
vance
d
group
i
s suggeste
db
yt
h
ere
d
uce
d
g
l
ossae, re
d
uce
d

rst abdominal sternite, the fusion of the first two abdominal
g
an

g
lia with that of th
e
metathorax, and the absence of abdominal
g
ills in larvae that are
g
enerall
y
carnivorous.
Containing more than 110 species, the holarctic family Chloroperlidae is considered to be
th
e most spec
i
a
li
ze
d
o
f
t
h
esu
b
or
d
er
b
yv
i

rtue o
f
t
h
ere
d
uce
db
o
d
ys
i
ze an
d
w
i
ng venat
i
o
n
(espec
i
a
ll
yt
h
ea
b
sence o
f

t
h
e ana
lf
an
i
nt
h
e
hi
n
d
w
i
ng) an
d
t
h
e comp
l
ex ma
l
e repro
d
uct
i
ve
s
y
stem. A

d
u
l
ts are o
f
ten
g
reen (
h
ence t
h
e
f
am
ily
name);
l
arvae o
f
most spec
i
es are pre
d
ator
s
t
hou
g
h a few are detritivores or herbivores, the
y

lack
g
ills, and ma
y
show adaptations for
b
urrowin
g
in the substrate of the streams and small rivers where the
y
are found.
Taen
i
opteryg
id
ae const
i
tute t
h
e most pr
i
m
i
t
i
ve
f
am
il
yo

f
Nemouro
id
ea as
i
s
i
n
di
cate
d
b
yt
h
e comparat
i
ve
l
yr
i
c
h
w
i
ng venat
i
on,
l
arge ana
ll

o
b
e
i
nt
h
e
hi
n
d
w
i
ng, an
dfi
ve-ors
i
x
-
part cerc
i
.A
d
u
l
ts o
f
t
hi
s
h

o
l
arct
i
c
g
roup, compr
i
s
i
n
g
a
b
out 70 spec
i
es, are common
ly k
nown
as winter stoneflies because of their habit of emer
g
in
g
between Januar
y
and April. Som
e
152
C
H

A
PTER
7
F
I
GU
RE 7.3
.
Pl
eco
p
tera. (A)
C
apnia nan
a
(Ca
p
n
iid
ae) a
d
u
l
t; (B) Nemoura

exura
(
Nemour
id
ae

)
a
d
u
l
t; an
d(
C
)
N
.

exura larva. [From A. R. Gaufin, W. E. Ricker, M. Miner, P. Milam, and R. A. Hayes, 1972, The stoneflies (Ple-
c
optera) o
f
Montana
,
Tr
ans. Am. Entomol. Soc.
r
r
98
:
1–1
6
1. By permission of the American Entomological Society.]
a
d
u

l
ts
f
ee
d
on po
ll
en. Larvae, common
l
y
f
oun
di
n
l
arge streams an
d
r
i
vers, are
h
er
bi
vores
o
r detritivores. In Capniidae (Fi
g
ure 7.3A), a holarctic famil
y
of about 200 species, adults

are
g
enerall
y
small, their win
g
s have few cross veins, and the size of the anal fan in the hind
w
ing is reduced. The cerci, however, are long. Like Taeniopterygidae, capniids may emerge
d
ur
i
ng t
h
ew
i
nter. T
h
e genera
ll
y
d
etr
i
t
i
vorous
l
arvae are most
l

y
f
oun
di
n sma
ll
r
i
vers an
d
streams, t
h
oug
h
a
f
ew spec
i
es occur
i
na
l
p
i
ne
l
a
k
es. Leuctr
id

ae, w
hi
c
h
compr
i
se a
h
o
l
arct
ic
f
am
ily
o
f
a
b
out 170 spec
i
es, are reco
g
n
i
ze
dby
t
h
e

i
ra
bili
t
y
to ro
ll
t
h
e
i
rw
i
n
g
s aroun
d
t
he
abdomen. The small anal area of the hind win
g
s, the undivided cerci, and the specialized
m
ale
g
enitalia su
gg
est that this is an advanced famil
y
.T

y
picall
y
, the larvae are found in small
m
ounta
i
n streams w
h
ere t
h
ey
f
ee
d
on
d
etr
i
tus. W
i
t
h
a
b
out 340 spec
i
es, t
h
e

h
o
l
arct
i
c
f
am
il
y
Nemour
id
ae (F
i
gure 7.3B,C) ran
k
snexttot
h
e Per
lid
ae
i
n terms o
f
s
i
ze. T
h
oug
h

t
h
ew
i
ng
v
enat
i
on
i
spr
i
m
i
t
i
ve, t
h
e
g
enera
lly
sma
ll
s
i
ze o
f
t
h

ea
d
u
l
ts, t
h
e
highly
mo
difi
e
d
cerc
i
an
d
g
enitalia of the male, and the nerve cord with onl
y
five abdominal
g
an
g
lia (due to fusion o
f
153
THE
PLE
CO
PTER

O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDERS
posterior ones) make this perhaps the most advanced famil
y
in this
g
roup. Larvae are found
in fast-movin
g
streams, often with rock
y
substrates, where the
y
feed on detritus or, rarel
y,
g
rowin
g
plants and al
g
ae. The famil

y
Notonemouridae (about 60 species in Mada
g
ascar
,
Sout
h
A
f
r
i
ca, Sout
h
Amer
i
ca, Austra
li
a, an
d
New Zea
l
an
d
)
i
s
lik
e
l
y a parap

h
y
l
et
i
c group
.
Z
w
i
c
k
(1981) suggeste
d
,ont
h
e
b
as
i
so
f diff
erences
i
n gen
i
ta
li
aan
di

nterna
l
structure,
t
hat the
g
roup arose as a result of several independent invasions from ori
g
inall
y
Norther
n
Hemisphere stock. Larvae are found in a variet
y
of habitats and are detritivores
.
L
i
t
e
r
a
t
u
r
e
H
itchcock (1974), Hynes (1976), and Harper and Stewart (1984) provide much infor-
mat
i

on on t
h
e genera
lbi
o
l
ogy o
f
stone
fli
es. T
h
ep
h
y
l
ogeny o
f
t
h
eor
d
er
i
s
di
scusse
dby
I
llies (196

5
) and Zwick (1980, 1981, 2000). Keys for identification are provided by Hynes
(19
6
7) [British species], Harper and Stewart (1984) and Stewart and Stark (1988) [Nort
h
American
g
enera], and Theischin
g
er (1991) [Australian families].
Har
p
er, P. P., and Stewart, K. W., 1984, Pleco
p
tera, in
:
A
n Introduction to the A
q
uatic Insects of North America
,
2nd ed. (R. W. Merritt and K. W. Cummins, eds.), Kendall/Hunt, Dubuque, IA.
Henn
ig
, W., 1981,
I
nsect P
h
y

l
ogen
y
,W
iley, New York.
WW
Hitchcock, S. W., 1974, Guide to the insects of Connecticut. Part VII. The Pleco
p
tera or stoneflies of Connecticut
,
Conn. State Geol. Nat. Hist. Surv. Bull
.
1
0
7
:
262 pp
.
H
y
nes, H. B. N., 19
6
7,Ake
y
to the adults and n
y
mphs of British stoneflies (Plecoptera) (2nd ed.)
,
F
.

W
.
B
io
l
.
A
ssoc.
S
ci. Publ.
17
:
86
pp
.
Hynes, H. B. N., 1976, Biology of Plecoptera
,
A
nnu. Rev. Entomol
.
21
:
1
35
–1
5
4
.
Illies, J., 196
5

,Ph
y
lo
g
en
y
and zoo
g
eo
g
raph
y
of the Plecoptera
,
A
nnu. Rev. Entomo
l.
10
:11
7–
140
.
S
tewart, K. W., and Maketon, M., 1990, Intraspecific variation and information content of drummin
g
in thre
e
P
lecoptera species, in
:

Mayflies and Stoneflies: Li
f
e Histories and Biolog
y
(I. C. Campbell, ed.), Kluwer
,
D
or
d
rec
h
t.
S
tewart
,
K. W.
,
and Stark
,
B. P.
,
1988
,
N
ymphs o
f
North American Stonefly Genera (Plecoptera), Thomas Sa
y
F
oundation, Lanham, MD.

T
h
e
i
sc
hi
n
g
er, G., 1991, P
l
ecoptera,
i
n
:
Th
e Insects of Austra
l
i
a
,2n
d
e
d
., Vo
l
. I (CSIRO, e
d
.), Me
lb
ourne Un

i
vers
i
t
y
P
ress
,
Carlton
,
Victoria
.
Z
wick, P., 1980, Plecoptera (Sternfliegen), in
:
Handbuch der Zoolo
g
i
e
,
V
ol. IV, Insecta Lfg.
V
V
2
6
:
1–115, de Gruyter,
B
er

li
n.
Z
wick, P., 1981, Plecoptera, revisionar
y
notes, in
:
I
nsect Ph
y
lo
g
en
y
(
W. Henni
g
), Wile
y
, New York
.
Z
wick, P., 2000, Phylogenetic system and zoogeography of the Plecoptera
,
A
nnu. Rev. Entomol
.
4
5
:

709–746.
3
. Emb
i
o
p
ter
a
S
ynonyms: Em
bi
o
d
ea, Em
biidi
na, Em
biida
C
ommon names:
w
e
b
s
pi
nners, em
biid
s,
f
oots
p

inner
s
E
longate, small, or moderately sized insects that live gregariously in silk tunnels; head wit
h
filif
orm antennae, compoun
d
e
y
es, an
d
man
dib
u
l
ate mout
h
parts
b
ut
l
ac
ki
n
g
oce
lli
;ma
l

es o
f
almost all species with two pairs of nearl
y
identical win
g
s in which radial vein is thickened,
f
emales apterous, tarsi three-segmented and basal segment of fore tarsus greatly enlarged; cerci
t
wo-se
g
mente
d
an
d
usua
lly
as
y
mmetr
i
ca
li
nma
l
es.
T
h
eEm

bi
optera (F
i
gure 7.4) are most
l
y con

ne
d
to t
h
e
l
arger
l
an
d
masses
i
n trop
i
ca
l
or
subtropical areas of the world, thou
g
h a few have found their wa
y
even to oceanic islands.
Althou

g
h fewer than 200 species have been described, includin
g
13 species from Nort
h
154
C
H
A
PTER
7
F
IGURE 7.4.
E
m
b
ia major
(
Em
bi
optera). (A) Ma
l
e; an
d
(B)
f
ema
l
e. [From A. D. Imms, 1913, O
n

E
m
b
ia major
n
. sp. From t
h
eH
i
ma
l
a
y
as
,
Tr
ans. Linn. Soc. Zool
r
r
.
11
:
167–19
5
.B
y
permission of Blackwell Publishin
g
Ltd.
]

A
merica and 65 from Australia, Ross (1970, 1991) suggested that this figure may represent
o
n
l
y 10% o
f
t
h
ewor
ld
tota
l
.
S
tructur
e
As a
g
roup, the Embioptera are of remarkabl
y
uniform structure, a feature related to
the widespread similarit
y
of the tunnels in which the
y
live. Webspinners are soft-bodied
i
nsects t
h

at

yon
l
y wea
kl
y or not at a
ll
.T
h
e prognat
h
ous
h
ea
db
ears
filif
orm antennae,
c
ompoun
d
eyes (o
f
ten
l
arge an
d kid
ney-s
h

ape
di
nma
l
es, sma
ll i
n
f
ema
l
es), an
d
man
dib
u
l
ate
m
out
h
parts. In ma
l
es t
h
e man
dibl
es are usua
lly fl
attene
d

an
d
e
l
on
g
ate. Oce
lli
are a
b
sent
.
No trace of win
g
s can be seen in females; males ma
y
be apterous, brach
y
pterous, or full
y
w
in
g
ed. In the latter the fore and hind win
g
s are ver
y
similar. The radius is thickened
;
t

h
eot
h
er ve
i
ns are re
d
uce
d
.T
h
ew
i
ngs are

ex
ibl
ean
d
a
bl
eto
f
o
ld
at any po
i
nt. T
his
f

ac
ili
tates
b
ac
k
war
d
movement a
l
ong t
h
e tunne
l
s. For
fli
g
h
tt
h
ew
i
ngs are ma
d
e more r
i
g
id
b
y pump

i
ng
bl
oo
di
nto t
h
era
di
us. T
h
e
f
ore
l
egs are stout, an
d
t
h
e
b
asa
l
tarsa
l
segment
is
swollen to accommodate the silk
g
lands, which number about 200. Ducts from the

g
lands
c
arr
y
the product to the exterior via hairlike e
j
ectors. The hind femur is also enlar
g
ed t
o
c
ontain a large tibial depressor muscle. This is correlated with the ability to run backward
wi
t
h
great spee
d
.T
h
ere are 10 o
b
v
i
ous a
bd
om
i
na
l

segments. T
h
e cerc
i
are two-segmente
d
an
d
tact
il
e, serv
i
ng as cau
d
a
l
“eyes” w
h
en t
h
e
i
nsect
i
s runn
i
ng
b
ac
k

war
d
.Inma
l
es t
h
e cerc
i
are usuall
y
as
y
mmetrical. .
T
he internal structure is
g
eneralized. The
g
ut is strai
g
ht, and 20–30 Malpi
g
hian tubule
s
op
en into it. The ventral nerve cord is
p
aired and includes three thoracic and seven abdominal
gang
li

