ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010
Mơn thi : TỐN (ĐỀ 1)
I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu 1: Cho hàm số
2x 1
y
x 2
+
=
−
.
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2) Viết phương trình tiếp tuyến của đồ thị (C),biết hệ số góc của tiếp tuyến bằng -5.
Câu 2:
1) Giải phương trình: 25
x
– 6.5
x
+ 5 = 0
2) Tính tích phân:
0
I x(1 cos x)dx
π
= +
∫
.
3) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số
2
f (x) x ln(1 2x)= − −
trên đoạn [-2; 0].
Câu 3:
Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vng góc với mặt
phẳng đáy. Biết góc BAC = 120
0
, tính thể tích của khối chóp S.ABC theo a.
Câu 4: Cho x, y, z là các số dương thoả :
1 1 1
1
x y z
+ + =
. CMR:
1 1 1
1
2 2 2z y z x y z x y z
+ + ≤
+ + + + + +
.
II. PHẦN RIÊNG
1. Theo chương trình Chuẩn :
Câu 5a: Trong khơng gian Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình:
( ) ( ) ( )
2 2 2
(S) : x 1 y 2 z 2 36 và (P) : x 2y 2z 18 0
− + − + − = + + + =
.
1) Xác định tọa độ tâm T và tính bán kính của mặt cầu (S). Tính khoảng cách từ T đến mp(P).
2) Viết p.trình đường thẳng d đi qua T và vng góc với (P). Tìm tọa độ giao điểm của d và (P).
Câu 6a: Giải phương trình : 8z
2
– 4z + 1 = 0 trên tập số phức.
2. Theo chương trình Nâng cao:
Câu 5b: Cho điểm A(1; -2; 3) và đường thẳng d có phương trình
x 1 y 2 z 3
2 1 1
+ − +
= =
−
1) Viết phương trình tổng qt của mặt phẳng đi qua điểm A và vng góc với đường thẳng d.
2) Tính khoảng cách từ điểm A đến d. Viết phương trình mặt cầu tâm A, tiếp xúc với d.
Câu 6b: Giải phương trình
2
2z iz 1 0
− + =
trên tập số phức.
BÀI GIẢI (ĐỀ 1)
Câu 1:
2) Tiếp tuyến tại điểm có hoành độ x
0
, có hệ số góc bằng –5
⇔
2
0
5
5
( 2)x
−
= −
−
⇔ x
0
= 3 hay x
0
= 1 ; y
0
(3) = 7, y
0
(1) = -3
Phương trình tiếp tuyến cần tìm là: y – 7 = -5(x – 3) hay y + 3 = -5(x – 1)
⇔ y = -5x + 22 hay y = -5x + 2
Câu 2: 1) 25
x
– 6.5
x
+ 5 = 0 ⇔
2
(5 ) 6.5 5 0
x x
− + =
⇔ 5
x
= 1 hay 5
x
= 5
⇔ x = 0 hay x = 1.
2)
0 0 0
(1 cos ) cosI x x dx xdx x xdx
π π π
= + = +
∫ ∫ ∫
=
2
0
cos
2
x xdx
π
π
+
∫
Đặt u = x ⇒ du = dx; dv = cosxdx, chọn v = sinx
⇒ I =
2
0
0
sin sin
2
x x xdx
π
π
π
+ −
∫
=
2 2
0
cos 2
2 2
x
π
π π
+ = −
3) Ta có : f’(x) = 2x +
2
2 4x 2x 2
1 2x 1 2x
− + +
=
− −
f’(x) = 0 ⇔ x = 1 (loại) hay x =
1
2
−
(nhận)
f(-2) = 4 – ln5, f(0) = 0, f(
1
2
−
) =
1
ln 2
4
−
vì f liên tục trên [-2; 0] nên
[ 2;0]
max f (x) 4 ln5
−
= −
và
[ 2;0]
1
min f (x) ln 2
4
−
= −
Câu 3: Hình chiếu của SB và SC trên (ABC) là AB và AC , mà SB=SC nên AB=AC
Ta có : BC
2
= 2AB
2
– 2AB
2
cos120
0
⇔ a
2
= 3AB
2
⇔
=
3
a
AB
2
2 2
2
= a SA =
3
3
a a
SA − ⇒
2 2
0
1 1 3 a 3
= . .sin120 = =
2 2 3 2 12
ABC
a
S AB AC
∆
2 3
1 2 3 2
= =
3 12 36
3
a a a
V
(đvtt)
Câu 4.a.:
1) Tâm mặt cầu: T (1; 2; 2), bán kính mặt cầu R = 6
d(T, (P)) =
1 4 4 18
27
9
3
1 4 4
+ + +
= =
+ +
2) (P) có pháp vectơ
(1;2;2)n =
r
Phương trình tham số của đường thẳng (d) :
1
2 2
2 2
x t
y t
z t
= +
= +
= +
(t ∈ R)
Thế vào phương trình mặt phẳng (P) : 9t + 27 = 0 ⇔ t = -3
⇒ (d) ∩ (P) = A (-2; -4; -4)
Câu 5.a.:
2
8z 4z 1 0− + =
;
/ 2
4 4i∆ = − =
; Căn bậc hai của
/
∆
là
2i±
Phương trình có hai nghiệm là
1 1 1 1
z i hay z i
4 4 4 4
= + = −
Câu 4.b.:
1) (d) có vectơ chỉ phương
(2;1; 1)a = −
r
Phương trình mặt phẳng (P) qua A (1; -2; 3) có pháp vectơ
a
r
:
2(x – 1) + 1(y + 2) – 1(z – 3) = 0 ⇔ 2x + y – z + 3 = 0
B
A
S
a
a
a
C
2) Gọi B (-1; 2; -3) ∈ (d)
BA
uuur
= (2; -4; 6)
,BA a
uuur r
= (-2; 14; 10)
d(A, (d)) =
,
4 196 100
5 2
4 1 1
BA a
a
+ +
= =
+ +
uuur r
r
Phương trình mặt cầu tâm A (1; -2; 3), bán kính R =
5 2
:
(x – 1)
2
+ (y + 2)
2
+ (2 – 3)
2
= 50
Câu 5.b.:
2
2z iz 1 0− + =
2
i 8 9∆ = − = −
= 9i
2
Căn bậc hai của
∆
là
3i±
Phương trình có hai nghiệm là
1
z i hay z i
2
= = −
.
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010
Mơn thi : TỐN (ĐỀ 2)
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 8 điểm)
Câu 1: ( 2điểm)
Cho hàm số y = 4x
3
+ mx
2
– 3x
1. Khảo sát và vẽ đồ thị (C) hàm số khi m = 0.
2. Tìm m để hàm số có hai cực trị tại x
1
và x
2
thỏa x
1
= - 4x
2
Câu 2: (2điểm)
1. Giải hệ phương trình:
2 0
1 4 1 2
x y xy
x y
− − =
− + − =
2. Giải phương trình: cosx = 8sin
3
6
x
π
+
÷
Câu 3: (2điểm)
1. Cho hình chóp S.ABC có SA vng góc với mặt phẳng (ABC), tam giác ABC vng tại C ;
M,N là hình chiếu của A trên SB, SC. Biết MN cắt BC tại T. Chứng minh rằng tam giác AMN
vng và AT tiếp xúc với mặt cầu đường kính AB.
2. Tính tích phân A =
2
ln .ln ex
e
e
dx
x x
∫
Câu 4: (2 điểm)
1. Trong khơng gian với hệ trục tọa độ Oxyz, cho bốn điểm A(4;5;6); B(0;0;1); C(0;2;0);
D(3;0;0). Chứng minh các đường thẳng AB và CD chéo nhau. Viết phương trình đường thẳng
(D) vng góc với mặt phẳngOxy và cắt được các đường thẳngAB; CD.
2. Cho ba số thực dương a, b, c thỏa:
3 3 3
2 2 2 2 2 2
1
a b c
a ab b b bc c c ca a
+ + =
+ + + + + +
Tìm giá trị lớn nhất của biểu thức S = a + b + c
B. PHẦN TỰ CHỌN: Thí sinh chỉ chọn câu 5a hoặc 5b
Câu 5a: Theo chương trình chuẩn: ( 2 điểm)
1. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;5;6). Viết phương trình mặt phẳng
(P) qua A; cắt các trục tọa độ lần lượt tại I; J; K mà A là trực tâm của tam giác IJK.
2. Biết (D) và (D’) là hai đường thẳng song song. Lấy trên (D) 5 điểm và trên (D’) n điểm và nối
các điểm ta được các tam giác. Tìm n để số tam giác lập được bằng 45.
