Tải bản đầy đủ (.doc) (1 trang)

BÀI TẬP VỀ HAI ĐT VUÔNG GÓC (ôn thi vào 10)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (68.95 KB, 1 trang )

Cỏc dng toỏn ụn thi vo 10 Trng THCS T L
Các dạng toán về chứng minh hai đờng thẳng vuông góc
Câu 1 ( 3 điểm ) .
Cho tam giác vuông ABC ( góc A = 90
0
) nội tiếp đờng tròn tâm O , kẻ đờng kính AD .
1) Chứng minh tứ giác ABCD là hình chữ nhật .
2) Gọi M , N thứ tự là hình chiếu vuông góc của B , C trên AD , AH là đờng cao của
tam giác ( H trên cạnh BC ) . Chứng minh HM vuông góc với AC .
3) Xác định tâm đờng tròn ngoại tiếp tam giác MHN .
4) Gọi bán kính đờng tròn ngoại tiếp và đờng tròn nội tiếp tam giác ABC là R và
r . Chứng minh
ACABrR .+
Câu 2 ( 4 điểm )
Cho tam giác ABC nội tiếp đờng tròn tâm O , đờng phân giác trong của góc A cắt cạnh BC
tại D và cắt đờng tròn ngoại tiếp tại I .
a) Chứng minh rằng OI vuông góc với BC .
b) Chứng minh BI
2
= AI.DI .
c) Gọi H là hình chiếu vuông góc của A trên BC.Chứng minh góc BAH = góc CAO
d) Chứng minh góc HAO =
à à
B C
Câu 3 ( 3 điểm )
Cho hai đờng tròn (O
1
) và (O
2
) có bán kính bằng R cắt nhau tại A và B , qua A vẽ cát tuyến
cắt hai đờng tròn (O


1
) và (O
2
) thứ tự tại E và F, đờng thẳng EC , DF cắt nhau tại P
1) Chứng minh rằng : BE = BF .
2) Một cát tuyến qua A và vuông góc với AB cắt (O
1
) và (O
2
) lần lợt tại C,D . Chứng
minh tứ giác BEPF , BCPD nội tiếp và BP vuông góc với EF .
3) Tính diện tích phần giao nhau của hai đờng tròn khi AB = R .
Câu 4 ( 3 điểm )
Cho hình vuông ABCD , trên cạnh BC lấy 1 điểm M . Đờng tròn đờng kính AM cắt đờng
tròn đờng kính BC tại N và cắt cạnh AD tại E .
1) Chứng minh E, N , C thẳng hàng .
2) Gọi F là giao điểm của BN và DC . Chứng minh
CDEBCF
=
3) Chứng minh rằng MF vuông góc với AC .
Câu 5 ( 3 điểm )
Cho tam giác ABC nội tiếp đờng tròn tâm O . Kẻ đờng cao AH , gọi trung điểm của AB ,
BC theo thứ tự là M , N và E , F theo thứ tự là hình chiếu vuông góc của của B , C trên đ-
ờng kính AD .
a) Chứng minh rằng MN vuông góc với HE .
b) Chứng minh N là tâm đờng tròn ngoại tiếp tam giác HEF .
Câu 6 ( 3 điểm )
Cho điểm A ở ngoài đờng tròn tâm O . Kẻ hai tiếp tuyến AB , AC với đờng tròn (B ,
C là tiếp điểm ) . M là điểm bất kỳ trên cung nhỏ BC ( M B ; M C ) . Gọi D , E , F t-
ơng ứng là hình chiếu vuông góc của M trên các đờng thẳng AB , AC , BC ; H là giao điểm

của MB và DF ; K là giao điểm của MC và EF .
1) Chứng minh :
a) MECF là tứ giác nội tiếp .
b) MF vuông góc với HK .
2) Tìm vị trí của M trên cung nhỏ BC để tích MD . ME lớn nhất .

×