a. Eac
h
ovary cons
i
sts o
ffi
ve pano
i
st
i
covar
i
o
l
es t
h
at are connecte
d
at
i
nterva
l
sw
i
t
h
t
h
eov
id

uct. A spermat
h
eca
i
s present. T
h
e

ve test
i
s
f
o
lli
c
l
es on eac
h
s
id
e are a
l
so arrange
d
ser
i
a
lly
a
l

on
g
t
h
evas
d
e
f
erens, w
hi
c
h
swe
ll
s prox
i
ma
lly i
nto a sem
i
na
l
ves
i
c
l
e. Two pa
i
rs
o

f accessor
yg
lands occur in males.
155
THE
PLE
CO
PTER
O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDER
S
Life Histor
y
and Habits
Bot
h
a
d
u
l
tan

dj
uven
il
eEm
bi
optera can pro
d
uce s
ilk
en tunne
l
st
h
at are
j
ust w
id
e enoug
h
t
o permit the animals to move forward or backward alon
g
them. Generall
y
, man
y
embiids
are found associated to
g
ether in a “nest” of interconnected tubes. It must be emphasized,

h
owever, that this
g
re
g
arious behavior is in no wa
y
social; that is, there is no caste s
y
ste
m
or
di
v
i
s
i
on o
fl
a
b
or. In
h
um
id
reg
i
ons an ent
i
re nest may

b
e expose
d
,
b
ut
i
n
d
r
i
er parts o
f
th
ewor
ld i
t
i
s usua
ll
y part
i
a
ll
ysu
b
terranean as a protect
i
on aga
i

nst
d
es
i
ccat
i
on an
dfi
re
.
N
ests are constructe
di
nt
h
e
i
mme
di
ate v
i
c
i
n
i
t
y
o
f
a

f
oo
d
source, an
d
tunne
l
so
f
ten exten
d
d
irectl
y
into this. Embiids are ph
y
topha
g
ous, with dead
g
rass and leaves, lichens, moss, an
d
b
ark constitutin
g
the main food. Earl
y
workers believed that males mi
g
ht be carnivorou

s
b
ecause o
f
t
h
e rat
h
er
di
st
i
nct man
dibl
es. It
i
snow
k
nown,
h
owever, t
h
at t
h
e structure o
f
t
h
e
l

atter
i
s corre
l
ate
d
w
i
t
h
t
h
e
i
r use
i
n grasp
i
ng t
h
e
f
ema
l
e’s
h
ea
dd
ur
i

ng copu
l
at
i
on, an
d
,
i
n
man
y
spec
i
es, mature ma
l
es
d
o not
f
ee
d
.
At
y
pical nest contains a few mature females and their developin
gy
oun
g
. Matur
e

males are
g
enerall
y
short-lived and, in some species, are eaten b
y
the female after matin
g
.
Part
h
enogenes
i
s pro
b
a
bl
y occurs
i
n some spec
i
es. Eggs are
l
a
id i
n a tunne
l
an
d
guar

d
e
d
b
yt
h
e
f
ema
l
e. Parenta
l
care
i
s exten
d
e
d
to t
h
e young
l
arvae,
b
ut t
h
ese soon pro
d
uce t
h

e
ir
ow
n
t
unne
l
s
i
nw
hi
c
h
to
d
eve
l
op. New co
l
on
i
es are
f
orme
di
nt
h
ev
i
c

i
n
i
t
y
o
f
t
h
eo
ld
ones,
and it is durin
g
this short mi
g
ration to new sites that embiids are especiall
y
vulnerable. The
absence of win
g
s in females has more or less restricted the distribution of the Embioptera to
t
he major land masses, though some species, perhaps transported by commerce, are found
on remote Pac
ifi
c
i
s
l

an
d
s.
Phylogeny and
C
lass
ifi
cat
i
on
The fossil record of Embioptera is poor. Some authors (e.
g
., Henni
g
, 1981; Kukalov´a
-
Peck, 1991) believe that it is a ver
y
ancient insect order with a fossil record that extends to
t
he Lower Permian
p
eriod. It is claimed that these fossil remnants have a combination o
f
pr
i
m
i
t
i

ve (e.g., w
i
ngs
i
n
f
ema
l
es, mu
l
t
i
segmente
d
cerc
i
,an
d
s
h
ort ov
i
pos
i
tor) an
d
a
d
vance
d

c
h
aracters (e.g., asymmetr
i
c cerc
ii
nma
l
es an
d
re
d
uce
d
w
i
ng venat
i
on). However, t
he
“em
biid
” nature o
f
t
h
ese Perm
i
an
f

ra
g
ments
i
s
di
spute
dby
ot
h
er wor
k
ers (e.
g
., Carpenter,
1992; Rasnits
y
n and Quicke, 2002), so that
g
enuine embiopteran fossils do not appear
b
efore the Late Cretaceous-Earl
y
Eocene. The order is clearl
y
orthopteroid but its stron
g
l
y
apomorp

hi
cc
h
aracter
h
as
hi
n
d
ere
d
c
l
ar
ifi
cat
i
on o
fi
ts pos
i
t
i
on w
i
t
hi
nt
h
e

l
arger group
.
R
e
l
at
i
ons
hi
ps w
i
t
h
P
l
ecoptera, Dermaptera, P
h
asm
id
a, an
d
Zoraptera
h
ave
b
een suggeste
d
by
var

i
ous aut
h
ors (see Kr
i
stensen, 1991).
Because of the neotenous nature of females, identification and classification usin
g
morpholo
g
ical characters can be carried out with certaint
y
onl
y
b
y
examinin
g
mature males
.
R
oss (1970) recognized eight families of living Embioptera, but it is not yet possible to
d
raw many conc
l
us
i
ons regar
di
ng t

h
e
i
rp
h
y
l
ogenet
i
cre
l
at
i
ons
hi
ps
b
ecause o
f
t
h
e genera
l
structura
l
un
if
orm
i
ty o

f
t
h
eor
d
er an
d
t
h
e amount o
f
para
ll
e
l
evo
l
ut
i
on t
h
at
h
as ta
k
en p
l
ace
amon
g

families. The northern South American and West Indian famil
y
CLOTHODIDAE is
t
he most primitive
g
roup. In this famil
y
, to which certain Miocene fossils are assi
g
ned, the
cerci of the male are symmetrical and comprise two smooth segments. The largest family,
E
MBIIDAE, is a rather heterogeneous group of Old and New World forms. Szumik’s (1996)
c
l
a
di
st
i
c ana
l
ys
i
ss
h
owe
d
t
h

at, as present
l
y const
i
tute
d
,t
h
eEm
biid
ae
i
s a parap
h
y
l
et
ic
gro
u
p.
156
C
H
A
PTER
7
Another lar
g
e and likel

y
paraph
y
letic famil
y
is the OLIGOTOMIDAE, a rather prim
-
i
tive
g
roup with representatives in Asia, Australia, southern Europe, and possibl
y
Eas
t
A
frica. Three s
p
ecies of
O
ligotoma have been introduced accidentall
y
into the United States
.
O
t
h
er
f
am
ili

es are t
h
e AUSTRALEMBIIDAE (restr
i
cte
d
to eastern Austra
li
aan
d
Tasman
i
a)
,
NOTOLIGOTOMIDAE (Sout
h
east As
i
aan
d
Austra
li
a), EMBONYCHIDAE (East As
i
a)
,
TERATEMBIIDAE
(
South America and southern United States
)

, and ANISEMBIIDA
E
(
Central America and southern United States
).
L
iterature
Th
e
bi
o
l
ogy o
f
t
h
eEm
bi
optera
i
s
d
ea
l
tw
i
t
hb
y Ross (1970, 1991) w
h

oa
l
so (1984,
1
991)
h
as
d
escr
ib
e
d
an
d
prov
id
e
dk
eys
f
or t
h
e
id
ent
ifi
cat
i
on o
f

Nort
h
Amer
i
can genera
and Australian families, respectivel
y
. Ross (1970) and Szumik (199
6
) have discussed the
ev
olution and classification of the order
.
C
ar
p
enter, F. M., 1992
,
Tr
eatise on Invertebrate Paleontology. Part R. Arthropoda
rr
4
,
V
o
l
s.
3
an
d

4
(
Superc
l
ass
H
exa
p
oda
)
,
University of Kansas, Lawrence.
H
enn
i
g, W., 1981, Insect P
h
y
l
ogeny
,W
iley, New York.
WW
Kr
i
stensen, N. P., 1991, P
hyl
o
g
en

y
o
f
extant
h
exapo
d
s,
i
n
:
T
h
e Insects o
f
Austra
l
ia
,
2n
d
e
d
., Vo
l
.I
(
CSIRO, e
d
.

)
,
Melbourne University Press, Carlton, Victoria.
K
u
k
a
l
ov´a-Pec
k
, J., 1991, Foss
il hi
story an
d
t
h
eevo
l
ut
i
on o
fh
exapo
d
structures,
i
n
:
Th
e Insects of Austra

l
ia
,
2n
d
e
d
., Vo
l
. I (CSIRO, e
d
.), Me
lb
ourne Un
i
vers
i
t
y
Press, Car
l
ton, V
i
ctor
i
a.
Rasnitsyn, A. P., and Quicke, D. L. J. (eds.), 2002
,
H
istory o

f
Insects
,
Kluwer, Dordrecht.
Ross, E. S., 1970, B
i
os
y
stemat
i
cs o
f
t
h
eEm
bi
optera, Annu. Rev. Entomo
l
.
15
:
1
5
7–172
.
Ross, E. S., 1984, A s
y
nops
i
so

f
t
h
eEm
biidi
na o
f
t
h
eUn
i
te
d
States, Proc. Entomo
l
.
S
oc.
W
as
h.
86
:82–
9
3.
Ross, E. S., 1991, Embioptera, in: The Insects o
f
Australia
,
2nd ed., Vol. I (CSIRO, ed.), Melbourne Universit

y
Press
,
Car
l
ton
,
V
i
ctor
i
a.
Szumik, C. A., 1996, The hi
g
her classification of the order Embioptera: A cladistic anal
y
sis,
C
ladistic
s
12
:41–
6
4.
4
. Dictyopter
a
S
ynonyms
:

D
i
ctuoptera, Oot
h
ecar
i
a, B
l
att
if
orm
i
a
,
C
ommon names:
cock
r
oaches a
n
d
Blatto
p
teriformi
a
m
a
n
t
i

ds
Small to very large terrestrial insects of varied form; head hypognathous with filiform, multiseg
-
m
ente
d
antennae, man
dib
u
l
ate mout
h
parts an
d
we
ll d
eve
l
ope
d
compoun
d
eyes, oce
lli
present
(
Manto
d
ea) or usua
lly

a
b
sent (B
l
atto
d
ea); pronotum
l
ar
g
ean
ddi
sc
lik
e(B
l
atto
d
ea) or e
l
on
g
ate
(
most Mantodea), legs with five-segmented tarsi, fore wings modified as tegmina, brachyptery,
a
n
d
apter
y

common; ov
i
pos
i
tor re
d
uce
d
an
d hidd
en, ma
l
e
g
en
i
ta
li
a comp
l
ex an
d
concea
l
e
d
, cerc
i
fairly short but multisegmented.
T

his mainl
y
tropical to subtropical order contains some 5500 described species that
f
all into two clearl
y
defined suborders, Blattodea (cockroaches), with at least 3500 species
(i
nc
l
u
di
ng a
b
out 70
i
n Nort
h
Amer
i
ca, more t
h
an 400
i
n Austra
li
a, an
d
9
i

nBr
i
ta
i
n)
,
an
d
Manto
d
ea (mant
id
s), a pre
d
om
i
nant
l
yO
ld
Wor
ld
group o
f
a
b
out 2000 spec
i
es (
i

n
-
c
ludin
g
about 900 in Africa and
5
30 in Asia). About 20 mantid species occur in Nort
h
A
merica and 1
6
0 in Australia. Several s
p
ecies of cockroaches are im
p
ortant cosmo
p
olitan
p
es
t
s
.
1
5
7
THE
PLE
CO

PTER
O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDER
S
S
tructure
C
oc
k
roac
h
es are typ
i
ca
ll
y

attene
d
,ova
l

-s
h
ape
di
nsects w
h
ose
h
ea
di
s covere
db
yt
h
e
lar
g
e disclike pronotum. In contrast, mantids are elon
g
ate and easil
y
reco
g
nized b
y
thei
r
raptorial forele
g
s, prominent, movable head, and usuall

y
elon
g
ate pronotum. Almost al
l
mantids are procr
y
pticall
y
colored, thou
g
h it is not known whether such camoufla
g
eismor
e
i
mportant
i
n concea
li
ng t
h
em
f
rom prey or
f
rom wou
ld
-
b

e pre
d
ators. Some spec
i
es s
h
o
w
co
l
or po
l
ymorp
hi
sm, t
h
ec
h
ange
f
rom one co
l
or to anot
h
er occurr
i
ng e
i
t
h

er
i
n
i
n
di
v
id
ua
l
i
nsects over a
f
ew
d
a
y
s or on a popu
l
at
i
on-w
id
e
b
as
i
s
f
rom season to season.