Câu 5b: Theo chương trình nâng cao: ( 2 điểm)
1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (D): x – 3y – 4 = 0 và đường tròn
(C): x
2
+ y
2
– 4y = 0. Tìm M thuộc (D) và N thuộc (C) sao cho chúng đối xứng qua A(3;1).
2. Tìm m để bất phương trình: 5
2x
– 5
x+1
– 2m5
x
+ m
2
+ 5m > 0 thỏa với mọi số thực x.
BÀI GIẢI TÓM TẮT(ĐỀ 2)
A.PHẦN CHUNG:
Câu 1:
2. TXĐ: D = R
- y’ = 12x
2
+ 2mx – 3
Ta có: ∆’ = m
2
+ 36 > 0 với mọi m, vậy luôn có cực trị
Ta có:
1 2
1 2
1 2
4
6
1
4
x x
m
x x
x x
=−
+ =−
=−
9
2
m⇒ = ±
Câu 2:
1.
2 0 (1)
1 4 1 2 (2)
x y xy
x y
− − =
− + − =
Điều kiện:
1
1
4
x
y
≥
≥
Từ (1)
2 0
x x
y y
⇒ − − =
⇒
x = 4y
Nghiệm của hệ (2;
1
2
)
2. cosx = 8sin
3
6
x
π
+
÷
⇔
cosx =
( )
3
3 sinx+cosx
⇔
3 2 2 3
3 3 sin 9sin osx +3 3 s inxcos os osx = 0x xc x c x c+ + −
(3)
Ta thấy cosx = 0 không là nghiêm
(3) ⇔
3 2
3 3 tan 8 t an x + 3 3 t anx = 0x +
t anx = 0 x = k
π
⇔ ⇔
Câu 3:
1.Theo định lý ba đường vuông góc
BC ⊥ (SAC) ⇒ AN ⊥ BC
và AN ⊥ SC
⇒AN ⊥ (SBC) ⇒ AN ⊥ MN
Ta có: SA
2
= SM.SB = SN.SC
Vây ∆MSN ∼ ∆CSB
⇒
TM là đường cao của tam giác STB
⇒
BN là đường cao của tam giác STB
Theo định lý ba đường vuông góc, ta có AB ⊥ ST
⇒AB ⊥ (SAT) hay AB⊥ AT (đpcm)
2.
2 2
(ln )
ln (1 ln ) ln (1 ln )
e e
e e
dx d x
A
x x x x x
= =
+ +
∫ ∫
=
2
1 1
(ln )
ln 1 ln
e
e
d x
x x
−
÷
+
∫
=
2 2
ln(ln ) ln(1 ln )
e e
x x
e e
− +
= 2ln2 – ln3
Câu 4:
2. +)
(4;5;5)BA =
uuur
,
(3; 2;0)CD = −
uuur
,
(4;3;6)CA =
uuur
, (10;15; 23)BA CD
= −
uuur uuur
⇒
, . 0BA CD CA
≠
uuur uuur uuur
⇒ đpcm
+ Gọi (P) là mặt phẳng qua AB và (P) ⊥ (Oxy)
⇒
có VTPT
1
,n BA k
=
ur uuur r
= (5;- 4; 0)
⇒ (P): 5x – 4y = 0
+ (Q) là mặt phẳng qua CD và (Q) ⊥ (Oxy) có VTPT
1
,n CD k
=
ur uuur r
= (-2;- 3; 0)
⇒ (Q): 2x + 3y – 6 = 0
Ta có (D) = (P)∩(Q) ⇒ Phương trình của (D)
2. Ta có:
3
2 2
2
3
a a b
a ab b
−
≥
+ +
(1)
⇔ 3a
3
≥ (2a – b)(a
2
+ ab + b
2
)
⇔ a
3
+ b
3
– a
2
b – ab
2
≥ 0
⇔ (a + b)(a – b)
2
≥
0. (h/n)
Tương tự:
3
2 2
2
3
b b c
b bc c
−
≥
+ +
(2) ,
3
2 2
2
3
c c a
c ac a
−
≥
+ +
(3)
Cộng vế theo vế của ba bđt (1), (2) và (3) ta được:
3 3 3
2 2 2 2 2 2
3
a b c a b c
a ab b b bc c c ca a
+ +
+ + ≥
+ + + + + +
Vậy: S ≤ 3
⇒
maxS = 3 khi a = b = c = 1
B. PHẦN TỰ CHỌN:
Câu 5a: Theo chương trình chuẩn
2. Ta có I(a;0;0), J(0;b;0), K(0;0;c)
( ) : 1
x y z
P
a b c
⇒ + + =
Ta có
(4 ;5;6), (4;5 ;6)
(0; ; ), ( ; 0; )
IA a JA b
JK b c IK a c
= − = −
= − = −
uur uur
uuur uur
Ta có:
4 5 6
1
5 6 0
4 6 0
a b c
b c
a c
+ + =
− + =
− + =
⇒
77
4
77
5
77
6
a
b
c
=
=
=
⇒
ptmp(P)
2.Ta có: n
2 2
5
5
n
C C+
= 45 ⇒ n
2
+ 3n – 18 = 0 ⇒ n = 3
Câu 5b:
1.M ∈ (D) ⇒ M(3b+4;b) ⇒ N(2 – 3b;2 – b)
N ∈ © ⇒ (2 – 3b)
2
+ (2 – b)
2
– 4(2 – b) = 0 ⇒ b = 0;b = 6/5
Vậy có hai cặp điểm: M(4;0) và N(2;2) , M’(38/5;6/5) và N’(-8/5; 4/5)
2. Đặt X = 5
x
⇒ X > 0
Bất phương trình đã cho trở thành: X
2
+ (5 + 2m)X + m
2
+ 5m > 0 (*)
Bpt đã cho có nghiệm với mọi x khi và chỉ khi (*) có nghiệm với mọi X > 0
⇔∆ < 0 hoặc (*) có hai nghiệm X
1
≤ X
2
≤ 0
Từ đó suy ra m
*****************************************************************
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010
Môn thi : TOÁN (ĐỀ 3)
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm)
Câu I (2 điểm) Cho hàm số
4 2
( ) 2y f x x x= = −
1. Khảo sát và vẽ đồ thị (C) của hàm số.
2. Trên (C) lấy hai điểm phân biệt A và B có hoành độ lần lượt là a và b. Tìm điều kiện đối
với a và b để hai tiếp tuyến của (C) tại A và B song song với nhau.
Câu II (2 điểm)
1. Giải phương trình lượng giác:
( )
2 cos sin
1
tan cot 2 cot 1
x x
x x x
−
=
+ −
2. Giải bất phương trình:
( )
2
3 1 1
3 3
1
log 5 6 log 2 log 3
2
x x x x
− + + − > +
Câu III (1 điểm) Tính tích phân:
( )
2
4 4
0
cos 2 sin cosI x x x dx
π
= +
∫
Câu IV (1 điểm) Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh liên tiếp A, B
nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai
của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 45
0
. Tính diện tích xung quanh và thể tích
của hình trụ.
Câu V (1 điểm) Cho phương trình
( ) ( )
3
4
1 2 1 2 1x x m x x x x m
+ − + − − − =
Tìm m để phương trình có một nghiệm duy nhất.
PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)
1. Theo chương trình chuẩn.
Câu VI.a (2 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) và đường thẳng
∆
định bởi:
2 2
( ) : 4 2 0; : 2 12 0C x y x y x y+ − − = ∆ + − =
. Tìm điểm M trên
∆
sao cho từ M vẽ được với (C) hai
tiếp tuyến lập với nhau một góc 60
0
.
2. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2;1;0), B(1;1;3),
C(2;-1;3), D(1;-1;0). Tìm tọa độ tâm và bán kính của mặt cầu ngoại tiếp tứ diện ABCD.
Câu VII.a (1 điểm) Có 10 viên bi đỏ có bán kính khác nhau, 5 viên bi xanh có bán kính khác nhau và
3 viên bi vàng có bán kính khác nhau. Hỏi có bao nhiêu cách chọn ra 9 viên bi có đủ ba màu?
2. Theo chương trình nâng cao.
Câu VI.b (2 điểm)
1. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I thuộc
đường thẳng
( )
: 3 0d x y− − =
và có hoành độ
9
2
I
x =
, trung điểm của một cạnh là giao điểm của (d)
và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật.
2. Trong hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình là:
2 2 2
( ) : 4 2 6 5 0, ( ) : 2 2 16 0S x y z x y z P x y z+ + − + − + = + − + =
. Điểm M di động trên (S) và điểm N di
động trên (P). Tính độ dài ngắn nhất của đoạn thẳng MN. Xác định vị trí của M, N tương ứng.
