Tải bản đầy đủ (.pdf) (6 trang)

Nguyên tử heli doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.17 MB, 6 trang )

Nguyên tử heli
Nguyên tử heli là nguyên tử đơn giản nhất kế tiếp sau nguyên tử hydro. Nguyên
tử heli được cấu tạo từ hai electron quay quanh một hạt nhân chứa hai proton cùng
với một hay hai neutron. Mô hình nguyên tử của Niels Bohr đã cho một lời giải
thích rất chính xác về quang phổ của hydro, nhưng lại hoàn toàn bất lực trước heli.
Cơ học lượng tử với công cụ mạnh là phương trình Schrödinger có thể cho lời giải
chính xác đối với bài toán nguyên tử hydro nhưng cũng chỉ có thể giải gần đúng
trường hợp của heli.
Tổng quan
Toán tử Hamilton của nguyên tử heli được cho bởi

trong đó là khối lượng thu gọn của một electron đối với hạt nhân
. Ta sẽ coi để cho µ = m và số hạng phân cực khối lượng
biến mất. Để đơn giản, phương trình Schrödinger được viết trong hệ
đơn vị nguyên tử (a.u.) như sau

(Ta đã sử dụng kí hiệu Ψ (viết hoa) cho hàm sóng toàn phần của nguyên tử và sẽ
dùng kí hiệu ψ (thường) cho hàm sóng của một electron.)
Sự hiện diện của số hạng tương tác electron-electron làm cho phương trình này
không thể phân li được do Hamiltonian của hệ không thể viết được dưới dạng tổng
của các Hamiltonian cho mỗi electron dẫn đến hàm sóng nguyên tử
không thể viết được dưới dạng một tích đơn giản duy nhất của các hàm sóng một
electron. Điều này nghĩa là hàm sóng bị “vướng” (vướng lượng tử). Các phép đo
không thể được thực hiện trên một hạt mà không gây ảnh hưởng tới hạt kia. Tuy
nhiên bài toán nguyên tử heli vẫn có thể được giải gần đúng bằng các phương
pháp như phương pháp Hartree-Fock.

Phương pháp Hartree-Fock
Phương pháp Hartree-Fock được sử dụng cho nhiều hệ thống nguyên tử khác
nhau. Bài toán nhiều hạt đối với nguyên tử heli và một số ít hệ nhiều electron khác
có thể giải khá chính xác. Thí dụ như trạng thái cơ bản của heli được tính toán


chính xác tới 15 con số sau dấu phẩy! Trong lý thuyết Hartree-Fock, các electron
trong nguyên tử được giả định là chuyển động trong một trường lực hiệu dụng tạo
bởi hạt nhân và những electron còn lại gọi là trường tự hợp SCF. Toán tử
Hamilton cho heli với 2 electron có thể được viết dưới dạng:
H = H
(0)
+ H
(1)

trong đó Hamiltonian không nhiễu loạn bậc không là

Trong khi số hạng nhiễu loạn:

là tương tác electron-electron.
H
(0)
chính là tổng của hai toán tử Hamilton dạng hydro (một hạt nhân, một
electron):

trong đó

E
ni
, các trị riêng năng lượng và , hàm riêng tương ứng của Hamiltonian
dạng hydro là các hàm riêng và trị riêng đã chuẩn hóa. Như vậy:

trong đó

Bỏ qua số hạng tương tác đẩy giữa hai electron, phương trình Schrödinger cho
phần không gian của hàm sóng hai electron sẽ thu về phương trình bậc không:


Phương trình này có thể phân li được và các hàm riêng có thể được viết dưới dạng
một tích của các hàm sóng dạng hydro của mỗi electron:

Các trị riêng tương ứng (trong hệ a.u.):

Chú ý rằng hàm sóng
cũng là nghiệm khả dĩ của phuơng
trình.
Một sự tráo đổi nhãn số của các electron không làm thay đổi năng lượng của hệ
. Vì các hàm sóng không gian chính xác của nguyên tử hai electron phải
hoặc là đối xứng hoặc phản đối xứng đối với phép hoán đổi các tọa độ và của
hai electron nên hàm sóng trong thực tế khi đó phải được tạo bởi các tổ hợp tuyến
tính đối xứng (+) và phản đối xứng (-):

Thừa số là để chuẩn hóa hàm sóng . Để đưa hàm sóng này về dạng một
tích của các hàm sóng một hạt, chúng ta sử dụng một thực tế rằng đây là trạng thái
cơ bản. Do đó . Và do đó triệt
tiêu, phù hợp với nguyên lý Pauli phát biểu rằng hai fermion không thể cùng
chiếm một trạng thái lượng tử. Nói một cách khác do trạng thái cơ bản là trạng
thái mà hai electron cùng chiếm một orbital không gian 1s nên chúng phải có spin
đối song, tức là hàm spin nguyên tử là phản đối xứng, trong khi đó do tính chất
phản đối xứng của hàm sóng đầy đủ (spin-orbital) của các fermion nên hàm sóng
không gian của nguyên tử lại phải đối xứng. Như vậy hàm sóng nguyên tử heli có
thể viết
trong đó ψ
1
and ψ
2
sử dụng các hàm sóng AO 1s dạng hydro. Đối với heli, Z = 2

nên

trong đó a.u. ( ), tương ứng với một thế ion hóa I
(0)
= 2
a.u. ( ). Giá trị thu được từ thực nghiệm là E
1s
= − 2.90 a.u.
( ) và I = 0.90 a.u. ( ).
Năng lượng mà chúng ta đã thu được là quá thấp bởi vì số hạng đẩy giữa các
electron có tác dụng tăng mức năng lượng đã bị bỏ qua. Khi Z trở nên lớn hơn,
cách tiếp cận của chúng ta sẽ cho những kết quả tốt hơn vì các số hạng đẩy giữa
các electron sẽ trở nên nhỏ hơn.
Cho tới đây một sự gần đúng các hạt độc lập hết sức thô thiển đã được sử dụng,
trong đó số hạng đẩy electron-electron bị bỏ qua hoàn toàn. Việc tách toán tử
Hamilton như được chỉ ra dưới đây sẽ cải thiện các kết quả:

trong đó



V(r) là một thế xuyên tâm được chọn sao cho hiệu ứng nhiễu loạn là nhỏ.
Hiệu ứng thực của mỗi electron lên chuyển động của electron còn lại đó là sự che
chắn một phần điện tích hạt nhân, do đó một dự đoán đơn giản cho V(r) là

trong đó s là một hằng số chắn và đại lượng Z
e
là điện tích hiệu dụng. Đây là một
thế năng tương tác Coulomb, cho nên các năng lượng tương ứng của mỗi electron
được cho bởi

và hàm sóng tương ứng
Nếu Z
e
bằng 1.70 thì sẽ làm cho biểu thức đối với năng lượng trạng thái cơ bản
của heli ở trên phù hợp với giá trị thực nghiệm E
1
= -2.903 a.u Vì trong trường
hợp này Z= 2 nên hằng số chắn sẽ là s = 0.30. Đối với trạng thái cơ bản của heli,
hiệu ứng chắn của mỗi electron lên electron kia tương đương với khoảng đơn vị
điện tích


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×