The head is h
y
po
g
nathous. Compound e
y
es are well developed in most forms but ma
y
b
e reduced or absent in cockroaches that live in caves, ants’ nests, etc. Three ocelli are
p
resent
i
n mant
id
s,
b
ut
i
n most coc
k
roac
h
es t
h
e oce
lli h
ave
d
egenerate

d
,
b
e
i
ng represente
db
yapa
i
r
o
f
transparent areas on t
h
e cut
i
c
l
e, t
h
e
f
enestrae. T
h
e antennae, w
hi
c
hi
n some spec
i

es are
ver
yl
on
g
, are
filif
orm an
d
mu
l
t
i
se
g
mente
d
.We
ll
-
d
eve
l
ope
d
man
dib
u
l
ate mout

h
parts are
present. The le
g
s are essentiall
y
similar in cockroaches, but in most mantids the forele
g
s
are
g
reatl
y
enlar
g
ed and bear spines for catchin
g
pre
y
. In both cockroaches and mantids
wi
ngs may
b
e
f
u
ll
y
d
eve

l
ope
d
,s
h
ortene
d
,ora
b
sent. In some coc
k
roac
h
spec
i
es
b
ot
hf
u
ll
y
wi
nge
d
an
d
s
h
ort-w

i
nge
df
orms occur. In mant
id
sma
l
es are typ
i
ca
ll
y
f
u
ll
yw
i
nge
d
w
h
ereas
f
ema
l
es are
f
requent
ly b
rac

hy
pterous or apterous. W
h
en present, t
h
e
f
ore w
i
n
g
s are mo
d-
eratel
y
sclerotized and form te
g
mina. The hind win
g
shavelar
g
e anal areas. The venatio
n
is primitive, with the lon
g
itudinal veins much branched and lar
g
e numbers of crossvein
s
present. Ten obvious segments are present in the abdomen, with the 11th represented in

b
ot
h
sexes
b
yt
h
e paraprocts an
d
s
h
ort, mu
l
t
i
segmente
d
cerc
i
.Inma
l
es t
h
en
i
nt
h
sternum
f
orms t

h
esu
b
gen
i
ta
l
p
l
ate, w
hi
c
h
usua
ll
y
b
ears a pa
i
ro
f
sty
li
.T
h
e gen
i
ta
li
a, w

hi
c
h
are
partiall
y
hidden b
y
the sub
g
enital and supra-anal (10th ter
g
al) plates, are membranous an
d
as
y
mmetrical. In females the sub
g
enital plate is formed from the seventh sternum, whic
h
envelo
p
s the small ovi
p
ositor. Sterna 8–10 are reduced and internal.
T
h
e gut, w
hi
c

hi
s
l
ong an
d
co
il
e
di
n coc
k
roac
h
es, s
h
ort an
d
stra
i
g
h
t
i
n mant
id
s, conta
i
ns
a
l

arge crop, we
ll
-
d
eve
l
ope
d
g
i
zzar
d
,an
d
as
h
ort m
id
gut attac
h
e
d
to w
hi
c
h
are e
i
g
h

t ceca
.
Up to 100 or more Ma
l
p
ighi
an tu
b
u
l
es or
igi
nate at t
h
e anter
i
or en
d
o
f
t
h
e
hi
n
dg
ut. T
h
e
nervous s

y
stem is
g
eneralized, and three thoracic and six or seven abdominal
g
an
g
lia ar
e
u
suall
y
present. In some cockroaches onl
y
four or five abdominal
g
an
g
lia can be seen
,
as a resu
l
to
f
coa
l
escence o
f
t
h

e anter
i
or ones w
i
t
h
t
h
e metat
h
orac
i
c gang
li
on. T
h
e teste
s
compr
i
se
f
our or more
f
o
lli
c
l
es enc
l

ose
di
n a per
i
tonea
l
s
h
eat
h
.T
h
e vasa
d
e
f
erent
i
a enter t
h
e
e
j
acu
l
ator
yd
uct, at t
h
e anter

i
or en
d
o
f
w
hi
c
h
are t
h
e sem
i
na
l
ves
i
c
l
es an
d
var
i
ous accessor
y
g
lands. A lar
g
e con
g

lobate
g
land of uncertain function opens separatel
y
to the exterior i
n
male cockroaches. There are several panoistic ovarioles in each ovar
y
. The lateral oviduct
s
l
ea
d
to t
h
e common ov
id
uct, w
hi
c
h
opens
i
nto a
l
arge gen
i
ta
l
c

h
am
b
er. T
h
e spermat
h
eca
a
l
so enters t
hi
sc
h
am
b
er on
i
ts
d
orsa
l
s
id
e. Accessory g
l
an
d
s, w
h

ose secret
i
ons
f
orm t
he
oot
h
eca, a
l
so open
i
nto t
h
e gen
i
ta
l
c
h
am
b
er. Su
b
cutaneous g
l
an
d
s, w
h

ose secret
i
ons ma
y
b
e either repu
g
nator
y
or important in courtship (males onl
y
), occur in cockroaches
.
L
if
eH
i
story and Hab
i
ts
As the differences are so
g
reat, the life histor
y
and habits of Blattodea and Mantodea
are described separately
.
Bl
a
tt

odea.
Coc
k
roac
h
es are most
l
y secret
i
ve, pr
i
mar
il
y nocturna
l
, typ
i
ca
ll
y groun
d
-
d
we
lli
n
gi
nsects t
h
at

hid
e
by d
a
yi
n crac
k
san
d
crev
i
ces, un
d
er stones,
i
n rott
i
n
gl
o
g
s, amon
g
158
C
H
A
PTER
7
deca

y
in
g
ve
g
etation, etc. Some, however, live on folia
g
e, etc. well above the
g
round and ma
y
be diurnal, even baskin
g
in the sun. Most species prefer a rather humid environment, thou
gh
some are found in semidesert or even desert conditions and others in semia
q
uatic situations.
Af
ew
f
f
li
ve
i
n caves, ants’ nests, an
d
s
i
m

il
ar p
l
aces. Some spec
i
es may
b
e gregar
i
ous,
i
nsect
s
at t
h
e same stage o
fd
eve
l
opment occupy
i
ng t
h
e same
hidi
ng p
l
aces an
df
ee

di
ng toget
h
er.
Su
b
soc
i
a
lb
e
h
av
i
or occurs
i
na
f
ew spec
i
es. Genera
lly
coc
k
roac
h
es are omn
i
vorous
b

ut ar
e
rarel
y
active predators. A few species feed on rottin
g
wood, which is di
g
ested b
y
s
y
mbiotic
bacteria or protozoans in the cockroaches’
g
ut. These microor
g
anisms are ver
y
similar t
o
t
h
ose
f
oun
di
n term
i
tes. However,

i
t rema
i
ns
d
e
b
ata
bl
ew
h
et
h
er t
h
ese were
i
n
h
er
i
te
df
ro
m
a common ancestor or were or
i
g
i
na

ll
y
i
n one o
f
t
h
ese groups, t
h
en trans
f
erre
d
secon
d
ar
il
y
w
hen members of one
g
roup pre
y
ed on members of the other (see Grandcolas and Deleporte
,
1
99
6)
.
Usuall

y
courtship precedes matin
g
, which ma
y
take more than an hour to complete
.
T
h
e secret
i
on o
f
t
h
ema
l
e’s terga
l
g
l
an
d
s attracts t
h
e
f
ema
l
e

i
nto t
h
e appropr
i
ate pos
i
t
i
o
n
an
d
serves as an ap
h
ro
di
s
i
ac, a
ll
ow
i
ng t
h
ema
l
e to mount an
d
trans

f
er a spermatop
h
ore.
Surroun
di
n
g
t
h
e spermatop
h
ore pro
d
uce
dby
ma
l
es o
f
most B
l
atte
llid
ae
i
sa
l
a
y

er o
f
ur
ic
acid, which is subsequentl
y
eaten b
y
the female and provides a source of nitro
g
en for use in
o
otheca construction. Cockroaches exhibit four t
y
pes of reproductive strate
gy
: (1) ov
i
par
i
t
y
(
a
ll f
am
ili
es except B
l
a

b
er
id
ae), t
h
e eggs
b
e
i
ng enc
l
ose
di
na
l
eat
h
ery or
h
orny oot
h
ec
a
t
h
at may
b
e seen protru
di
ng

f
rom a
f
ema
l
e’s gen
i
ta
l
c
h
am
b
er pr
i
or to
d
epos
i
t
i
on; (2
)
f
a
l
se
ovo
v
iviparit

y
(a
l
most a
ll
B
l
a
b
er
id
ae an
d
a
f
ew B
l
atte
llid
ae), t
h
e mem
b
ranous oot
h
eca
b
e
i
n

g
held internall
y
within a brood sac durin
g
embr
y
onic development; (3)
t
rue ovoviviparit
y
(
seen in onl
y
four
g
enera of Blaberidae), in which an ootheca is not formed, the e
gg
s passin
g
directly from the oviduct into the brood sac where the embryonic development occurs; an
d
(
4)
vi
v
i
par
i
t

y
(
k
nown on
l
y
i
n
D
ip
l
optera punctata
b
ut
p
ro
b
a
bl
y occurs
i
not
h
er mem
b
ers
of
t
hi
s genus), w

h
ere t
h
e eggs are sma
ll
an
dl
ac
k
yo
lk
,t
h
eem
b
ryos o
b
ta
i
n
i
ng nour
i
s
h
ment
directl
y
from secretions of the brood sac. Facultative partheno
g

enesis has been observed i
n
some species, and obli
g
ate partheno
g
enesis occurs i
n
Pycnoscelis surinamensis
.
Hatchin
g
f
rom the ootheca requires collaborative effort on the part of the embryos, which swallow air
,
s
we
ll
,an
d
cause t
h
e oot
h
eca to sp
li
t open, t
h
eem
b

ryos escap
i
ng more or
l
ess sync
h
ronous
l
y.
Larva
ld
eve
l
opment
i
so
f
ten s
l
ow , ta
ki
ng up to a year an
di
nvo
l
v
i
ng as many as 12 mo
l
ts

.
A
dults are frequentl
y
lon
g
-lived.
Ma
nt
odea
.
T
he life-style of mantids is in marked contrast with that of cockroaches.
Mant
id
s
li
veaso
li
tary, somet
i
mes terr
i
tor
i
a
l
ex
i
stence, most

l
y
i
ns
h
ru
b
s, trees, an
d
ot
h
er
ve
getat
i
on, w
h
ere t
h
ey wa
i
t mot
i
on
l
ess
f
or t
h
e arr

i
va
l
o
f
su
i
ta
bl
e prey, usua
ll
yot
h
er
i
nsects,
thou
g
han
y
thin
g
of appropriate size is fair
g
ame. Occasionall
y
, mantids will stalk their pre
y
until the
y

are within
g
raspin
g
distance. This is normall
y
the situation with
g
round-livin
g
s
pecies (which are mostl
y
found in arid re
g
ions).
M
at
i
ng
i
n mant
id
s
i
s somet
i
mes r
i
s

k
y
f
orama
l
e, as
hi
s partner, a
l
most a
l
ways
l
arger,
m
ay regar
dhi
mas
b
e
i
ng more
d
es
i
ra
bl
easamea
l
t

h
an as a
l
over! However, cann
ib
a
li
s
m
of
t
h
ema
l
e
by
t
h
e
f
ema
l
e, o
f
ten seen
i
n capt
i
v
i

t
y
,
i
s pro
b
a
bly
rare un
d
er natura
l
con
di
t
i
ons.
E
gg
s are laid in a mass of froth
y
material that hardens to form an ootheca. Usuall
y
thi
s
i
s attached to an ob
j
ect some distance from the
g

round, thou
g
h a few species deposit the
o
ot
h
eca
i
nt
h
eso
il
. Parenta
l
care o
f
t
h
e eggs an
d
even

rst-
i
nstar
l
arvae
i
ss
h

own
b
y
f
ema
l
e
s
i
na
f
ew spec
i
es. O
bli
gate part
h
enogenes
i
s occurs, rare
l
y,
f
or examp
l
e,
in
Brunneria
b
orea

l
i
s
f
rom t
h
e sout
h
ern Un
i
te
d
States. As
i
n coc
k
roac
h
es, t
h
e
d
eve
l
opment t
i
me
i
s rat
h

er
l
on
g
and there ma
y
be man
y
molts.
1
5
9
T
HE
PLECOPTEROID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDERS
Phylogeny and Classification
Numerous coc
k
roac
h
es

b
roa
dl
ys
i
m
il
ar to t
h
ose
li
v
i
ng to
d
ay ex
i
ste
di
nt
h
e Car
b
on
if
er
-
ous period, some 300 million
y
ears a

g
o. The fossil record, includin
g
probable oothecae, is
especiall
y
stron
g
from the Upper Carboniferous onward from man
y
re
g
ions of the world,
and b
y
the Paleocene species assi
g
nable to modern families occurred. Opinions differ on
wh
en t
h
e mant
id
an
d
coc
k
roac
hli
nes

di
verge
d
. At one extreme, Carpenter (1992) sug-
geste
d
t
h
at t
h
e mant
id
s may
h
ave e vo
l
ve
di
n
d
epen
d
ent
l
y,
f
rom protort
h
opterous ancestors.
I

n contrast, Rasn
i
ts
y
nan
d
Qu
i
c
k
e (2002)
i
n
di
cate an evo
l
ut
i
on
f
romapo
ly
p
h
a
gid
coc
k
-
roachlike ancestor in the Late Triassic. The earliest mantid fossils come from the Earl

y
Cretaceous, thou
g
h these are
g
enerall
y
onl
y
win
g
or forele
g
fra
g
ments. B
y
the Eocene, the
group was we
ll
esta
bli
s
h
e
d
;
i
n
d

ee
d
, some
f
oss
il
s
f
rom t
hi
s per
i
o
d
can
b
ep
l
ace
di
nmo
d
ern
f
am
ili
es
.
Attempts to
i

nterpret t
h
ep
hyl
o
g
en
y
o
f
t
h
esu
b
or
d
er B
l
atto
d
ea
h
ave
b
een
h
am
-
pered b
y

the hi
g
hde
g
ree of parallel evolution that has occurred within the
g
roup.
M
cKittrick (1964) examined the external
g
enitalia, oviposition behavior, and crop struc-
t
ure
i
naw
id
evar
i
ety o
f
extant spec
i
es. S
h
e suggeste
d
t
h
at coc
k

roac
h
evo
l
ut
i
on procee
d
e
d
a
l
ong two
li
nes, one
l
ea
di
ng to t
h
e super
f
am
il
yB
l
atto
id
ea (
f

am
ili
es Cryptocerc
id
ae an
d
Bl
att
id
ae), t
h
eot
h
er to t
h
e super
f
am
ily
B
l
a
b
ero
id
ea (
f
am
ili
es Po

ly
p
h
a
gid
ae, B
l
atte
llid
ae
(
=
E
ctobiidae), and Blaberidae). Durden’s (19
6
9) stud
y
of Carboniferous cockroaches
g
enerall
y
supported McKittrick’s conclusions, thou
g
h he reco
g
nized several additiona
l
superfamilies. More recent proposals have been based on extensive cladistic analysis o
f
morphological and anatomical features of extant species (Grandcolas, 1996), mDNA se