Câu VII.b: Cho
, ,a b c
là những số dương thỏa mãn:
2 2 2
3a b c+ + =
. Chứng minh bất đẳng thức
2 2 2
1 1 1 4 4 4
7 7 7a b b c c a a b c
+ + ≥ + +
+ + + + + +
Đáp án.(ĐỀ 3)
Câ
u
Ý Nội dung Điểm
I 2 1,00
Ta có
3
'( ) 4 4f x x x= −
. Gọi a, b lần lượt là hoành độ của A và B.
Hệ số góc tiếp tuyến của I tại A và B là
3 3
'( ) 4 4 , '( ) 4 4
A B
k f a a a k f b b b= = − = = −
Tiếp tuyến tại A, B lần lượt có phương trình là:
( ) ( ) ( ) ( ) ( )
' ' ( ) af' ay f a x a f a f a x f a= − + = + −
;
( ) ( ) ( ) ( ) ( )
' ' ( ) f' by f b x b f b f b x f b b= − + = + −
Hai tiếp tuyến của I tại A và B song song hoặc trùng nhau khi và chỉ khi:
( )
( )
3 3 2 2
4a 4a = 4b 4 1 0 (1)
A B
k k b a b a ab b= ⇔ − − ⇔ − + + − =
Vì A và B phân biệt nên
a b
≠
, do đó (1) tương đương với phương trình:
2 2
1 0 (2)a ab b+ + − =
Mặt khác hai tiếp tuyến của I tại A và B trùng nhau
( ) ( ) ( ) ( )
( )
2 2
2 2
4 2 4 2
1 0
1 0
' '
3 2 3 2
a ab b
a ab b
a b
f a af a f b bf b
a a b b
+ + − =
+ + − =
⇔ ≠ ⇔
− = −
− + = − +
,
Giải hệ này ta được nghiệm là (a;b) = (-1;1), hoặc (a;b) = (1;-1), hai nghiệm này
tương ứng với cùng một cặp điểm trên đồ thị là
( )
1; 1− −
và
( )
1; 1−
.
Vậy điều kiện cần và đủ để hai tiếp tuyến của I tại A và B song song với nhau là
2 2
1 0
1
a ab b
a
a b
+ + − =
≠ ±
≠
II 2,00
1 1,00
Điều kiện:
( )
cos .sin 2 .sin . tan cot 2 0
cot 1
x x x x x
x
+ ≠
≠
0,25
Từ (1) ta có:
( )
2 cos sin
1 cos .sin 2
2 sin
sin cos 2 cos
cos
1
cos sin 2 sin
x x
x x
x
x x x
x
x x x
−
= ⇔ =
+ −
0,25
2sin .cos 2 sinx x x⇔ =
( )
2
2
4
cos
2
2
4
x k
x k
x k
π
π
π
π
= +
⇔ = ⇔ ∈
= − +
¢
0,25
Giao với điều kiện, ta được họ nghiệm của phương trình đã cho là
( )
2
4
x k k
π
π
= − + ∈¢
0,25
2 1,00
Điều kiện:
3x >
0,25
Phương trình đã cho tương đương:
( )
( ) ( )
1 1
2
3
3 3
1 1 1
log 5 6 log 2 log 3
2 2 2
x x x x
− −
− + + − > +
( )
( ) ( )
2
3 3 3
1 1 1
log 5 6 log 2 log 3
2 2 2
x x x x⇔ − + − − > − +
( ) ( ) ( ) ( )
3 3 3
log 2 3 log 2 log 3x x x x⇔ − − > − − +
0,25
( ) ( )
3 3
2
log 2 3 log
3
x
x x
x
−
⇔ − − >
÷
+
( ) ( )
2
2 3
3
x
x x
x
−
⇔ − − >
+
2
10
9 1
10
x
x
x
< −
⇔ − > ⇔
>
0,25
Giao với điều kiện, ta được nghiệm của phương trình đã cho là
10x >
0,25
III 1,00
1 1,00
( )
2
2
0
2
2
0
1
cos 2 1 sin 2
2
1 1
1 sin 2 sin 2
2 2
I x x dx
x d x
π
π
= −
÷
= −
÷
∫
∫
0,50
( ) ( )
2 2
2
0 0
3
2 2
0 0
1 1
sin 2 sin 2 sin 2
2 4
1 1
sin 2 sin 2 0
2 12
| |
d x xd x
x x
π π
π π
= −
= − =
∫ ∫
0,50
IV 1,00
Gọi M, N theo thứ tự là trung điểm của AB và
CD. Khi đó
OM AB⊥
và
' DO N C⊥
.
Giả sử I là giao điểm của MN và OO’.
Đặt R = OA và h = OO’. Khi đó:
OMI∆
vuông cân tại O nên:
2 2 2
.
2 2 2 2 2
h a
OM OI IM h a= = ⇒ = ⇒ =
0,25
Ta có:
2
2
2 2 2
2 2 2 2
2 3a
2 4 4 8 8
a a a a
R OA AM MO
= = + = + = + =
÷
÷
÷
0,25
2 3
2
3a 2 3 2
R . . ,
8 2 16
a a
V h
π
π π
⇒ = = =
0,25
và
2
a 3 2 3
2 Rh=2 . . .
2 2
2 2
xq
a a
S
π
π π
= =
0,25
V 1,00
Phương trình
( ) ( )
3
4
1 2 1 2 1x x m x x x x m+ − + − − − =
(1)
Điều kiện :
0 1x≤ ≤
Nếu
[ ]
0;1x ∈
thỏa mãn (1) thì 1 – x cũng thỏa mãn (1) nên để (1) có nghiệm duy
nhất thì cần có điều kiện
1
1
2
x x x= − ⇒ =
. Thay
1
2
x =
vào (1) ta được:
3
0
1 1
2. 2.
1
2 2
m
m m
m
=
+ − = ⇒
= ±
0,25
• Với m = 0; (1) trở thành:
( )
2
4 4
1
1 0
2
x x x− − = ⇔ =
Phương trình có nghiệm duy nhất.
0,25
• Với m = -1; (1) trở thành
( ) ( )
( )
( )
( )
( )
( ) ( )
4
4
2 2
4 4
1 2 1 2 1 1
1 2 1 1 2 1 0
1 1 0
x x x x x x
x x x x x x x x
x x x x
+ − − − − − = −
⇔ + − − − + + − − − =
⇔ − − + − − =
+ Với
4 4
1
1 0
2
x x x− − = ⇔ =
+ Với
1
1 0
2
x x x− − = ⇔ =
Trường hợp này, (1) cũng có nghiệm duy nhất.
0,25
• Với m = 1 thì (1) trở thành:
( ) ( )
( ) ( )
2 2
4 4
4
1 2 1 1 2 1 1 1x x x x x x x x x x+ − − − = − − ⇔ − − = − −
Ta thấy phương trình (1) có 2 nghiệm
1
0,
2
x x= =
nên trong trường hợp này (1)
không có nghiệm duy nhất.
Vậy phương trình có nghiệm duy nhất khi m = 0 và m = -1.
0,25
Via 2,00
1 1,00
Đường tròn I có tâm I(2;1) và bán kính
5R =
.
Gọi A, B là hai tiếp điểm của I với hai tiếp của I kẻ từ M. Nếu hai tiếp tuyến này
lập với nhau một góc 60
0
thì IAM là nửa tam giác đều suy ra
2R=2 5IM =
.
Như thế điểm M nằm trên đường tròn (T) có phương trình:
( ) ( )
2 2
2 1 20x y− + − =
.
0,25
Mặt khác, điểm M nằm trên đường thẳng
∆
, nên tọa độ của M nghiệm đúng hệ
phương trình:
( ) ( )
2 2
2 1 20 (1)
2 12 0 (2)
x y
x y
− + − =
+ − =
0,25
Khử x giữa (1) và (2) ta được:
( ) ( )
2 2
2
3
2 10 1 20 5 42 81 0
27
5
x
y y y y
x
=
− + + − = ⇔ − + = ⇔
=
0,25
Vậy có hai điểm thỏa mãn đề bài là:
9
3;
2
M
÷
hoặc
27 33
;
5 10
M
÷
0,25
2 1,00
Ta tính được
10, 13, 5AB CD AC BD AD BC= = = = = =
.
0,25
Vậy tứ diện ABCD có các cặp cạnh đối đôi một bằng nhau. Từ đó ABCD là một
tứ diện gần đều. Do đó tâm của mặt cầu ngoại tiếp của tứ diện là trọng tâm G của
tứ diện này.
0,25
Vậy mặt cầu ngoại tiếp tứ diện ABCD có tâm là
3 3
;0;
2 2
G
÷
, bán kính là
14
2
R GA= =
.