-
quences (Mae
k
awa an
d
Matsumoto, 2000), an
df
oss
il
s (Rasn
i
tsyn an
d
Qu
i
c
k
e, 2002).
T
a
k
e
n
to
g
ether, these studies show that the Blattidae and Cr
y
ptocercidae are not sis
-
t

er
g
roups, the Pol
y
pha
g
idae and Cr
y
ptocercidae are closel
y
related, and the Blattidae
are the sister group to the Blattellidae
+
B
laberidae. A proposed phylogeny is shown i
n
F
igure 7.
5.
Cl
ass
ifi
cat
i
on o
f
t
h
esu
b

or
d
er Manto
d
ea
i
sa
l
so
diffi
cu
l
t
b
ecause o
f
para
ll
e
l
evo
l
ut
i
onar
y
t
rends amon
g
the constituent

g
roups. Beier (19
6
4) divided the suborder into ei
g
ht families,
contained within the sin
g
le superfamil
y
Mantoidea, of which the Amorphoscelidae and
M
antidae are the lar
g
est. The six remainin
g
families are small, tropical
g
roups of restricted
di
str
ib
ut
i
on.
F
I
GU
RE 7.5. Propose
d

p
hyl
o
g
en
y
o
f
B
l
atto
d
ea
.
160
C
H
A
PTER
7
Suborder Blattode
a
In mem
b
ers o
f
t
h
esu
b

or
d
er B
l
atto
d
ea t
h
e
h
ea
di
s covere
d
w
i
t
h
a
l
arge, s
hi
e
ld
s
h
ape
d
pronotum; the le
g

s are identical; and the
g
izzard is stron
g
l
y
dentate
.
S
uperfamily Polyphagoidea
Inc
l
u
d
e
di
nt
hi
s group are two
f
am
ili
es, POLYPHAGIDAE (a
b
out 190 spec
i
es) an
d
CRYPTOCERCIDAE (nine species in the
g

enus
C
ryptocercus). The Pol
y
pha
g
idae is
a
w
idel
y
distributed famil
y
that includes the most primitive livin
g
cockroaches. The
y
are
g
enerall
y
small (2 cm or less in len
g
th) and often have a hair
y
pronotum. Some inhabit
ar
id
reg
i

ons,
li
v
i
ng
i
n sma
ll b
urrows t
h
at t
h
ey
l
eave to
f
orage at n
i
g
h
t, an
d
a
f
ew spec
i
e
s
are
i

nqu
ili
nes
i
n ants’ nests. Unt
il
1997, t
h
e Cryptocerc
id
ae was cons
id
ere
d
to
i
nc
l
u
de
o
n
ly
t
h
ree spec
i
es, one
b
e

i
n
g
C
.
p
unctu
l
atus,
f
rom mounta
i
nous re
gi
ons
i
n eastern an
d
w
estern United States. However, this number has now been increased to nine followin
g
recent discoveries in Eurasia (four species) and molecular biolo
g
ical anal
y
ses of the Unite
d
S
tates’
p

o
p
u
l
at
i
ons w
hi
c
hi
n
di
cate t
h
a
t
C
. punctu
l
atu
s
i
s a com
pl
ex o
ffi
ve s
p
ec
i

es (Hossa
in
an
d
Kam
bh
ampat
i
, 2001). Stu
di
es on Cr
y
ptocercus
h
ave
b
een part
i
cu
l
ar
l
y
i
mportant
in
di
scuss
i
ons o

f
evo
l
ut
i
onar
yli
n
k
s
b
etween t
h
eB
l
atto
d
ea an
d
term
i
tes. T
h
ese coc
k
roac
h
es
l
ive in colonies containin

g
individuals of all a
g
es beneath rottin
g
lo
g
s and show subsocia
l
behavior. The
y
feed on wood that, as in the “lower” termites, is di
g
ested b
y
fla
g
ellate
p
rotozoans present in the hindgut. As the lining and contents of the hindgut are lost at eac
h
m
o
l
t,
i
nsects must o
b
ta
i

na
f
res
h
supp
l
yo
f
protozoans. T
hi
st
h
ey
d
o
b
y eat
i
ng
f
eca
l
pe
ll
ets.
S
uper
f
ami
l

yB
l
attoi
d
e
a
T
his superfamily includes the BLATTIDAE, BLATTELLIDAE, and BLABERIDAE.
The approximately
5
2
5
species in the cosmopolitan Blattidae are generally fairly large
c
ockroaches (2–
5
cm in length) and may be recognized by the numerous spines on the
v
entroposterior mar
g
in of the femora. The famil
y
contains several species that are closel
y
associated with humans and do considerable dama
g
e to their propert
y
, as well as caus
e

health hazards through contamination of food.
B
latta orientalis
(
the Oriental cockroach)
(
Figure 7.6A) appears to be a native of the Mediterranean region but has been distributed
t
h
roug
h
commerce to many parts o
f
t
h
ewor
ld
.It
i
st
h
ema
j
or coc
k
roac
h
pest
i
nBr

i
ta
in
a
n
di
sw
id
e
ly di
str
ib
ute
d
t
h
rou
gh
out Nort
h
Amer
i
ca. It pre
f
ers
g
enera
lly
coo
l

s
i
tuat
i
ons
a
nd is t
y
picall
y
found in cellars, basements, toilets, bathrooms, and kitchens. It can tolerat
e
warmer conditions
p
rovided that water is available. Four s
p
ecies of Periplaneta, P. ameri-
can
a
(the American cockroach) (Figure 7.6B)
,
P.
au
s
tra
l
a
s
iae (t
h

e Austra
li
an coc
k
roac
h
)
,
P
.
f
u
l
iginosa
(
t
h
e smo
k
ey-
b
rown coc
k
roac
h
), an
d
P
.
b

runnea
(
t
h
e
b
rown coc
k
roac
h
), w
hi
c
h
a
re o
f
A
f
r
i
can or
igi
n, are a
l
so
f
oun
di
nan

d
aroun
dh
uman
h
a
bi
tat
i
ons. A
ll f
our spec
i
es pre
-
f
er warmer, moister habitats than those en
j
o
y
ed b
y
B. orientalis, and are frequentl
y
foun
d
in outdoor habitats in subtropical re
g
ions.
B

l
atte
llid
ae are
g
enera
lly
sma
ll
coc
k
roac
h
es (not usua
lly
more t
h
an a
b
out1cm
in
l
en
g
th), with relativel
y
lon
g
, slender le
g

s. This, the lar
g
est cockroach famil
y
(about 1740
s
pecies), is widel
y
distributed and contains two ma
j
or pest species
,
B
lattella germanica (the
German cockroach) (Figure 7.6C) and
S
upe
ll
a
l
on
g
ipa
l
p
a
(
f
ormer
l

y
s
upe
ll
icti
l
ium
)
(t
h
e
b
rown-
b
an
d
e
d
coc
k
roac
h
). T
h
e German coc
k
roac
h
ran
k

s secon
d
to t
h
eOr
i
enta
l
coc
k
roac
h
i
n econom
i
c
i
mportance. It pre
f
ers warm,
h
um
id
surroun
di
n
g
s, suc
h
as are

f
oun
di
n
b
a
k
er
i
es,
1
6
1
THE
PLE
CO
PTER
O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDER
S
p, ,]

restaurants, an
dd
omest
i
c
ki
tc
h
ens. L
ike
B.
g
erman
i
ca
,
S
.
l
on
g
ipa
l
pa
i
s pro
b
a
bl
yo

f
A
f
r
i
can
or
i
g
i
n. In Nort
h
Amer
i
ca
i
t
b
ecame esta
bli
s
h
e
di
nF
l
or
id
aatt
h

e
b
eg
i
nn
i
ng o
f
t
h
e 20t
h
century
a
nd has now been reported from all states. It is also common in some areas of Canada
.
The famil
y
Blaberidae (1020 species) is the most recentl
y
evolved cockroach famil
y
a
nd the one that has under
g
one the most extensive adaptive radiation. The
g
roup is primaril
y
t

rop
i
ca
l
an
d
conta
i
ns t
h
e
l
argest coc
k
roac
h
spec
i
es. Its mem
b
ers are genera
ll
y
f
oun
d
un-
d
er
l

ogs,
i
n
h
umus, etc., t
h
oug
h
some spec
i
es are ar
b
orea
l
.A
f
ew spec
i
es may occas
i
ona
ll
y
b
ecome assoc
i
ate
d
w
i

t
hh
umans,
f
or examp
l
e
,
Py
cnosce
l
is surinamensis
(
t
h
e Sur
i
nam coc
k
-
roach
),
Leuco
p
haea madera
e
(
the Madeira cockroach
)
,an

d
N
au
p
hoeta cinerea
(
the lobster
cockroach)
.
P.
s
ur
i
namens
i
s
m
a
y
be found in
g
reenhouses or, in warmer climates, outdoor
s
w
h
ere
i
t can s
i
gn

ifi
cant
l
y
d
amage roots o
f
crops;
i
t
i
sa
l
so
f
oun
di
nc
hi
c
k
en
h
ouses an
di
s
k
nown to
b
ean

i
nterme
di
ate
h
ost
f
or t
h
ec
hi
c
k
en eyeworm nemato
d
e
(
Ox
y
spirura manson
i
).
S
uborder Mantodea
I
n mem
b
ers o
f
t

h
esu
b
or
d
er Manto
d
ea t
h
e
h
ea
di
s not covere
d
w
i
t
h
a pronotum; t
h
re
e
ocelli are present; the forele
g
s are raptorial; and the
g
izzard is not well developed
.
162