0,50
VII
a
1,00
Số cách chọn 9 viên bi tùy ý là :
9
18
C
.
0,25
Những trường hợp không có đủ ba viên bi khác màu là:
+ Không có bi đỏ: Khả năng này không xảy ra vì tổng các viên bi xanh và vàng
chỉ là 8.
+ Không có bi xanh: có
9
13
C
cách.
+ Không có bi vàng: có
9
15
C
cách.
0,25
Mặt khác trong các cách chọn không có bi xanh, không có bi vàng thì có
9
10
C
cách
chọn 9 viên bi đỏ được tính hai lần.
Vậy số cách chọn 9 viên bi có đủ cả ba màu là:
9 9 9 9
10 18 13 15
42910C C C C+ − − =
cách.
0,50
Vib 2,00
1 1,00
I có hoành độ
9
2
I
x =
và
( )
9 3
: 3 0 ;
2 2
I d x y I
∈ − − = ⇒
÷
Vai trò A, B, C, D là như nhau nên trung điểm M của cạnh AD là giao điểm của
(d) và Ox, suy ra M(3;0)
( ) ( )
2 2
9 9
2 2 2 3 2
4 4
I M I M
AB IM x x y y= = − + − = + =
D
12
. D = 12 AD = 2 2.
3 2
ABCD
ABC
S
S AB A
AB
= ⇔ = =
( )
AD d
M AD
⊥
∈
, suy ra phương trình AD:
( ) ( )
1. 3 1. 0 0 3 0x y x y− + − = ⇔ + − =
.
0,50
Lại có MA = MD =
2
.
Vậy tọa độ A, D là nghiệm của hệ phương trình:
( )
( ) ( ) ( )
2 2 2
2
2
2
3 0
3 3
3 2 3 3 2
3 2
x y
y x y x
x y x x
x y
+ − =
= − + = − +
⇔ ⇔
− + = − + − =
− + =
3 2
3 1 1
y x x
x y
= − =
⇔ ⇔
− = ± =
hoặc
4
1
x
y
=
= −
.Vậy A(2;1), D(4;-1),
9 3
;
2 2
I
÷
là trung điểm của AC, suy ra:
2 9 2 7
2
2 3 1 2
2
A C
I
C I A
A C C I A
I
x x
x
x x x
y y y y y
y
+
=
= − = − =
⇔
+ = − = − =
=
Tương tự I cũng là trung điểm BD nên ta có: B(5;4).
Vậy tọa độ các đỉnh của hình chữ nhật là (2;1), (5;4), (7;2), (4;-1).
0,50
2 1,00
Mặt cầu (S) tâm I(2;-1;3) và có bán kính R = 3.
Khoảng cách từ I đến mặt phẳng (P):
( )
( )
( )
2.2 2. 1 3 16
, 5
3
d d I P d R
+ − − +
= = = ⇒ >
.
Do đó (P) và (S) không có điểm chung.Do vậy, min MN = d –R = 5 -3 = 2.
0,25
Trong trường hợp này, M ở vị trí M
0
và N ở vị trí N
0
. Dễ thấy N
0
là hình chiếu
vuông góc của I trên mặt phẳng (P) và M
0
là giao điểm của đoạn thẳng IN
0
với
mặt cầu (S).
Gọi
∆
là đường thẳng đi qua điểm I và vuông góc với (P), thì N
0
là giao điểm của
∆
và (P).
Đường thẳng
∆
có vectơ chỉ phương là
( )
2; 2; 1
P
n = −
r
và qua I nên có phương
trình là
( )
2 2
1 2
3
x t
y t t
z t
= +
= − + ∈
= −
¡
.
0,25
Tọa độ của N
0
ứng với t nghiệm đúng phương trình:
( ) ( ) ( )
15 5
2 2 2 2 1 2 3 16 0 9 15 0
9 3
t t t t t+ + − + − − + = ⇔ + = ⇔ = − = −
Suy ra
0
4 13 14
; ;
3 3 3
N
− −
÷
.
0,25
Ta có
0 0
3
.
5
IM IN=
uuuur uuur
Suy ra M
0
(0;-3;4)
0,25
VII
b
1,00
Áp dụng bất đẳng thức
1 1 4
( 0, 0)x y
x y x y
+ ≥ > >
+
Ta có:
1 1 4 1 1 4 1 1 4
; ;
2 2 2a+b+ca b b c a b c b c c a a b c c a a b
+ ≥ + ≥ + ≥
+ + + + + + + + + +
0,50
Ta lại có:
( ) ( ) ( )
2 2 2
2 2 2 2
2 2 2
1 2 2
2 4 4 2 2 0
2 2 4 7
2 1 1 1 0
a b c a b c
a b c a b c a
a b c
≥ = ⇔ + + + − − − ≥
+ + + + + +
⇔ − + − + − ≥
Tương tự:
2 2
1 2 1 2
;
2 7 2 7b c a b c a b c
≥ ≥
+ + + + + +
Từ đó suy ra
2 2 2
1 1 1 4 4 4
7 7 7a b b c c a a b c
+ + ≥ + +
+ + + + + +
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
0,50
********************************************************
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010
Môn thi : TOÁN (ĐỀ 4)
A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm)
Câu I (2 điểm) Cho hàm số
( )
3 2
( ) 3 1 1y f x mx mx m x
= = + − − −
, m là tham số
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1.
2. Xác định các giá trị của m để hàm số
( )y f x=
không có cực trị.
Câu II (2 điểm): Giải phương trình :
1).
( )
4 4
sin cos 1
tan cot
sin 2 2
x x
x x
x
+
= +
; 2).
( ) ( )
2 3
4 8
2
log 1 2 log 4 log 4x x x+ + = − + +
Câu III (1 điểm) Tính tích phân
3
2
2
1
2
1
dx
A
x x
=
−
∫
Câu IV (1 điểm) Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường sinh, biết
SO = 3, khoảng cách từ O đến mặt phẳng SAB bằng 1, diện tích tam giác SAB bằng 18. Tính thể tích
và diện tích xung quanh của hình nón đã cho.
Câu V (1 điểm) Tìm m để hệ bất phương trình sau có nghiệm
( )
2
2
7 6 0
2 1 3 0
x x
x m x m
− + ≤
− + − + ≥
B.PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)
1. Theo chương trình chuẩn.
Câu VI.a (2 điểm)
1. Cho tam giác ABC biết các cạnh AB, BC lần lượt là 4x + 3y – 4 = 0; x – y – 1 = 0. Phân giác
trong của góc A nằm trên đ.thẳng x + 2y – 6 = 0. Tìm tọa độ các đỉnh của tam giác ABC.
2. Cho hai mặt phẳng
( ) ( )
: 2 2z + 5 = 0; Q : 2 2z -13 = 0.P x y x y+ − + −
Viết phương trình của
mặt cầu (S) đi qua gốc tọa độ O, qua điểm A(5;2;1) và tiếp xúc với cả hai m.phẳng (P) và (Q).
Câu VII.a (1 điểm) Tìm số nguyên dương n thỏa mãn các điều kiện sau:
4 3 2
1 1 2
4 3
1 1
5
4
7
15
n n n
n
n n
C C A
C A
− − −
−
+ +
− <
≥
(Ở đây
,
k k
n n
A C
lần lượt là số chỉnh hợp và số tổ hợp chập k của n phần tử)
2. Theo chương trình nâng cao.
Câu VI.b (2 điểm)
1. Cho đường thẳng d: x – 5y – 2 = 0 và đường tròn (C):
2 2
2 4 8 0x y x y+ + − − =
.Xác định
tọa độ các giao điểm A, B của đường tròn (C) và đường thẳng d (điểm A có hoành độ dương). Tìm
tọa độ C thuộc đường tròn (C) sao cho tam giác ABC vuông ở B.
2. Cho mặt phẳng (P):
2 2 1 0x y z− + − =
và các đường thẳng:
1 2
1 3 5 5
: ; :
2 3 2 6 4 5
x y z x y z
d d
− − − +
= = = =
− −
. Tìm các điểm
1 2
d , dM N∈ ∈
sao cho MN // (P) và cách
(P) một khoảng bằng 2.