C
H
A
PTER
7
FIGURE 7.7.
T
he Carolina mantid
,
S
ta
g
mo
-
mantis caro
l
in
a
(
Manto
d
ea). [From M. He
b
ar
d
.
1
934. The Derma
p
tera and Ortho

p
tera of Illinois
,
Bull.
I
ll
.
Nat. Hist.
S
urv
.
20
(
3). By permission of
th
eI
lli
no
i
s Natura
l
H
i
stor
y
Surve
y
.]
S
uper

f
ami
l
y Mantoi
d
e
a
T
he famil
y
AMORPHOSCELIDAE is best represented in the Australasian re
g
ion,
t
h
oug
h
spec
i
es are a
l
so
f
oun
di
nAs
i
a, A
f
r

i
ca, an
d
sout
h
ern Europe. Two morp
h
o
l
og
i
ca
l
f
eatures
di
st
i
ngu
i
s
h
mem
b
ers o
f
t
hi
s
f

am
il
y
f
rom ot
h
er mant
id
s. T
h
e pronotum
i
ss
h
ort,
an
d
t
h
et
ibi
ae an
df
emora o
f
t
h
e raptor
i
a

lf
ore
l
e
g
s
l
ac
k
sp
i
nes. Man
y
spec
i
es are pro-
c
r
y
pticall
y
colored and have various spines and prominences on the head and pronotum.
A
morphoscelids are
g
enerall
y
small and live on the
g
round or on tree trunks. Apterous

f
emales of some Australian species mimic ants though it is unclear whether this assists the
m
ant
id
s
i
n captur
i
ng t
h
e ants as prey or protects t
h
e mant
id
s
f
rom pre
d
ators.
Th
e MANTIDAE (F
i
gure 7.7)
i
s eas
il
yt
h
e

l
argest
f
am
il
yo
f
Manto
d
ea, w
i
t
h
a
l
mos
t
15
00 species, and has a wide distribution throu
g
hout the tropical and warmer temperate
re
g
ions of the world. Adults var
y
in size from
j
ust under 10 mm to over 15 cm. The
y
are

f
requently well camouflaged, living among foliage, on tree trunks, or on the ground; in the
l
atter case t
h
ey act
i
ve
l
y pursue t
h
e
i
r prey. A
ll
mant
id
s
f
oun
di
n Nort
h
Amer
i
ca
b
e
l
ong t

o
t
hi
s
f
am
il
y,
i
nc
l
u
di
ng
f
our t
h
at
h
ave
b
een
i
ntro
d
uce
d
,
f
or examp

l
e,
M
antis re
l
i
g
iosa,
th
e

soothsa
y
er” or “pra
y
in
g
mantis” of southern Europe.
Li
terature
Good accounts of the biolo
gy
of cockroaches are
g
iven b
y
Guthrie and Tindall (19
6
8),
Cornwell (1968, 1976), Bell and Adi

y
odi (1982), and Scha
l
et al.
(
1984
)
. Guthrie and
Tindall, and Cornwell, also deal with their economic im
p
ortance. The biotic associations
o
f cockroaches are discussed by Roth and Willis (1960), and their medical and veterinary
i
mportance by the same authors (19
5
7). The phylogeny and classification of Blattodea i
s
dealt with b
y
McKittrick (19
6
4), Durden (19
6
9), Roth (1970), Grandcolas (199
6
), an
d
Maekawa and Matsumoto (2000). Accounts of mantid biolo
gy

are provided b
y
Gurne
y
(
1950) and Preston-Mafham (1990). North American Dict
y
optera ma
y
be identified from
Rehn (1950), Gurney (1950), Helfer (1987), and Arnett (2000). Harz and Kaltenbach (1976
)
prov
id
e
k
eystot
h
e European genera o
f
D
i
ctyoptera
.
Arnett, R. H., Jr.,
2000
,
A
merican Insects: A Han
db

oo
k
of t
h
e Insects of America Nort
h
of Mexico
,
2n
d
e
d
., CR
C
Press
,
Boca Raton
,
FL.
Beier, M., 1964, Blattopteroidea. Ordnung Mantodea Burmeister 1838 (Raptoriae Latreille 1802; Mantoide
a
Han
dli
rsc
h
1903; Mant
id
ea auct.), Bronn’s K
l
.Or

d
n. Tierreic
hs
6
:
849

8
7
0.
Be
ll
, W. J., an
d
A
diy
o
di
,K.G.(e
d
s.), 1982
,
Th
e American
C
oc
k
roac
h
,C

h
a
p
man&Ha
ll
, Lon
d
on.
C
arpenter. F. M 1992,
Tr
eatise on Invertebrate Paleontology. Part R. Arthropoda
rr
4,
V
ols.
3
a
n
d
4
(
Su
p
erclass
H
exapo
d
a), Un
i

vers
i
ty o
f
Kansas, Lawrence.
C
ornwell
,
P. B.
,
19
6
8
,
197
6,
T
h
e
C
oc
k
roac
h
,V
ols. I and II, Hutchinson, London.
V
V
1
63

THE
PLE
CO
PTER
O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDERS
D
urden, C. J., 1969, Penns
y
lvanian correlation usin
g
blattoid insects
,
C
an.
J
. Earth
S
ci
.
6

:
115
9
–1177
.
Grandcolas, P., 1996, The phylogeny of cockroach families: A cladistic appraisal of morpho-anatomical data
,
C
an.
J
.
Z
oo
l
.
74
:
5
08–
5
27.
Grandcolas, P., and Deleporte, P., 1996, The origin of protistan symbionts in termites and cockroaches: A phylo
-
g
enet
i
c perspect
i
ve
,

Cl
a
d
istics
12
:
93

98
.
Gurne
y
, A. B., 19
5
0, Pra
y
in
g
mantids of the United States, native and introduced,
A
nnu. Rep. Smit
h
son. Inst
.
19
5
0
:33
9
–362

.
Guthrie, D. M., and Tindall, A. R., 19
6
8
,
Th
e Bio
l
ogyoft
h
e Coc
k
roac
h
,
Arno
ld
, Lon
d
on
.
H
arz
,
K.
,
and Kaltenbach
,
A.
,

197
6,
Th
e Ort
h
optera of Europe
,V
ol. III, Junk, The Hague.
VV
H
elfer, J. R., 1987,
H
ow to Know the Grassho
pp
ers, Crickets, Cockroaches and Their Allies,
D
ove
r
,
N
e
w
York
.
H
ossa
i
n, S., an
d
Kam

bh
ampat
i
, S., 2001, P
h
y
l
ogeny o
f
C
ryptocercu
s
spec
i
es (B
l
atto
d
ea: Cryptocerc
id
ae)
i
n
f
erre
d
f
rom nuc
l
ear r

ib
osoma
l
DNA
,
Mo
l
.P
h
y
l
og. Evo
l
.
21
:162–16
5.
M
aekawa, K., and Matsumoto, T., 2000, Molecular phylogeny of cockroaches (Blattaria) based on mitochondria
l
CO
II gene sequences
,
Syst. Entomo
l
.
25
:511–519.
M
cKittrick, F. A., 19

6
4, Evolutionar
y
studies of cockroaches, Mem. Corne
ll
Univ. Agric. Exp. Stn
.
389
:
177
pp
.
P
reston-Mafham, K., 1990
,
Grasshoppers and Mantids o
f
the Worl
d
,
Blandford, London.
R
asn
i
tsyn, A. P., an
d
Qu
i
c
k

e, D. L. J. (e
d
s.), 2002, History o
f
Insect
s
,K
l
uwer, Dor
d
rec
h
t.
R
ehn, J. W. H., 19
5
0,Ake
y
to the
g
enera of North American Blattaria, includin
g
established adventives, Entomo
l
.
N
e
ws
6
1:

6
4–
6
7.
R
ot
h
, L. M., 1970, Evo
l
ut
i
on an
d
taxonom
i
cs
i
gn
ifi
cance o
f
repro
d
uct
i
on
i
nB
l
attar

i
a,
A
nnu. Rev. Entomo
l
.
1
5
:
75

9
6.
R
oth, L. M., and Willis, E. R., 1957, The medical and veterinary importance of cockroaches,
S
mithson.
M
isc.Co
ll
ect
.
134
(10)
:
14
7 pp.
R
oth
,

L. M.
,
and Willis
,
E. R.
,
19
6
0
,
The biotic associations of cockroaches
,
S
mit
h
son. Misc.
C
o
ll
ect.
141
(
4422
):
4
7
0
pp.
Sc
h

a
l
, C., Gaut
i
er, J Y., an
d
Be
ll
, W. J., 1984, Be
h
av
i
ora
l
eco
l
o
gy
o
f
coc
k
roac
h
es
,
B
io
l
.Rev

.
5
9
:209–2
5
4.
5
.
I
sopter
a
S
ynonyms:
T
erm
i
t
i
na, Term
i
t
id
a, Soc
i
a
li
a
C
ommon names
:

t
erm
i
tes, w
hi
te ants
Pol
y
morphic social insects livin
g
in colonies that comprise reproductives, soldiers, and workers;
h
ead with moniliform multisegmented antennae and mandibulate mouthparts, compound eyes
present
b
ut
f
requent
ly d
e
g
enerate, oce
lli
o
f
ten a
b
sent; w
i
n

g
sw
h
en present a
l
most
id
ent
i
ca
l
(
except Mastotermes
)
and membranous, lying horizontally over abdomen at rest, capable o
f
b
e
i
n
g
s
h
e
dby
a pre
d
eterm
i
ne

db
asa
lf
racture,
l
e
g
s
id
ent
i
ca
l
an
d
w
i
t
h
a
l
ar
g
e coxa, tars
i
a
l
most
alwa
y

s four-se
g
mented (five-se
g
mented in
M
astotermes);
c
erci short and with few se
g
ments,
external genitalia lacking in both sexes of most species.
More t
h
an 2300 spec
i
es o
f
term
i
tes are
k
nown, ma
i
n
ly f
rom trop
i
ca
l

to warm temperat
e
areas, thou
g
h a few species are found in cool temperate climates such as those of southern
E
uro
p
e and southern and western North America as far north as southern Canada. Severa
l
spec
i
es
h
ave
b
een transporte
d
to new areas
b
y commerce, an
d
some o
f
t
h
ese
h
ave
b

ecome
esta
bli
s
h
e
di
n
h
eate
db
u
ildi
ngs (e.g.,
i
n Ham
b
urg an
d
Toronto) we
ll
outs
id
et
h
e
i
r norma
l
ran

g
eo
f
c
li
mat
i
cto
l
erance
.
S
tructure
I
na
l
most a
ll
spec
i
es t
h
e mature term
i
te co
l
ony conta
i
ns
i

n
di
v
id
ua
l
so
f
remar
k
a
bl
y
diff
erent
f
orm an
df
unct
i
on. Eac
hg
roup o
fi
n
di
v
id
ua
l

st
h
at per
f
orm t
h
e same
f
unct
i
on
i
s
known as a caste. In most species three castes occur: reproductive (primar
y
and secondar
y;
b
oth male and female
)
, soldier
(
sterile adults of both sexes
)
, and worker
(
also sterile adults
16
4
C

H
A
PTER
7
o
f both sexes). Immature sta
g
es of all castes ma
y
also be present in the colon
y
alon
g
wit
h
(
occasionall
y
) intercastes. As the castes are of different form, it is appropriate to describ
e
them separatel
y
.
R
e
p
roductive.
Th
e
b

o
d
yo
f
pr
i
mary repro
d
uct
i
ves (
ki
ng an
d
queen)
i
s norma
ll
ywe
ll
sclerotized; however, in ph
y
so
g
astric queens, that is, females whose abdomen become
s
e
normousl
y
swollen throu

g
hh
y
pertroph
y
of the ovaries and consequent stretchin
g
of th
e
i
nterse
g
mental membranes (Fi
g
ure 7.11C), the abdomen is pale, and the ori
g
inal ter
g
al an
d
sterna
l
p
l
ates are t
h
eon
l
y areas o
f

sc
l
erot
i
zat
i
on. T
h
e
h
ea
di
s roun
d
or ova
l
an
d
carr
i
es
w
e
ll
-
d
eve
l
ope
d

compoun
d
eyes, mon
ilif
orm antennae w
i
t
h
avar
i
e
d
num
b
er o
f
segments
(g
enera
lly f
ewer
i
n more a
d
vance
d
term
i
tes), an
d

man
dib
u
l
ate mout
h
parts. In Term
i
t
id
a
e
and Rhinotermitidae a small
p
ore, the fontanelle, occurs in the midline between or behind
the compound e
y
es. This marks the openin
g
of the frontal
g
land. In the thorax the pronotum
i
s
di
st
i
nct
i
ve; t

h
et
h
orac
i
c sterna are mem
b
ranous. Exce
p
t
in
M
a
s
toterme
s
,t
h
etwo
p
a
i
rs o
f
wi
ngs are very s
i
m
il
ar

i
n appearance, w
i
t
h
strong
l
ysc
l
erot
i
ze
d
ve
i
ns
i
nt
h
e anter
i
or port
i
on
an
d
a
b
asa
l

(
h
umera
l
) suture a
l
on
g
w
hi
c
hf
racture o
f
t
h
ew
i
n
g
occurs. I
n
M
a
s
toterme
s
th
e
w

in
g
s have a primitive venation; also, the hindwin
g
shavealar
g
e anal lobe as in cockroaches
but
lack a basal suture, thou
g
h a line of weakness occurs to facilitate win
g
sheddin
g
.Th
e
l
egs are a
ll
very s
i
m
il
ar,
h
av
i
ng
l
arge coxae an

df
our- (very rare
l
yt
h
ree-)segmente
d
tars
i
;
in
Ma
s
toterme
s
t
h
e tars
i
are

ve-segmente
d
. Ten o
b
v
i
ous a
bd
om

i
na
l
segments occur w
i
t
h
t
h
e 11t
h
ter
g
um
h
av
i
n
gf
use
d
w
i
t
h
t
h
e 10t
h
,an

d
t
h
e 11t
h
sternum
b
e
i
n
g
represente
dby
the paraprocts. Except in Hodotermitidae, in females the seventh sternum forms a lar
g
e
sub
g
enital plate that obscures the remainin
g
sterna. Short cerci are present that are three
-
to eight-segmented in lower termites but are reduced to an unsegmented or two-segmented
tu
b
erc
l
e
i
n

hi
g
h
er
f
orms. Externa
l
gen
i
ta
li
a are a
b
sent except
in
Ma
s
toterme
s
wh
ere
f
ema
l
es
h
ave a
bl
atto
id

-type ov
i
pos
i
tor an
d
ma
l
es a copu
l
atory organ
.
In neotenics (also called secondar
y
, supplementar
y
, and replacement reproductives) th
e
bod
y
is less sclerotized than that of the primaries. The compound e
y
es are usuall
y
reduced.
N
eotenics may have wing buds or be wingless, their wings having been chewed off by
w
o
r

k
ers. In some spec
i
es
f
ema
l
e neoten
i
cs may
b
ecome p
h
ysogastr
i
c
.
S
oldier
.
Mem
b
ers o
f
t
hi
s caste are rea
dily
reco
g

n
i
ze
dby
t
h
e
i
r
l
ar
g
e, we
ll
-sc
l
erot
i
ze
d
head that in some species ma
y
exceed the rest of the bod
y
in size. Thou
g
h soldiers ma
y
be
o

f either sex, the proportion of male to female individuals in this caste ma
y
var
y
. Primitivel
y
t
h
e man
dibl
es are very
l
arge, somet
i
mes enormous, an
d
su
i
te
df
or
bi
t
i
ng. In ot
h
er spec
i
e
s

i
nw
hi
c
h
t
h
e man
dibl
es are
l
arge t
h
ey may serve as p
i
ncers, or t
h
ey may
b
e asymmetr
i
ca
l
an
dhi
nge
d
so as to snap c
l
ose

d
at great spee
d
,t
h
us
d
e
li
ver
i
ng a power
f
u
lbl
ow to a
n
adversar
y
. In Nasutitermitinae (Fi
g
ure 7.12) the frons is enlar
g
ed to form a more or less
pointed rostrum, at the tip of which opens the frontal
g
land, and the mandibles are reduced o
r
v
estigial. A large frontal gland occurs in both Rhinotermitidae and Termitidae, sometimes

(i
nr
hi
noterm
i
t
id
s) occupy
i
ng most o
f
t
h
ea
bd
omen. T
h
e secret
i
on o
f
t
h
eg
l
an
d
may
b
e

tox
i
c, repe
ll
ent, or st
i
c
k
y;
i
t
i
s usua
ll
y smeare
d
on
i
ntru
d
ers
b
ut
i
n some term
i
tes
i
t can
b

e
ej
ected some distance. In some Kalotermitidae the head is phra
g
motic, that is, has a thick,
sometimes sculptured frons desi
g
ned to plu
g
access holes to the nest and prevent entr
y
of
i
nvaders. Generally soldiers are apterous though in Kalotermitidae and Termitidae they ma
y
d
eve
l
op
f
rom
j
uven
il
es w
i
t
h
w
i

ng
b
u
d
s
.
Worker
.
In most spec
i
es t
h
e
b
o
dy
o
f
wor
k
ers
i
s
g
enera
lly
pa
l
ean
d

wea
kly
sc
l
erot
i
ze
d
.
The head resembles that of a primar
y
reproductive, except that the compound e
y
es ar
e
reduced orabsent and the mandibles more powerful. Workers ma
y
be pol
y
morphic accordin
g
to t
h
e
i
r age an
d
sex.
1
65

THE
PLE
CO
PTER
O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDER
S
Except for the
g
ut, which is modified with their mode of life (and of
g
reat use taxonom
-
icall
y
), the internal structure of termites is
g
eneralized. The esopha
g
us is a lon
g

, narrow
t
ube and is followed b
y
a scarcel
y
differentiated crop. The
g
izzard wall is
g
reatl
y
folde
d
l
ong
i
tu
di
na
ll
y, eac
hf
o
ld h
av
i
ng cut
i
cu

l
ar t
hi
c
k
en
i
ngs an
d
,o
f
ten, teet
h
.T
h
em
id
gut
i
s typ
i-
ca
ll
yas
h
ort tu
b
eo
f
un

if
orm
di
ameter t
h
oug
hi
np
h
ysogastr
i
c queens
i
t may
b
e enormous
ly
en
l
ar
g
e
d
,a
d
eve
l
opment presuma
bly
assoc

i
ate
d
w
i
t
h
a
b
sorpt
i
on o
f
t
h
e
l
ar
g
e quant
i
t
i
es o
f
saliva fed to them b
y
workers. Mesenteric ceca ma
y
or ma

y
not be present. The hind
g
ut i
s
w
ell developed and differentiated into a number of re
g
ions, the most prominent of whic
h
i
st
h
e
l
arge paunc
h
conta
i
n
i
ng
b
acter
i
a
l
or protozoan sym
bi
onts. T

h
e poster
i
or wa
ll
o
f
t
h
e
paunc
h
conta
i
ns co
l
umnar ep
i
t
h
e
li
um an
di
s pro
b
a
bl
yareg
i

on o
f
a
b
sorpt
i
on. In
l
ower ter-
mites (except
M
a
s
toterme
s
w
ith up to 1
5
) 8 Malpi
g
hian tubules enter the
g
ut at the
j
unctio
n
of the mid
g
ut and hind
g

ut; in Termitidae onl
y
4 tubules occur. The central nervous s
y
s-
t
em is orthopteroid, with three thoracic and six abdominal
g
an
g
lia. In reproductive male
s
eac
h
test
i
s compr
i
ses up to 10

nger
lik
e
f
o
lli
c
l
es t
h

at enter t
h
epa
i
re
d
vasa
d
e
f
erent
i
a. At
th
e
j
unct
i
on o
f
t
h
e vasa
d
e
f
erent
i
aan
d

e
j
acu
l
atory
d
uct t
h
ere
i
sapa
i
ro
f
sem
i
na
l
ves
i
c
l
es
.
I
n repro
d
uct
i
ve

f
ema
l
es eac
h
ovar
yi
n
i
t
i
a
lly
conta
i
ns on
ly
a
f
ew pano
i
st
i
covar
i
o
l
es an
d
t

his number remains in lower termites. However, in ph
y
so
g
astric reproductives the numbe
r
increases with maturit
y
, reachin
g
several thousand in some species. The paired oviduct
s
enter t
h
es
h
ort common ov
id
uct, w
hi
c
hl
ea
d
s
i
nto t
h
e gen
i

ta
l
c
h
am
b
er. A spermat
h
eca an
d
accessory g
l
an
d
sa
l
so enter t
hi
sc
h
am
b
er. T
h
e repro
d
uct
i
ve organs are atrop
hi

e
di
nwor
k
er
s
an
d
so
ldi
ers
.
Life Histor
y
and Habits
New co
l
on
i
es may
b
e
f
orme
di
nvar
i
ous ways. By
f
ar t

h
e commonest met
h
o
di
s swarm
-
i
ng,
i
nw
hi
c
hl
arge num
b
ers o
f
w
i
nge
di
n
di
v
id
ua
l
s(a
l

ates)
l
eave t
h
e parent co
l
ony. T
h
e onse
t
of swarmin
g
is closel
y
correlated with climatic conditions. In tropical species it occurs t
y
p-
icall
y
at the onset of the rain
y
season, an adaptation that facilitates nest formation in th
e
d
amp, soft earth for subterranean species. In species from temperate climates swarming
occurs
d
ur
i
ng t

h
e summer. F
li
g
h
ts may occur at any t
i
me o
f
t
h
e
d
ay,
b
ut
f
orag
i
ven spec
i
es
th
ere are
f
requent
l
y spec
ifi
c

h
ours
d
ur
i
ng w
hi
c
h
swarm
i
ng ta
k
es p
l
ace. Swarm
i
ng may
be
t
emporaril
y
postponed, however, if environmental conditions are unsuitable. The distanc
e
t
raveled b
y
the alates is usuall
y
onl

y
a few hundred meters unless the
y
are assisted b
y
wind.
I
t is at this time that termites are most susce
p
tible to
p
redators
.
On
l
an
di
ng
i
n
di
v
id
ua
l
ss
h
e
d
t

h
e
i
rw
i
ngs, an
d
ama
l
e
i
s attracte
d
(pro
b
a
bl
yc
h
em
i
ca
ll
y)
t
oa
f
ema
l
e, w

hi
c
hh
e
f
o
ll
ows unt
il
s
h
e
l
ocates a su
i
ta
bl
e nest
i
ng s
i
te. A
f
ter c
l
os
i
ng t
h
e

entrance to t
h
e nest, t
h
ero
y
a
l
pa
i
r, as t
h
e
f
oun
di
n
g
pa
i
r
i
sca
ll
e
d
, mate w
i
t
hi

na
f
ew
h
ours o
r
d
a
y
s. (Matin
g
is, however, periodicall
y
repeated throu
g
hout the life of the pair.) E
gg
la
y
in
g
b
e
g
ins soon after the ro
y
al pair have become established, but the first batch of e
gg
s is usuall
y

l
ess t
h
an 20, an
d
egg
l
ay
i
ng
i
s not resume
d
unt
il
t
h
e young are capa
bl
eo
fl
oo
ki
ng a
f
ter
th
emse
l
ves an

df
ee
di
ng t
h
e queen. In
i
t
i
a
ll
yon
l
ywor
k
ers are pro
d
uce
db
ut, as t
h
e num
b
er
o
fi
n
di
v
id

ua
l
s
i
ncreases, so
ldi
ers
diff
erent
i
ate. A
l
ates are not pro
d
uce
d
unt
il
t
h
eco
l
ony
i
s
several
y
ears old while neotenics normall
y
differentiate onl

y
if the primar
y
reproductives
are lost. The ori
g
inal ro
y
al pair ma
y
live for a considerable time (e.
g
., at least 17
y
ears in
Mastotermes
)
and, at maturity, a physogastric queen may produce up to 3000 eggs daily
.
I
t
i
s
lik
e
l
y,
h
owever, t
h

at suc
h
a
hi
g
h
rate
i
s not susta
i
ne
d
on a year-roun
db
as
i
s
b
ut
is
seasona
l
.T
h
e proport
i
ons o
f
t
h

e
diff
erent castes vary;
f
or examp
l
e,
in
N
asutitermes
u
pto
1
5
% of individuals ma
y
be soldiers whereas in man
y
Kalotermitidae the fraction is less tha
n
166
C
H
A
PTER
7
1
%
,
and in Invasitermes

s
pp. which live in the nests of other termites there is no soldie
r
c
aste. The differentiation of the various castes and their maintenance in a fixed ratio to each
o
ther are complex phenomena, controlled b
y
the interaction of pheromonal, nutritional
,
h
ormona
l
,an
d
per
h
aps ot
h
er
f
actors (see C
h
apter 21, Sect
i
on 7). A co
l
ony matures (
i
.e.,

b
eg
i
ns pro
d
uc
i
ng w
i
nge
d
repro
d
uct
i
ves) a
f
ter severa
l
years,
b
ut
i
t cont
i
nues to
i
ncrease
in
s

i
ze a
f
ter t
hi
st
i
me. It
i
so
b
v
i
ous
ly diffi
cu
l
ttoest
i
mate t
h
e num
b
er o
fi
n
di
v
id
ua

l
s
i
n mature
c
olonies, but in the lower termites the fi
g
ure is usuall
y
several hundred or thousands, while
i
n the hi
g
her termites it ma
y
be several million.
Two
ot
h
er met
h
o
d
so
f
co
l
ony
f
oun

d
at
i
on are
k
nown. In some spec
i
es,
i
nw
hi
c
h
t
h
e
n
est
i
s a rat
h
er
diff
use structure, groups o
fi
n
di
v
id
ua

l
s may
b
ecome more or
l
ess
i
so
l
ate
d
f
rom the rest of the colon
y
. In these
g
roups neotenics differentiate, and the
g
roup becomes
i
ndependent of the parent colon
y
. This is described as buddin
g
. The foundation of new
c
olonies b
y
deliberate social fra
g

mentation (sociotom
y
) has been reported for a few species.
In t
hi
ss
i
tuat
i
on many
i
n
di
v
id
ua
l
so
f
a
ll
castes (o
f
ten
i
nc
l
u
di
ng t

h
eor
i
g
i
na
l
roya
l
pa
i
r)
e
merge
f
rom t
h
e parent co
l
ony an
d
marc
h
toanew
l
ocat
i
on. T
h
eor

i
g
i
na
l
co
l
ony t
h
en
b
ecomes
h
ea
d
e
dby
neoten
i
cs.
T
ermite nests exhibit a wide ran
g
e of form, the complexit
y
of which parallels approxi
-
m
atel
y

the ph
y
lo
g
en
y
of the order. In the primitive Kalotermitidae and Termopsidae the nes
t
i
ss
i
mp
l
y a ser
i
es o
f
cav
i
t
i
es an
d
tunne
l
s excavate
di
nwoo
d
. Few part

i
t
i
ons are constructe
d
b
yt
h
ese term
i
tes, an
d
t
h
ere
i
sno
diff
erent
i
at
i
on o
f
t
h
e nest
i
nto spec
ifi

creg
i
ons. In ot
h
er
l
ower term
i
tes t
h
e nest ma
yb
e
i
nwoo
d
or su
b
terranean,
b
ut even
i
nt
h
e
f
ormer s
i
tuat
i

o
n
c
ontact with the
g
round is maintained b
y
a series of tunnels. This ensures that the humid-
i
t
y
of the nest remains hi
g
h. Most Hodotermitidae build completel
y
subterranean nests, i
n
w
hich the beginnings of specialization are seen. Food is stored in chambers immediatel
y
b
e
l
ow t
h
e sur
f
ace o
f
t

h
e groun
d
.T
h
ema
i
nc
h
am
b
er, w
hi
c
hi
s cons
id
era
bl
ysu
bdi
v
id
e
dby
b
ot
hh
or
i

zonta
l
an
d
vert
i
ca
l
wa
ll
s
,i
s severa
lf
eet
b
e
l
ow t
h
e sur
f
ace. However
,i
n nests o
f
this famil
y
there is no chamber specificall
y

for the ro
y
al pair. Nests of Rhinotermitidae ma
y
be entirel
y
in soil or in wood or in both of these media. In a few Hodotermitidae, som
e
Rhinotermitidae in the genus
C
optotermes
,
and many Termitidae epigeous (above-ground
)
n
ests are constructe
d
(F
i
gure 7.8), t
h
oug
hi
ts
h
ou
ld b
e emp
h
as

i
ze
d
t
h
at even
i
nt
h
ese spec
i
es
a cons
id
era
bl
e port
i
on o
f
t
h
e nest may
b
esu
b
terranean. In t
h
es
i

mp
l
est ep
i
geous nests
li
tt
l
e
differentiation occurs between the peripheral and internal parts, which comprise a mass of
i
nterconnectin
g
, uniform chambers; the ro
y
al chamber is either absent or located in the sub
-
terranean part of the nest. In more complex nests the above-
g
round component comprises
at
hi
c
k
per
i
p
h
era
l

wa
ll
enc
l
ose
d
w
i
t
hi
nw
hi
c
hi
st
h
e
h
a
bi
tac
l
e (nursery) an
d
surroun
di
ng
f
oo
d

c
h
am
b
ers. T
h
eroya
l
c
h
am
b
er
i
s usua
ll
y
l
ocate
d
near t
h
e
b
ase o
f
t
h
e structure
.