Câu VII.b: Tính đạo hàm f’(x) của hsố
( )
3
1
( ) ln
3
f x
x
=
−
và giải bpt:
2
0
6
sin
2
'( )
2
t
dt
f x
x
π
π
>
+
∫
*************************************************************************
Đáp án(ĐỀ 4)
Câu Ý Nội dung Điểm
2 1,00
+ Khi m = 0
1y x⇒ = −
, nên hàm số không có cực trị. 0,25
+ Khi
0m ≠
( )
2
' 3 6 1y mx mx m⇒ = + − −
Hàm số không có cực trị khi và chỉ khi
' 0y =
không có nghiệm hoặc có nghiệm
kép
0,50
( )
2 2
' 9 3 1 12 3 0m m m m m⇔ ∆ = + − = − ≤
1
0
4
m⇔ ≤ ≤
0,25
1 1,00
( )
4 4
sin cos 1
tan cot
sin 2 2
x x
x x
x
+
= +
(1)
Điều kiện:
sin 2 0x
≠
0,25
2
1
1 sin 2
1 sin cos
2
(1)
sin 2 2 cos sin
x
x x
x x x
−
⇔ = +
÷
0,25
2
2
1
1 sin 2
1 1
2
1 sin 2 1 sin 2 0
sin 2 sin 2 2
x
x x
x x
−
⇔ = ⇔ − = ⇔ =
Vậy phương trình đã cho vô nghiệm.
0,50
2 1,00
( ) ( )
2 3
4 8
2
log 1 2 log 4 log 4x x x+ + = − + +
(2)
Điều kiện:
1 0
4 4
4 0
1
4 0
x
x
x
x
x
+ ≠
− < <
− > ⇔
≠ −
+ >
0,25
( ) ( )
( )
( )
2
2 2 2 2 2
2 2
2 2
(2) log 1 2 log 4 log 4 log 1 2 log 16
log 4 1 log 16 4 1 16
x x x x x
x x x x
⇔ + + = − + + ⇔ + + = −
⇔ + = − ⇔ + = −
0,25
+ Với
1 4x
− < <
ta có phương trình
2
4 12 0 (3)x x+ − =
;
( )
2
(3)
6
x
x
=
⇔
= −
lo¹i
0,25
+ Với
4 1x
− < < −
ta có phương trình
2
4 20 0x x− − =
(4);
( )
( )
2 24
4
2 24
x
x
= −
⇔
= +
lo¹i
Vậy phương trình đã cho có hai nghiệm là
2x
=
hoặc
( )
2 1 6x = −
0,25
III 1,00
Đặt
2 2 2
2
1 1 2 2
dx tdt
t x t x tdt xdx
x x
= − ⇒ = − ⇒ = − ⇒ = −
2 2
1 1
dx tdt tdt
x t t
⇒ = − =
− −
+ Đổi cận:
1 3
2 2
3 1
2 2
x t
x t
= ⇒ =
= ⇒ =
0,50
1 3
3
2 2
2
1
2 2
1
2
3
2
2
1 1 1 7 4 3
ln ln
1 1 2 1 2 3
|
dt dt t
A
t t t
+ +
= = = =
÷
÷
− − −
∫ ∫
0,50
IV 1,00
Gọi E là trung điểm của AB, ta có:
,OE AB SE AB⊥ ⊥
,
suy ra
( )
SOE AB⊥
.
Dựng
( )
OH SE OH SAB⊥ ⇒ ⊥
, vậy OH là khoảng cách
từ O đến (SAB), theo giả thiết thì OH = 1.
Tam giác SOE vuông tại O, OH là đường cao, ta có:
0,25
2 2 2 2 2 2
2
1 1 1 1 1 1 1 8
1
9 9
9 3
8
2 2
OH SO OE OE OH SO
OE OE
= + ⇒ = − = − =
⇒ = ⇒ =
2 2 2
9 81 9
9
8 8
2 2
SE OE SO SE= + = + = ⇒ =
2
1 36
. 8 2
9
2
2 2
SAB
SAB
S
S AB SE AB
SE
= ⇔ = = =
( )
2
2
2 2 2 2
1 9 9 265
4 2 32
2 8 8 8
OA AE OE AB OE
= + = + = + = + =
÷
0,25
Thể tích hình nón đã cho:
2
1 1 265 265
. . .3
3 3 8 8
V OA SO
π π π
= = =
0,25
Diện tích xung quanh của hình nón đã cho:
2 2 2
265 337 337
9
8 8 8
265 337 89305
. . .
8 8 8
xq
SA SO OA SA
S OA SA
π π π
= + = + = ⇒ =
= = =
0,25
V 1,00
Hệ bất phương trình
( )
2
2
7 6 0 (1)
2 1 3 0 (2)
x x
x m x m
− + ≤
− + − + ≥
( )
1 1 6x⇔ ≤ ≤
. Hệ đã cho có nghiệm khi và chỉ khi tồn tại
[ ]
0
1;6x ∈
thỏa mãn (2).
0,25
( ) ( )
( )
[ ]
2
2
2 3
2 2 3 2 1 ( 1;6 2 1 0)
2 1
x x
x x x m m do x x
x
− +
⇔ − + ≥ + ⇔ ≥ ∈ ⇒ + >
+
Gọi
[ ]
2
2 3
( ) ; 1;6
2 1
x x
f x x
x
− +
= ∈
+
0,25
Hệ đã cho có nghiệm
[ ]
0 0
1;6 : ( )x f x m⇔ ∃ ∈ ≥
( )
( )
( )
( )
2
2
2 2
2 4
2 2 8
'
2 1 2 1
x x
x x
f x
x x
+ −
+ −
= =
+ +
;
( )
2
1 17
' 0 4 0
2
f x x x x
− ±
= ⇔ + − = ⇔ =
Vì
[ ]
1;6x ∈
nên chỉ nhận
1 17
2
x
− +
=
0,25
Ta có:
2 27 1 17 3 17
(1) , (6) ,
3 13 2 2
f f f
− + − +
= = =
÷
÷
Vì f liên tục và có đạo hàm trên [1;6] nên
27
max ( )
13
f x =
Do đó
[ ]
[ ]
0 0
1;6
27
1;6 : ( ) max ( )
13
x
x f x m f x m m
∈
∃ ∈ ≥ ⇔ ≥ ⇔ ≥
0,25
VIa 2,00
1 1,00
Tọa độ của A nghiệm đúng hệ phương trình:
( )
4 3 4 0 2
2;4
2 6 0 4
x y x
A
x y y
+ − = = −
⇔ ⇒ −
+ − = =
0,25
Tọa độ của B nghiệm đúng hệ phương trình
( )
4 3 4 0 1
1;0
1 0 0
x y x
B
x y y
+ − = =
⇔ ⇒
− − = =
0,25
Đường thẳng AC đi qua điểm A(-2;4) nên phương trình có dạng:
( ) ( )
2 4 0 2 4 0a x b y ax by a b+ + − = ⇔ + + − =
Gọi
1 2 3
: 4 3 4 0; : 2 6 0; : 2 4 0x y x y ax by a b∆ + − = ∆ + − = ∆ + + − =
Từ giả thiết suy ra
( )
·
( )
·
2 3 1 2
; ;∆ ∆ = ∆ ∆
. Do đó
( )
·
( )
·
( )
2 3 1 2
2 2
2 2
|1. 2. | | 4.1 2.3|
cos ; cos ;
25. 5
5.
0
| 2 | 2 3 4 0
3 4 0
a b
a b
a
a b a b a a b
a b
+ +
∆ ∆ = ∆ ∆ ⇔ =
+
=
⇔ + = + ⇔ − = ⇔
− =
+ a = 0
0b
⇒ ≠
. Do đó
3
: 4 0y∆ − =
+ 3a – 4b = 0: Có thể cho a = 4 thì b = 3. Suy ra
3
: 4 3 4 0x y∆ + − =
(trùng với
1
∆
).
Do vậy, phương trình của đường thẳng AC là y - 4 = 0.
0,25
Tọa độ của C nghiệm đúng hệ phương trình:
( )
4 0 5
5;4
1 0 4
y x
C
x y y
− = =
⇔ ⇒
− − = =
0,25
2 1,00
Gọi I(a;b;c) là tâm và R là bán kính của mặt cầu (S). Từ giả thiết ta có:
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
, , ,
, ,
OI AI
OI AI d I P d I Q OI d I P
d I P d I Q
=
= = = ⇔ =
=
0,25
Ta có:
( ) ( ) ( )
2 2 2
2 2 2 2 2
5 2 1
10 4 2 30 (1)
OI AI OI AI a b c a b c
a b c
= ⇔ = ⇔ + + = − + − + −
⇔ + + =
( )
( )
( )
( )
2
2 2 2 2 2 2
| 2 2 5 |
, 9 2 2 5 (2)
3
a b c
OI d I P a b c a b c a b c
+ − +
= ⇔ + + = ⇔ + + = + − +
( )
( )
( )
( )
| 2 2 5 | | 2 2 13 |
, ,
3 3
2 2 5 2 2 13 ( )
2 2 4 (3)
2 2 5 2 2 13
a b c a b c
d I P d I Q
a b c a b c
a b c
a b c a b c
+ − + + − −
= ⇔ =
+ − + = + − −
⇔ ⇔ + − =
+ − + = − − + +
lo¹i
Từ (1) và (3) suy ra:
17 11 11 4a
; (4)
3 6 3
a
b c
−
= − =
0,25
Từ (2) và (3) suy ra:
2 2 2
9 (5)a b c+ + =
Thế (4) vào (5) và thu gọn ta được:
( ) ( )
2 221 658 0a a− − =
Như vậy
2a =
hoặc
658
221
a =
.Suy ra: I(2;2;1) và R = 3 hoặc
658 46 67
; ;
221 221 221
I
−
÷
và
R = 3.