Ama
j
or pro
bl
em
f
or a
ll
soc
i
a
li
nsects
i
sma
i
ntenance o
f
asu
i
ta
bl
e nest c
li
mate. Re
g
-
ulation of relative humidit
y
, temperature, and carbon dioxide concentration occurs (Korb

,
2
003). For termites that live in wetter re
g
ions humidit
y
re
g
ulation is not a serious problem,
and the relative humidity within the nest is generally 96% to 99%. In termites from region
s
w
i
t
hl
ong
d
ry spe
ll
svar
i
ous
b
e
h
av
i
ora
l
a

d
aptat
i
ons ensure t
h
ewe
ll
-
b
e
i
ng o
f
aco
l
ony. T
he
c
ommonest o
f
t
h
ese
i
s
f
or t
h
e term
i

tes to move more
d
eep
ly i
nto t
h
e
g
roun
d
w
h
ere t
h
emo
i
s-
ture content is
g
reater. Other species behave like hone
y
bees and re
g
ur
g
itate saliva or crop
c
ontents onto the walls of the nest, especiall
y
in the nurser

y
re
g
ion. Some species burro
w
deeply into the ground to the level of the water table and bring moisture-laden particles up
i
nto t
h
e nest area.
T
emperature
i
sa
l
so regu
l
ate
di
n some term
i
te nests to a remar
k
a
bl
e
d
egree. To some
e
xtent this is facilitated b

y
the location of the nests in wood and soil, which serve as excellent
1
67
THE
PLE
CO
PTER
O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDER
S
F
IGURE 7.8
.
M
atu
r
e
n
est o
f Bellico

s
iterme
s
natalen
s
i
s
(Termitidae). [After P P. Grass´e (ed.), 1949
,
Tr
ait
rr
ede
´
Z
oo
l
ogie
,V
ol. IX. By permission of Masson, Paris.]
V
V
b
u
f
fers against sudden changes in external temperature. In cold weather, termites behave
f
f
much like bees, clusterin
g

to
g
ether in the center of the nest and effectivel
y
reducin
g
th
e
“operating space,” whose temperature must be maintained by metabolic heat. In mound-
b
u
ildi
ng term
i
tes, w
h
ose nest may
b
e
f
u
ll
y expose
d
to t
h
e sun, t
h
e temperature
i

nt
h
e center
o
f
t
h
e nest
i
s
h
e
ld
stea
d
y as a resu
l
to
f
t
h
e exce
ll
ent
i
nsu
l
at
i
on prov

id
e
db
ye
i
t
h
er t
hi
c
k
wa
ll
s
or thin, cavit
y
-bearin
g
walls in which food is stored. However, as the de
g
ree of insulatio
n
from external temperature fluctuations increases, so does the problem of
g
as exchan
g
e
.
Although it has been shown experimentally that termites can withstand very high carbon
di

ox
id
e concentrat
i
ons,

e
ld
stu
di
es
h
ave
i
n
di
cate
d
t
h
at un
d
er natura
l
con
di
t
i
ons t
h

ey
d
o
not
f
ace t
hi
s pro
bl
em
b
ecause o
f
t
h
e nest’s a
i
r-con
di
t
i
on
i
ng system. Convect
i
on currents
,
create
dby
t

h
e
diff
erent temperatures at t
h
e center an
d
per
i
p
h
er
y
o
f
t
h
e nest, are t
h
e
b
as
i
s
of the s
y
stem. In Bellicositermes natalensi
s
t
he heat created in the central (nurser

y
) are
a
causes the air in this re
g
ion to rise to the upper chamber (Fi
g
ure 7.8). The air then moves
a
l
ong t
h
era
di
a
ld
ucts to t
h
e per
i
p
h
era
l
reg
i
on o
f
t
h

e nest, w
hi
c
h
compr
i
ses a system o
f
thi
n-wa
ll
e
d
tu
b
es. Car
b
on
di
ox
id
ean
d
oxygen can
diff
use eas
il
y across t
h
ese wa

ll
s. As t
he

f
res
h
”a
i
r
i
nt
h
e per
i
p
h
era
l
tu
b
es coo
l
s,
i
ts
i
n
k
s

i
nto t
h
e “ce
ll
ar” o
f
t
h
e nest, eventua
lly
to
b
e drawn b
y
convection back into the central area.
Termites are primitivel
y
wood-eatin
g
insects, and this habit is retained in most lowe
r
t
erm
i
tes an
d
many o
f
t

h
e
hi
g
h
er
f
orms. Ot
h
ers
f
ee
d
on
d
ry grass,
f
ung
i
,
l
eaves,
h
umus,
r
i
c
h
so
il

,an
dh
er
bi
vore
d
ung. In most spec
i
es
f
oo
di
s consume
d
at
i
ts source,
i
n
di
v
id
ua
l
s
rema
i
n
i
n

gi
nt
h
e nest
b
e
i
n
gf
e
dby
trop
h
a
ll
ax
i
s (see
b
e
l
ow). However, some term
i
tes trave
l
considerable distances (e.
g
., 100 m or more in
M
astotermes

)
from the nest to a food source
.
168
C
H
A
PTER
7
Fora
g
in
g
ma
y
be done via under
g
round tunnels or thin-walled surface tubes, or in the ope
n
at ni
g
ht or on humid, overcast da
y
s. Man
y
species release trail-markin
g
pheromones (se
e
Cha

p
ter 13, Section 4.5).
Ce
ll
u
l
ose
i
st
h
epr
i
mary component use
db
yt
h
e term
i
tes w
h
ose m
id
gut pro
d
uces ce
l
-
l
u
l

ase. In a
ddi
t
i
on, to
f
ac
ili
tate
b
rea
kd
own an
d
use o
f
t
h
e
f
oo
d
, comp
l
ex re
l
at
i
ons
hi

ps
h
ave
ev
o
l
ve
db
etween term
i
tes an
d
m
i
croor
g
an
i
sms (protozoa,
b
acter
i
a, an
df
un
gi
). In a
ll f
am
ili

e
s
e
xcept Termitidae, protozoa in the paunch produce a ran
g
eofenz
y
mes (includin
g
cellulase
)
that de
g
rade the food into or
g
anic acids such as acetate and but
y
rate. In Termitidae anaerobi
c
b
acter
i
a rep
l
ace protozoa
i
nt
h
e paunc
h

,t
h
oug
h
t
h
e
b
acter
i
a
d
o not t
h
emse
l
ves
b
rea
kd
own
c
e
ll
u
l
ose. W
i
t
hi

nt
h
e Term
i
t
id
ae, mem
b
ers o
f
t
h
esu
bf
am
il
y Macroterm
i
t
i
nae a
l
so cu
l
ture
a basidiom
y
cete fun
g
us of the

g
enus Termitom
y
ce
s
in special “fun
g
us
g
ardens.” Althou
gh
the occurrence of these structures has been known since 1779, it is onl
y
quite recentl
y
tha
t
the precise relationship between the termite and fun
g
us has been established. In a t
y
pical
f
ungus gar
d
en t
h
e
f
ungus grows on s

h
eets o
f
re
ddi
s
h
-
b
rown “com
b
”(
d
ecay
i
ng vegeta
ble
m
ater
i
a
l
)an
di
sv
i
s
ibl
easaw
hi

t
i
s
h
myce
li
um conta
i
n
i
ng con
idi
aan
d
con
idi
op
h
ores. T
hi
s
l
atter o
b
servat
i
on
l
e
d

ear
ly
aut
h
ors to su
gg
est t
h
at t
h
e
y
oun
g
term
i
tes were
f
e
d
on t
h
e
f
un-
g
us, thou
g
h it soon became apparent that the small amount of fun
g

us would not satisf
y
even
their requirements. It was some time before it was realized that the comb was a d
y
nami
c
s
tructure,
b
e
i
ng remove
df
rom
b
e
l
ow an
db
u
il
tupon
i
ts upper sur
f
ace or
i
nt
h

e space
b
e
-
n
eat
h
.Inot
h
er wor
d
s, t
h
e com
bf
orms t
h
e
f
oo
d
o
f
t
h
e term
i
tes. Us
i
ng sta

i
n
i
ng tec
h
n
i
ques,
i
t
h
as
b
een s
h
own t
h
at t
h
epr
i
mar
y
ro
l
eo
f
t
h
e

f
un
g
us
i
s
dig
est
i
on o
f
t
h
e
lig
n
i
n component
o
f the comb, releasin
g
material that is then broken down b
y
bacteria in the termites’
g
ut.
S
econdaril
y
, however, the fun

g
us also provides vitamins and a source of nitro
g
en. Another
point of contention was the method of comb construction. It was believed originally that the
term
i
tes regurg
i
tate
d
c
h
ewe
d
-up
f
oo
d
to pro
d
uce com
b
,
b
ut more recent wor
kh
as s
h
own

t
h
at t
h
e com
bi
s
d
er
i
ve
df
rom
f
eces. T
h
us, t
h
e vegeta
bl
e mater
i
a
l
passes tw
i
ce t
h
roug
h

t
he
g
ut of Termitidae, a situation that is comparable with that in other termite families in which
proctodeal feedin
g
is an important method of extractin
g
the maximum nutrition from th
e
f
ood (see below).
O
n
l
ywor
k
ers are a
bl
eto
f
ee
d
t
h
emse
l
ves. Mem
b
ers o

f
ot
h
er castes an
d
very young
s
tages must
b
e
f
e
d
. Furt
h
ermore, t
h
e
i
r
di
et, as
i
not
h
er soc
i
a
li
nsects,

i
s
diff
erent to a greate
r
o
r lesser de
g
ree from that of workers. Exchan
g
e of food material (trophallaxis) occurs either
b
y
anus-to-mouth transfer (proctodeal feedin
g
)orb
y
mouth-to-mouth transfer (stomodea
l
f
eedin
g
). The former method takes place in all families except the Termitidae, and normall
y
i
t occurs on
l
y
b
etween wor

k
ers or
l
arger
j
uven
il
es, a
l
t
h
oug
h
occas
i
ona
ll
yso
ldi
ers may act
as
d
onors. Procto
d
ea
lf
oo
di
sa
li

qu
id
conta
i
n
i
ng protozoans, pro
d
ucts o
fdi
gest
i
on, an
d
un
dig
este
df
oo
d
. Stomo
d
ea
lf
oo
di
se
i
t
h

er a sem
i
so
lid
mater
i
a
l
compr
i
s
i
n
g
t
h
ere
g
ur
gi
tate
d
c
ontents of the cro
p
, which are fed to soldiers in the lower termite families, or saliva, whic
h
appears to be the onl
y
food received b

y
reproductives of all families, ver
yy
oun
g
sta
g
es of
l
ower term
i
tes, an
d
a
ll j
uven
il
e stages an
d
so
ldi
ers o
f
Term
i
t
id
ae.
P
hylogeny and

C
lass
ifi
cat
i
o
n
T
here is little doubt that termites are derived from Paleozoic cockroachlike ancestor
s
perhaps similar in some ways to Cryptocercus punctulatus
,
a subsocial, wood-eating cock
-
roac
h
.In
d
ee
d,
some aut
h
or
i
t
i
es cons
id
er t
h

es
i
m
il
ar
i
t
i
es
b
etween term
i
tes an
d
coc
k
roac
h
es
to
b
esu
ffi
c
i
ent
l
y great as to
i
nc

l
u
d
et
h
e
f
ormer as a su
b
or
d
er o
f
t
h
eD
i
ctyoptera; t
h
at
i
s, t
h
e
termites are eusocial cockroaches (E
gg
leton, 2001). The earliest fossil termites are fro
m
1
69

T
HE
PLECOPTEROID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDERS
F
IGURE 7.9
.
P
ropose
d
p
h
y
l
ogeny o
f
Isoptera
.
th
e Lower Cretaceous an
d
are ass

i
gna
bl
etot
h
e
f
am
il
yHo
d
oterm
i
t
id
ae. Strange
l
y,
f
oss
il
M
astoterm
i
t
id
ae, w
id
e
ly

accepte
d
as t
h
e most pr
i
m
i
t
i
ve term
i
te
g
roup, are
k
nown on
ly f
rom
t
he Late Oli
g
ocene. It is anticipated that fossil remains of the order will eventuall
y
be found
in Jurassic or Triassic de
p
osits (Car
p
enter, 1992).