0,25
Vậy có hai mặt cầu thỏa mãn yêu cầu với phương trình lần lượt là:
( ) ( ) ( )
2 2 2
2 2 1 9x y z− + − + − =
và
2 2 2
658 46 67
9
221 221 221
x y z
− + − + + =
÷ ÷ ÷
0,25
VIIa 1,00
Điều kiện:
1 4 5n n− ≥ ⇔ ≥
Hệ điều kiện ban đầu tương đương:
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( )
1 2 3 4 1 2 3
5
2 3
4.3.2.1 3.2.1 4
1 1 2 3
7
1 1
5.4.3.2.1 15
n n n n n n n
n n
n n n n n
n n n
− − − − − − −
− < − −
⇔
+ − − −
≥ + −
0,50
2
2
9 22 0
5 50 0 10
5
n n
n n n
n
− − <
⇔ − − ≥ ⇔ =
≥
0,50
VIb 2,00
1 1,00
Tọa độ giao điểm A, B là nghiệm của hệ phương trình
2 2
0; 2
2 4 8 0
1; 3
5 2 0
y x
x y x y
y x
x y
= =
+ + − − =
⇔
= − = −
− − =
0,50
Vì A có hoành độ dương nên ta được A(2;0), B(-3;-1).
Vì
·
0
90ABC =
nên AC là đường kính đường tròn, tức là điểm C đối xứng với điểm
A qua tâm I của đường tròn. Tâm I(-1;2), suy ra C(-4;4).
0,50
2 1,00
Phương trình tham số của d
1
là:
1 2
3 3
2
x t
y t
z t
= +
= −
=
. M thuộc d
1
nên tọa độ của M
( )
1 2 ;3 3 ;2t t t+ −
.
Theo đề:
( )
( )
( )
( )
1 2
2
2 2
|1 2 2 3 3 4 1|
|12 6 |
, 2 2 12 6 6 1, 0.
3
1 2 2
t t t
t
d M P t t t
+ − − + −
−
= = ⇔ = ⇔ − = ± ⇔ = =
+ − +
0,25
+ Với t
1
= 1 ta được
( )
1
3;0; 2M
;
+ Với t
2
= 0 ta được
( )
2
1;3;0M
0,25
+ Ứng với M
1
, điểm N
1
2
d∈
cần tìm phải là giao của d
2
với mp qua M
1
và // mp
(P), gọi mp này là (Q
1
). PT (Q
1
) là:
( ) ( )
3 2 2 2 0 2 2 7 0 (1)x y z x y z− − + − = ⇔ − + − =
.
Phương trình tham số của d
2
là:
5 6
4
5 5
x t
y t
z t
= +
=
= − −
(2)
Thay (2) vào (1), ta được: -12t – 12 = 0
⇔
t = -1. Điểm N
1
cần tìm là N
1
(-1;-4;0).
0,25
+ Ứng với M
2
, tương tự tìm được N
2
(5;0;-5).
0,25
VIIb 1,00
Điều kiện
( )
3
1
0 3
3
x
x
> ⇔ <
−
( )
( ) ( )
3
1
( ) ln ln1 3ln 3 3ln 3
3
f x x x
x
= = − − = − −
−
;
( )
( )
1 3
'( ) 3 3 '
3 3
f x x
x x
= − − =
− −
0,25
Ta có:
( ) ( ) ( )
2
0
0 0
6 6 1 cos 3 3
sin sin sin 0 sin 0 3
2 2
|
t t
dt dt t t
π π
π
π π
π π π π
−
= = − = − − − =
∫ ∫
0,25
Khi đó:
2
0
6
sin
2
'( )
2
t
dt
f x
x
π
π
>
+
∫
( ) ( )
2 1
3 3
2
0
3 2
3 2
1
3
3; 2
3; 2
2
x
x
x x
x x
x
x x
x x
−
< −
<
>
− +
⇔ ⇔ ⇔
− +
< <
< ≠ −
< ≠ −
0,50
******************************************
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010
Môn thi : TOÁN (ĐỀ 5)
Bài 1:
Cho hàm số
4 3 2
x 2x 3 x 1 (1)y x m m
= + − − +
.
1). Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0.
2). Định m để hàm số (1) có hai cực tiểu.
Bài 2:
1). Giải phương trình: cos3xcos
3
x – sin3xsin
3
x =
2 3 2
8
+
2). Giải phương trình: 2x +1 +x
( )
2 2
2 1 2x 3 0x x x
+ + + + + =
Bài 3:
Cho các điểm A(-1; -1; 0), B(1; -1; 2), C(2; -2; 1), D(-1;1;1).
1). Viết phương trình của m.phẳng chứa AB và song song với CD. Tính góc giữa AB, CD.
2). Giả sử mặt phẳng (
α
) đi qua D và cắt ba trục tọa độ tại các điểm M, N, P khác gốc O sao
cho D là trực tâm của tam giác MNP. Hãy viết phương trình của (
α
).
Bài 4: Tính tích phân:
( )
2
0
1 sin2xdxI x
π
= +
∫
.
Bài 5: Giải phương trình:
( ) ( )
1
4 2 2 2 1 sin 2 1 2 0
x x x x
y
+
− + − + − + =
.
Bài 6: Giải bất phương trình:
2 2
1 2
9 1 10.3
x x x x+ − + −
+ ≥
.
Bài 7:
1). Cho tập A gồm 50 phần tử khác nhau. Xét các tập con không rỗng chứa một số chẵn các
phần tử rút ra từ tập A. Hãy tính xem có bao nhiêu tập con như vậy.
2). Cho số phức
1 3
z
2 2
i
= − +
. Hãy tính : 1 + z + z
2
.
Bài 8:
Cho lăng trụ ABC.A'B'C' có A'.ABC là h.chóp tam giác đều cạnh đáy AB = a, cạnh bên AA'
= b. Gọi
α
là góc giữa hai mặt phẳng (ABC) và (A'BC). Tính tan
α
và thể tích của khối chóp
A'.BB'C'C.
Câu 9:
Trong mặt phẳng với hệ toạ độ Oxy cho điểm C(2; 0) và elip (E):
2 2
1
4 1
x y
+ =
.
Tìm toạ độ các điểm A, B thuộc (E), biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và
tam giác ABC là tam giác đều.
***********************************************************
HƯỚNG DẪN GIẢI (đề 5)
Bài 1:
2)
4 3 2
x 2x 2 x 1y x m m= + − − +
(1)
Đạo hàm
/ 3 2 2
y 4x 3mx 4x 3m (x 1)[4x (4 3m)x 3m]= + − − = − + + +
°
/
2
x 1
y 0
4 x (4 3m)x 3m 0 (2)
=
= ⇔
+ + + =
° Hàm số có 2 cực tiểu ⇔ y có 3 cực trị ⇔ y
/
= 0 có 3 nghiệm phân biệt
⇔ (2) có 2 nghiệm phân biệt khác 1
2
(3m 4) 0
4
m .
3
4 4 3m 3m 0
∆ = − >
⇔ ⇔ ≠ ±
+ + + ≠
Giả sử: Với
4
m
3
≠ ±
, thì y
/
= 0 có 3 nghiệm phân biệt
1 2 3
x , x , x
° Bảng biến thiên:
x
-∞
x
1
x
2
x
3
+∞
y
/
- 0 + 0 - 0 +
y
+∞
CT
CĐ
CT
+∞
° Từ bảng biến thiên ta thấy hàm số có 2 cực tiểu.
Kết luận: Vậy, hàm số có 2 cực tiểu khi
4
m .
3
≠ ±
Bài 2:
1). Ta có: cos3xcos
3
x – sin3xsin
3
x =
2 3 2
8
+
⇔ cos3x(cos3x + 3cosx) – sin3x(3sinx – sin3x) =
2 3 2
8
+
⇔
( )
2 2
2 3 2
os 3x sin 3x+3 os3x osx sin 3x sinx
2
c c c
+
+ − =
⇔
2
os4x ,
2 16 2
c x k k Z
π π
= ⇔ = ± + ∈
.
2) Giải phương trình : 2x +1 +x
( )
2 2
2 1 2x 3 0x x x
+ + + + + =
. (a)
* Đặt:
− = +
= + > = +
⇒ ⇒
− −
= + +
=
= + + >
2 2
2 2 2
2 2
2 2
2
2
v u 2x 1
u x 2, u 0 u x 2
v u 1
v x 2x 3
x
v x 2x 3, v 0
2
° Ta có:
− − − − − −
⇔ − + + + = ⇔ − + − + + =
÷ ÷ ÷ ÷
÷ ÷ ÷ ÷
− =
+
⇔ − − + + = ⇔
+
÷
+ + + =
÷
2 2 2 2 2 2 2 2
2 2 2 2
v u 1 v u 1 v u u v u v
(a) v u .u 1 .v 0 v u .u .v 0
2 2 2 2 2 2
v u 0 (b)
v u 1
(v u) (v u) 1 0
v u 1
(v u) 1 0 (c)
2 2
2 2
° Vì u > 0, v > 0, nên (c) vô nghiệm.
° Do đó:
⇔ − = ⇔ = ⇔ + + = + ⇔ + + = + ⇔ = −
2 2 2 2
1
(a) v u 0 v u x 2x 3 x 2 x 2x 3 x 2 x
2
Kết luận, phương trình có nghiệm duy nhất: x =
1
2
−
.
Bài 3:
1) + Ta có
( )
( )
( )
2;0;2
, D 6; 6;6
D 3;3;0
AB
AB C
C
=
⇔ = − −
= −
uuur
uuur uuur
uuur
. Do đó mặt phẳng (P) chứa AB và song song
CD có một VTPT
( )
1;1; 1n = −
r
và A(-1; -1; 0) thuộc (P) có phương trình: x + y – z + 2 = 0.(P)
Thử tọa độ C(2; -2; 1) vào phương trình (P) ⇒ C không thuộc (P), do đó (P) // CD.
+
( )
( )
( )
0
. D
1
os , D os , D , D 60
. D 2
AB C
c AB C c AB C AB C
AB C
= = = ⇒ =
uuur uuur
uuur uuur
2) Theo giả thiết ta có M(m; 0; 0) ∈Ox , N(0; n; 0) ∈Oy , P(0; 0; p) ∈ Oz.
Ta có :
( ) ( )
( ) ( )
1; 1; 1 ; ; ;0
.
1; 1; 1 ; ;0; .
DP p NM m n
DP NM m n
DN n PM m p DN PM m p
= − − = −
= +
⇒
= − − = − = +
uuur uuuur
uuur uuuur
uuur uuuur uuur uuuur
.
Mặt khác:
Phương trình mặt phẳng (
α
) theo đoạn chắn:
1
x y z
m n p
+ + =
. Vì D ∈(
α
) nên:
1 1 1
1
m n p
−
+ + =
.
D là trực tâm của ∆MNP ⇔
. 0
. 0
DP NM DP NM
DN PM DN PM
⊥ =
⇔
⊥ =
uuur uuuur uuur uuuur
uuur uuuur uuur uuuur
. Ta có hệ:
0
3
0
3
1 1 1
1
m n
m
m p
n p
m n p
+ =
= −
+ = ⇒
= =
−
+ + =
.
Kết luận, phương trình của mặt phẳng (
α
):
1
3 3 3
x y z
+ + =
−
.
Bài 4: Tính tích phân
( )
2
0
1 sin2xdxI x
π
= +
∫
. Đặt
x
1
1
sin 2xdx
os2x
2
du d
u x
dv
v c
=
= +
⇒
=
=
I =
( )
/2
2 2
0 0
0
1 1 1
1 os2x os2xdx 1 sin 2x 1
2 2 4 4 4
x c c
π π
π
π π
− + + = + + = +
∫
.
Bài 5: Giải phương trình
( ) ( )
1
4 2 2 2 1 sin 2 1 2 0
x x x x
y
+
− + − + − + =
(*)
Ta có: (*) ⇔
( )
( )
( )
( )
( )
2
2
2 1 sin 2 1 0(1)
2 1 sin 2 1 os 2 1 0
os 2 1 0(2)
x x
x x x
x
y
y c y
c y
− + + − =
− + + − + + − = ⇔
+ − =
Từ (2) ⇒
( )
sin 2 1 1
x
y+ − = ±
.
Khi
( )
sin 2 1 1
x
y+ − =
, thay vào (1), ta được: 2
x
= 0 (VN)
Khi
( )
sin 2 1 1
x
y+ − = −
, thay vào (1), ta được: 2
x
= 2 ⇔ x = 1.
Thay x = 1 vào (1) ⇒ sin(y +1) = -1 ⇔
1 ,
2
y k k Z
π
π
= − − + ∈
.
Kết luận: Phương trình có nghiệm:
1; 1 ,
2
k k Z
π
π
− − + ∈
÷
.
Bài 6: Giải bất phương trình:
2 2
1 2
9 1 10.3
x x x x+ − + −
+ ≥
. Đặt
2
3
x x
t
+
=
, t > 0.
Bất phương trình trở thành: t
2
– 10t + 9 ≥ 0 ⇔ ( t ≤ 1 hoặc t ≥ 9)
Khi t ≤ 1 ⇒
2
2
3 1 0 1 0
x x
t x x x
+
= ≤ ⇔ + ≤ ⇔ − ≤ ≤
.(i)
Khi t ≥ 9 ⇒
2
2
2
3 9 2 0
1
x x
x
t x x
x
+
≤ −
= ≥ ⇔ + − ≥ ⇔
≥
(2i)
Kết hợp (i) và (2i) ta có tập nghiệm của bpt là: S = (- ∞; -2]∪[-1;0]∪[1; + ∞).
Bài 7:
1) Số tập con k phần tử được trích ra từ tập A là
50
k
C
⇒ Số tất cả các tập con không rỗng
chứa một số chẵn các phần tử từ A là : S =
2 4 6 50
50 50 50 50
S C C C C= + + + +
.
Xét f(x) =
( )
50
0 1 2 2 49 49 50 50
50 50 50 50 50
1 x C C x C x C x C x+ = + + + + +
Khi đó f(1) =2
50
0 1 2 49 50
50 50 50 50 50
C C C C C= + + + + +
.
f(-1) = 0
0 1 2 49 50
50 50 50 50 50
C C C C C= − + − − +
Do đó: f(1) + f(-1) = 2
50
⇔
( )
2 4 6 50 50
50 50 50 50
2 2C C C C+ + + + =
⇒
( )
50 49
2 1 2 2 1S S+ = ⇒ = −
.
Kết luận:Số tập con tìm được là
49
2 1S = −
2) Ta có
2
1 3 3
4 4 2
z i= − −
. Do đó:
2
1 3 1 3
1 1 0
2 2 2 2
z z i i
+ + = + − + + − − =
÷ ÷
Bài 8: Gọi E là trung điểm của BC, H là trọng tâm của ∆ ABC. Vì A'.ABC là hình chóp đều nên góc
giữa hai mặt phẳng (ABC) và (A'BC) là ϕ =
·
'A EH
.
Tá có :
3 3 3
E , ,
2 3 6
a a a
A AH HE= = =
⇒
2 2
2 2
9 3a
A ' '
3
b
H A A AH
−
= − =
.
Do đó:
2 2
' 2 3
tan
A H b a
HE a
ϕ
−
= =
;
2 2 2 2
. ' ' '
3 3
' .
4 4
ABC ABC A B C ABC
a a b a
S V A H S
∆ ∆
−
= ⇒ = =
2 2 2
'.
1 3
' .
3 12
A ABC ABC
a b a
V A H S
∆
−
= =
.
Do đó:
' ' ' . ' ' ' '.A BB CC ABC A B C A ABC
V V V= −
.
2 2 2
' ' '
1 3
' .
3 6
A BB CC ABC
a b a
V A H S
∆
−
= =
(đvtt)
*********************************************************
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010
Môn thi : TOÁN (ĐỀ 6)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)
Câu I (2 điểm) Cho hàm số
4 2
( ) 8x 9x 1y f x
= = − +
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình
4 2
8 os 9 os 0c x c x m
− + =
với
[0; ]x
π
∈
.
Câu II (2 điểm) : Giải phương trình, hệ phương trình:
1.
( )
3
log
1
2 2
2
x
x x x
− − = −
÷
; 2.
2 2
2 2
12
12
x y x y
y x y
+ + − =
− =
Câu III: Tính diện tích của miền phẳng giới hạn bởi các đường
2
| 4 |y x x
= −
và
2y x=
.