The possible relationships of the extant termite families are shown in Figure 7.9, though
i
ts
h
ou
ld b
e emp
h
as
i
ze
d
t
h
at aut
h
or
i
t
i
es st
ill di
sagree over t
h
e status o
f
some groups an
d
re
l

at
i
ons
hi
ps
b
ot
h
w
i
t
hi
nan
db
etween t
h
em, pr
i
nc
i
pa
ll
y
b
ecause o
f
t
h
e
hi

g
hd
egree o
f
con
-
v
er
g
ence that has occurred as a result of their specialized mode of life (see Donovan
et al.
,
2000). The Mastotermitidae appear to be the sister
g
roup to other termites. The Kalotermi
-
t
idae share a number of features (mandibular dentition,
p
resence of ocelli, and an aroliu
m
on t
h
e tarsus) w
i
t
h
t
h
e Mastoterm

i
t
id
ae, an
di
n some ear
l
ysc
h
emes (e.g., t
h
at o
f
Kr
i
s
h
na,
1970) were s
h
own as
i
ts s
i
ster group. T
h
ese common
f
eatures are now t
h

oug
h
tto
h
av
e
resulted from parallel evolution, with some studies indicatin
g
that the kalotermitids are the
sister
g
roup to the (Rhinotermitidae
+
S
erritermitidae
+
T
ermitidae
)
. The Hodotermitidae
constitute another primitive family, from an early form of which arose the Termopsidae
.
Th
e termops
id
s, too, are cons
id
ere
d
pr

i
m
i
t
i
ve;
f
or examp
l
e, some genera
h
ave t
h
ree teet
h
on t
h
e
l
e
f
t man
dibl
e
,
a
f
eature a
l
so

f
oun
di
n coc
k
roac
h
es. T
h
eR
hi
noterm
i
t
id
ae
,
w
hi
c
h
appear to
h
ave evo
l
ve
df
rom an ear
ly k
a

l
oterm
i
t
id
ancestor,
i
sa
h
etero
g
eneous an
d lik
e
ly
polyphyletic group (Grass´
e, 1982–1986). The position of the single-species family Serriter-
´
mitidae is questionable. Thou
g
h included previousl
y
in the Rhinotermitidae or Termitidae
b
ecause o
fi
ts m
i
xture o
f

c
h
aracters,
i
t
i
s pro
b
a
bl
y
b
est to cons
id
er t
h
e group as a
di
s-
ti
nct
f
am
il
yt
h
at,
lik
et
h

e Term
i
t
id
ae, evo
l
ve
df
rom ear
l
yr
hi
noterm
i
t
id
stoc
k
.T
h
e
f
am
ili
es
M
astoterm
i
t
id

ae
,
Ka
l
oterm
i
t
id
ae
,
Ho
d
oterm
i
t
id
ae
,
R
hi
noterm
i
t
id
ae
,
an
d
Serr
i

term
i
t
id
ae are
collectivel
y
known as the lower termites. Common to them all is a mutualistic relationshi
p
b
etween the termite host and certain fla
g
ellate protozoans found in the hind
g
ut. In the re
-
ma
i
n
i
ng term
i
te
f
am
il
y, Term
i
t
id

ae, o
f
ten ca
ll
e
dhi
g
h
er term
i
tes, t
h
ere are genera
ll
y
f
ew
or no protozoans
i
nt
h
e
hi
n
d
gut, an
d
t
h
ere

l
at
i
ons
hi
p
b
etween t
h
em an
d
t
h
e
h
ost
i
snever
mutua
li
st
i
c. W
h
ere suc
h
are
l
at
i

ons
hi
pex
i
sts
i
t
i
s
b
etween t
h
e term
i
te an
d
t
h
e
b
acter
i
ao
f
t
he hind
g
ut.
1
7

0
C
H
A
PTER
7
F
IGURE 7.10. Castes o
f
t
h
e
l
ower term
i
te, Ho
d
otermes mossam
b
icus (Ho
d
oterm
i
t
id
ae). (A) A
l
ate; (B) pseu
d-
e

r
g
ate; and (C) soldier. [From W. H. G. Coaton, 19
5
8, The hodotermitid harvester termites of South Africa
,
U
nion o
f
South A
f
rica, Department o
f
Agricultural Science Bulletin,
V
ol. 375. By permission of the South African
V
V
Department o
f
A
g
r
i
cu
l
tura
l
Tec
h

n
i
ca
l
Serv
i
ces.]
Th
e
f
am
il
y MASTOTERMITIDAE conta
i
nsas
i
ng
l
e
li
v
i
ng spec
i
es
,
M
a
s
toterme

sd
ar
-
w
iniensis
,
en
d
em
i
c to trop
i
ca
l
areas o
f
nort
h
ern Austra
li
aan
di
ntro
d
uce
db
y commerce
i
nto
New Guinea.

M
astotermes
h
as a lar
g
e number of primitive characters that would suppor
t
the idea of a close relationshi
p
between the cockroaches and termites. These include th
e
five-segmented tarsi, long multisegmented antennae, well-developed compound eyes an
d
o
ce
lli
, net
lik
ew
i
ng venat
i
on,
di
st
i
nct ana
ll
o
b

e
i
nt
h
e
hi
n
d
w
i
ng, a
b
sence o
f
a
b
asa
l
suture
i
n
t
h
e
hi
n
d
w
i
ng, certa

i
n structura
l
s
i
m
il
ar
i
t
i
es
i
nt
h
eg
i
zzar
d
an
d
gen
i
ta
li
ao
fb
ot
h
groups, an

d
the la
y
in
g
of e
gg
s in an ootheca, a feature found in no other termite famil
y.
M
a
s
toterme
s
n
ormall
y
exists in small colonies but after disturbances that lead to increased food supplies,
c
olony size can increase rapidly to over a million individuals. The species is economi
-
c
a
ll
y very
i
mportant t
h
roug
hi

ts
d
estruct
i
on o
f
structura
l
t
i
m
b
er,
li
v
i
ng p
l
ant mater
i
a
l
,an
d
s
ynt
h
et
i
c mater

i
a
l
s
.
In the famil
y
HODOTERMITIDAE (Fi
g
ure 7.10) are about 1
5
species of so-called
harvester termites that fora
g
e above
g
round for
g
rass, leaves, etc., which are then stored i
n
s
pecial chambers in their predominantl
y
under
g
round nests. Hodotermitids t
y
picall
y
occur

i
n
d
esert an
d
steppe reg
i
ons o
f
t
h
eO
ld
Wor
ld
,
i
nc
l
u
di
ng nort
h
ern an
d
sout
h
ern A
f
r

i
ca,
across t
h
e Near an
d
M
iddl
e East to nort
h
In
di
a, Pa
ki
stan, an
d
A
f
g
h
an
i
stan.
T
he TERMOPSIDAE is a ver
y
small (1
5
species), primitive termite famil
y

, com
-
m
onl
y
known as the damp-wood termites, found especiall
y
in fun
g
us-affected wood, either
1
7
1
THE
PLE
CO
PTER
O
ID
,
BLATTOID, AND
O
RTH
O
PTER
O
ID
ORDER
S
standin

g
pt or fallen, occasionall
y
in damp structural timbers. The
g
roup is primaril
y
a north
-
ern warm temperate famil
y
, thou
g
h some species are found in cool temperate re
g
ions i
n
b
oth Northern and Southern Hemis
p
heres
.
Mem
b
ers o
f
t
h
e
f

am
il
y KALOTERMITIDAE (300 spec
i
es) are ca
ll
e
dd
ry-woo
d
ter-
m
i
tes
f
rom t
h
e
i
r
h
a
bi
to
fli
v
i
ng
i
n soun

d
,
d
ry woo
d
t
h
at
i
s not
i
n contact w
i
t
h
t
h
e groun
d
.
Th
e
f
am
ily i
s extreme
ly
w
id
esprea

d
,w
i
t
h
representat
i
ves
i
na
ll
trop
i
ca
l
an
d
some coo
l
t
emperate re
g
ions. Several extant
g
enera are also known from fossils. It is onl
y
in this
famil
y
that soldiers with phra

g
motic heads occur. Some species are of ma
j
or economi
c
i
mportance.
Most of the about 1
6
0 species in the widespread family RHINOTERMITIDAE are sub-
t
erranean forms that live in buried, rottin
g
wood. Some species, however, construct nest
s
d
irectl
y
in the soil, or in rottin
g
lo
g
s above
g
round, and
y
et others build a mound nest. All
species are wood eaters, and man
y
are extremel

y
important economicall
y
includin
g
Reti
-
cu
l
itermes flavipes
a
n
d
R
.
h
esperus
i
nt
h
e eastern an
d
western Un
i
te
d
States, respect
i
ve
l

y.
An
i
nterest
i
ng
f
eature o
f
some spec
i
es
i
st
h
e occurrence o
fdi
morp
hi
sm
i
nt
h
eso
ldi
ers. T
h
e
l
ar

g
er
f
orm reta
i
ns t
h
e
l
ar
g
e
bi
t
i
n
g
man
dibl
es; t
h
e sma
ll
er
f
orm
h
as re
d
uce

d
man
dibl
es,
b
u
t
t
he labrum is elon
g
ate and
g
rooved, enablin
g
the insect to smear the noxious secretion fro
m
t
he frontal
g
land onto invaders
.
Serritermes serri
f
er,
f
rom Braz
il
,
i
st

h
eon
l
y mem
b
er o
f
t
h
e
f
am
il
y SERR
l
TERMI
-
T
IDAE. Among t
h
e sma
ll
est o
f
term
i
tes (a
l
ates are a
b

out4mm
l
ong)
,
S
erritermes
h
as a
m
i
xture o
f
c
h
aracters t
h
at
l
e
d
ear
ly
aut
h
ors to p
l
ace
i
t
i

nt
h
eR
hi
noterm
i
t
id
ae or Term
i
t
id
ae
.
However, the existence of protozoa in the hind
g
ut would seem to rule out the latter possibil-
it
y
. Colonies of this species have been found onl
y
in the outer wall of nests of
C
ornitermes
(Nasutitermitinae, see below).
I
t
i
sw
i

t
hi
nt
h
e
f
am
il
y TERMITIDAE (F
i
gure 7.11), w
hi
c
h
conta
i
ns a
b
out t
h
ree quarter
s
o
f
t
h
e
li
v
i

ng term
i
te spec
i
es, t
h
at t
h
e greatest range o
f
soc
i
a
ld
eve
l
opment an
d
spec
i
a
li
zat
i
on
exists. Four subfamilies are reco
g
nized b
y
Grass´e

(
1982–198
6
) in this possibl
y
pol
y
ph
y
leti
c
g
roup: (1) the cosmopolitan and lar
g
est subfamil
y
(with about 800 species), TERMITlNAE,
in which the two major groups are th
e
A
miterme
s
group (soldiers with biting mandibles)
a
n
d the
Terme
s
c
omp

l
ex (so
ldi
ers w
i
t
h
snapp
i
ng man
dibl
es); (2) APICOTERMITINAE, an
al
most ent
i
re
l
yA
f
r
i
can su
bf
am
il
y(a
f
ew spec
i
es o

f
uncerta
i
na
ffi
n
i
ty occur
i
n Sout
h
Amer
i
c
a
a
nd eastern Asia) made up of two main
g
roups, the A
p
icotermes
g
roup and the Ano
p
lotermes
g
roup (there is no soldier caste in species in the latter
g
roup); (3) MACROTERMITINAE
,

which contains the Old World fun
g
us-
g
rowin
g
termites; and (4) NASUTITERMITINAE,
t
he second largest subfamily with more than 500 species, characterized by the evolutionar
y
d
eve
l
opment
i
nso
ldi
ers o
f
a rostrum (nasus) at t
h
et
i
po
f
w
hi
c
h
opens t

h
e
f
ronta
l
g
l
an
d
(F
ig
ure 7.12). T
h
e
y
are consequent
ly k
nown as “nasute so
ldi
ers.” T
h
est
i
c
ky
,
i
rr
i
tant


u
id
from the
g
land is either dribbled and smeared or forcefull
y
e
j
ected onto nest invaders. In
man
y
species the soldiers are di- or trimorphic, accordin
g
to the a
g
e and sex of the sta
g
e
f
rom w
hi
c
h
t
h
ey
diff
erent
i

ate
.
L
i
t
e
r
a
t
u
r
e
Krishna and Weesner (1969, 1970) have edited two volumes entitled “Biolo
gy
of Ter-
mites” in which all aspects of termite biology are discussed. Grass´e’s (1982–1986) three-
vo
l
ume treat
i
se a
l
so prov
id
es compre
h
ens
i
ve coverage o
f

t
h
e group. Ot
h
er
i
ntro
d
uct
i
ons
t
ot
h
e
bi
o
l
ogy o
f
t
h
eor
d
er are g
i
ven
b
yW
il

son (1971), Howse (1970), Harr
i
s (1971),
a
nd Pearce (1997). Termite ph
y
lo
g
en
y
is discussed b
y
McKittrick (19
6
4), Krishna (1970)
,

×