Câu IV (1 điểm) Cho hình chóp cụt tam giác đều ngoại tiếp một hình cầu bán kính r cho trước. Tính
thể tích hình chóp cụt biết rằng cạnh đáy lớn gấp đôi cạnh đáy nhỏ.
Câu V (1 điểm) Định m để phương trình sau có nghiệm
2
4sin3xsinx + 4cos 3x - os x + os 2x + 0
4 4 4
c c m
π π π
− + =
÷ ÷ ÷
PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)
1. Theo chương trình chuẩn.
Câu VI.a (2 điểm)
1. Cho
∆
ABC có đỉnh A(1;2), đường trung tuyến BM:
2 1 0x y+ + =
và phân giác trong CD:
1 0x y+ − =
. Viết phương trình đường thẳng BC.
2. Cho đường thẳng (D) có phương trình:
2
2
2 2
x t
y t
z t
= − +
= −
= +
.Gọi
∆
là đường thẳng qua điểm
A(4;0;-1) song song với (D) và I(-2;0;2) là hình chiếu vuông góc của A trên (D). Trong các mặt
phẳng qua
∆
, hãy viết phương trình của mặt phẳng có khoảng cách đến (D) là lớn nhất.
Câu VII.a (1 điểm) Cho x, y, z là 3 số thực thuộc (0;1]. Chứng minh rằng
1 1 1 5
1 1 1xy yz zx x y z
+ + ≤
+ + + + +
2. Theo chương trình nâng cao.
Câu VI.b (2 điểm)
1. Cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường
chéo nằm trên đường thẳng y = x. Tìm tọa độ đỉnh C và D.
2. Cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng
∆
có phương trình tham số
1 2
1
2
x t
y t
z t
= − +
= −
=
.Một
điểm M thay đổi trên đường thẳng
∆
, tìm điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất.
Câu VII.b (1 điểm) Cho a, b, c là ba cạnh tam giác. Chứng minh
1 1 2
2
3 3 2 3 3
b c
a
a b a c a b c a c a b
+ + + + <
÷
+ + + + + +
Hết
ĐÁP ÁN ĐỀ THI THỬ SỐ 6
Câu Ý Nội dung Điểm
I 2 1,00
Xét phương trình
4 2
8 os 9 os 0c x c x m− + =
với
[0; ]x
π
∈
(1)
Đặt
osxt c=
, phương trình (1) trở thành:
4 2
8 9 0 (2)t t m− + =
Vì
[0; ]x
π
∈
nên
[ 1;1]t ∈ −
, giữa x và t có sự tương ứng một đối một, do đó số
nghiệm của phương trình (1) và (2) bằng nhau.
0,25
Ta có:
4 2
(2) 8 9 1 1 (3)t t m⇔ − + = −
Gọi (C
1
):
4 2
8 9 1y t t= − +
với
[ 1;1]t ∈ −
và (D): y = 1 – m.
Phương trình (3) là phương trình hoành độ giao điểm của (C
1
) và (D).
Chú ý rằng (C
1
) giống như đồ thị (C) trong miền
1 1t− ≤ ≤
.
0,25
Dựa vào đồ thị ta có kết luận sau:
•
81
32
m >
: Phương trình đã cho vô nghiệm.
1.
81
32
m =
: Phương trình đã cho có 2 nghiệm.
•
81
1
32
m≤ <
: Phương trình đã cho có 4 nghiệm.
•
0 1m
< <
: Phương trình đã cho có 2 nghiệm.
•
0m
=
: Phương trình đã cho có 1 nghiệm.
• m < 0 : Phương trình đã cho vô nghiệm.
0,50
II 2,00
1 1,00
Phương trình đã cho tương đương:
3
3
log
log
3
2 0
2
2 0
1
1
1
log ln 0
ln 0
1
2
2
2
2
2
2 0
x
x
x
x
x
x x
x
x
x
x
x
− =
=
− =
⇔ ⇔ − =
− =
− =
÷
÷
÷
>
>
− >
0,50
3
2
2 2
log 0
1 1
2
1
1 3
ln 0
1
2
2 2
2 2
2
x
x x
x
x x
x
x
x x
x x
x
=
= =
=
= =
⇔ ⇔ ⇔ ⇔ =
− =
− = =
÷
> >
>
0,50
2 1,00
Điều kiện:
| | | |x y≥
Đặt
2 2
; 0u x y u
v x y
= − ≥
= +
;
x y= −
không thỏa hệ nên xét
x y
≠ −
ta có
2
1
2
u
y v
v
= −
÷
.
Hệ phương trình đã cho có dạng:
2
12
12
2
u v
u u
v
v
+ =
− =
÷
0,25
4
8
u
v
=
⇔
=
hoặc
3
9
u
v
=
=
+
2 2
4
4
8
8
u
x y
v
x y
=
− =
⇔
=
+ =
(I)
+
2 2
3
3
9
9
u
x y
v
x y
=
− =
⇔
=
+ =
(II)
0,25
Giải hệ (I), (II).
0,25
Sau đó hợp các kết quả lại, ta được tập nghiệm của hệ phương trình
ban đầu là
( ) ( )
{ }
5;3 , 5; 4S =
0,25
Sau đó hợp các kết quả lại, ta được tập nghiệm của hệ phương trình
ban đầu là
( ) ( )
{ }
5;3 , 5; 4S =
1,00
III 0,25
Diện tích miền phẳng giới hạn bởi:
2
| 4 | ( )y x x C= −
và
( )
: 2d y x=
Phương trình hoành độ giao điểm của (C) và (d):
2
2 2
2 2
0 0
0
| 4 | 2 2
4 2 6 0
6
4 2 2 0
x x
x
x x x x
x x x x x
x
x x x x x
≥ ≥
=
− = ⇔ ⇔ ⇔ =
− = − =
=
− = − − =
Suy ra diện tích cần tính:
( ) ( )
2 6
2 2
0 2
4 2 4 2S x x x dx x x x dx= − − + − −
∫ ∫
0,25
Tính:
( )
2
2
0
| 4 | 2I x x x dx= − −
∫
Vì
[ ]
2
0;2 , 4 0x x x∀ ∈ − ≤
nên
2 2
| 4 | 4x x x x− = − +
⇒
( )
2
2
0
4
4 2
3
I x x x dx= − + − =
∫
0,25
Tính
( )
6
2
2
| 4 | 2K x x x dx= − −
∫
Vì
[ ]
2
2;4 , 4 0x x x∀ ∈ − ≤
và
[ ]
2
4;6 , 4 0x x x∀ ∈ − ≥
nên
( ) ( )
4 6
2 2
2 4
4 2 4 2 16K x x x dx x x x dx= − − + − − = −
∫ ∫
.
0,25
Vậy
4 52
16
3 3
S = + =
1,00
IV 0,25
Gọi
H,
H’
là
tâm
của các tam giác đều ABC, A’B’C’. Gọi
I, I’ là trung điểm của AB, A’B’. Ta có:
( ) ( ) ( )
' ' ' ' '
'
AB IC
AB CHH ABB A CII C
AB HH
⊥
⇒ ⊥ ⇒ ⊥
⊥
Suy ra hình cầu nội tiếp hình chóp cụt này tiếp xúc với hai đáy tại H,
H’ và tiếp xúc với mặt bên (ABB’A’) tại điểm
'K II∈
.
0,25
Gọi x là cạnh đáy nhỏ, theo giả thiết 2x là cạnh đáy lớn. Ta có:
1 3 1 3
' ' ' ' ' ;
3 6 3 3
x x
I K I H I C IK IH IC= = = = = =
Tam giác IOI’ vuông ở O nên:
2 2 2 2
3 3
' . . 6r
6 3
x x
I K IK OK r x= ⇒ = ⇒ =
0,25
Thể tích hình chóp cụt tính bởi:
( )
' . '
3
h
V B B B B= + +
Trong đó:
2 2 2
2 2
4x 3 3 3r 3
3 6r 3; ' ; 2r
4 4 2
x
B x B h= = = = = =
0,25
Từ đó, ta có:
2 2 3
2 2
2r 3r 3 3r 3 21r . 3
6r 3 6r 3.
3 2 2 3
V
÷
= + + =
÷
0,25
V 1,00
Ta có:
+/
( )
4sin3xsinx = 2 cos2x - cos4x
;
+/
( )
4 os 3x - os x + 2 os 2x - os4x 2 sin 2x + cos4x
4 4 2
c c c c
π π π
= + =
÷ ÷ ÷
+/
( )
2
1 1
os 2x + 1 os 4x + 1 sin 4x
4 2 2 2
c c
π π
= + = −
÷ ÷
÷
Do đó phương trình đã cho tương đương:
( )
1 1
2 os2x + sin2x sin 4x + m - 0 (1)
2 2
c + =
0,25