Tải bản đầy đủ (.pdf) (10 trang)

Giáo trình xử lý ảnh y tế Tập 1a P8 ppsx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (660.96 KB, 10 trang )


65

nhiu kim, ci thin kh nng chng nhiu ca tớn hiu. Lc trung v cú th
c b xung bng cỏc bin phỏp ó c phỏt trin cho b lc FIR.

Bi tp 4.4
Vit mt chng trỡnh da trờn s hỡnh 4.18 a ra lc trung v. Kim
tra lc trung v trờn nh thu c khi dựng biu thc lc mc xỏm v gii
thiu trờn hỡnh 4.12b. Chỳ ý rng mt nh thu c khi dựng biu thc lc
mc xỏm l mt nh cú nhiu.
Kt qu ca s dng b lc trung v kớch thc 5 5 c th hin trờn
hỡnh 4.19. Cú mt vi ci thin v cht lng nh c hin th õy. Tuy
nhiờn, cht lng nh s tt hn nu ta em trung bỡnh nh gc vi nh kt
qu lc trung v.




Hỡnh 4.18 Lc trung v
Bộ đệm chuyển đổi ảnh
N Độ rộng ảnh

File ảnh vào
Hàng thứ n1 từ file ảnh vào đến hàng cuối
cùng của bộ đệm chuyển đổi ảnh (ví dụ n1
từ 0 đến độ dài ảnh - 1)
N
Shift
yn2= trung bình {W(N1-k1,n2-k2)};
N1=(N-1)/2; k1=-N1đến N1, và k2=-N1


đến N1, n2=0 đến (độ rộng ảnh-1)
Bộ đệm
Đến file ảnh ra
N
N
k1,k2
Vùng hỗ trợ cho bộ lọc trung vị.
Trong ví dụ này N=3

66


Hình 4.19 Kết quả thu được sau khi áp dụng lọc trung vị kích thước 5  5
trên ảnh đã được biến đổi lược đồ mức xám.


62

Chương
5

Làm nổi và tách đường biên ảnh
5.1 Chỉ dẫn
Các kỹ thuật xử lý ảnh đều quan tâm đến việc làm nổi hoặc tách lấy
đường biên ảnh. Đường biên trong một ảnh đen trắng được định nghĩa là
các đoạn rời rạc hoặc là thay đổi đột ngột của cường độ mức xám. Sự
thay đổi này chứa các thông tin về ảnh, và phần đóng góp của chúng
trong phổ ảnh sẽ tìm thấy cuối miền tần số cao. Một đường biên ảnh,
trong trường hợp tổng quát có thể trải theo bất kỳ hướng nào, và có thể
biến thiên về cường độ sáng. Trong chương này, chúng ta sẽ lấy ra

đường biên ảnh bằng đặc tuyến tần số của chúng. Ta sử dụng bộ lọc FIR
được thiết kế như bộ lọc thông cao đối xứng vòng tròn vào công việc
này. Sau đó, ta sẽ đưa ra một số phép xử lý đường biên lấy từ đặc tuyến
không gian của đường biên ảnh.
5.2 Làm nổi đường biên ảnh qua bộ lọc FIR
Vì đường biên ảnh chiếm ở dải tần số cao trong phổ của ảnh, nên ta có
thể làm nổi hoặc tách đường biên ảnh qua bộ lọc thông cao. Dùng cho
chức năng này, ta có thể dùng bộ lọc tương phản pha có điểm cắt tần số
đủ cao để làm nổi đường biên ảnh và làm mờ các chi tiết khác của ảnh có
tần số thấp. Vấn đề đặt ra là chúng ta tìm ra điểm cắt tần số này như thế
nào. Điểm này được tìm ra bằng phương pháp thử nghiệm và điều chỉnh
dần dần. Ví dụ, ta có thể sử dụng ảnh đã qua bộ lọc trung vị ở hình 4.19
trong chương 4, ảnh này thu được khi sử dụng lược đồ mức xám và lọc
trung vị trên ảnh "ISLAM.IMG" có trên đĩa đi kèm theo. Hình 5.1a và
hình 5.1b cho kết quả dùng PCF thiết kế như lọc FIR kích thước 5  5
với các điểm cắt 
c
là 1.7 và 2.0. Các kết quả cho thấy là trong trường
hợp này đường biên ảnh nổi trội với 
c
= 2.0 .
Một phương pháp khác hay dùng để làm nổi đường biên ảnh là dùng
bộ lọc Laplace, định nghĩa như sau:
(5.1)

ở đây f(x,y) là hàm cường độ của ảnh. Đặc tính tần số của Laplace được
định nghĩa như sau:
y
yxf
x

yxf
yxf
2
2
2
2
2
),(),(
),(







63


2
2
2
121
),(

H
(5.2)
Để hiểu hoạt động của phương pháp Laplace trong việc trích ra đường
biên, xem sơ đồ ví dụ hình 5.2. Chúng là sự đơn giản hoá sườn âm và
sườn dương đường biên.

Hình 5.1 (a) Kết quả sử dụng bộ lọc PCF với 7.1
c

.
(b) Kết quả sử dụng lọc PCF với 0.2
c

.








64

Hình 5.2 Đạo hàm bậc nhất và bậc hai của đường biên.
Rõ ràng là đạo hàm bậc hai có thể dùng để phát hiện đường biên ảnh.
Thông thường, các điểm cắt zero của đạo hàm bậc hai là nơi có đường
biên ảnh. Cần phải nhớ rằng đạo hàm của một hàm hai biến tại bất kỳ
điểm nào cũng phụ thuộc vào hướng lấy đạo hàm.
Các bộ lọc FIR có thể dùng xấp xỉ một Laplace bởi dùng hàm cho bởi
biểu thức (5.2) như hàm lọc trong chương 2, chương trình 2.1 (hàm
H(w
1
,w
2
)). ảnh trong hình 5.3 cho ta kết quả dùng Laplace thiết kế như

một bộ lọc FIR 9  9 trên ảnh cho trong hình 4.19.

Bài tập 5.1
Viết một chương trình dùng để tách đường biên ảnh dùng:
1. Bộ lọc thông cao tương phản pha dùng như một bộ lọc FIR.
2. Một hàm Laplace dùng như một bộ lọc FIR.
5.3 Tách đường biên ảnh qua cách tiếp cận khoảng cách
Dùng đặc tuyến khoảng cách đường biên, chúng ta có thể đưa ra một
số cách tiếp cận để phát hiện ra đường biên. Để cung cấp cơ sở về kỹ
thuật này, chúng ta sẽ bắt đầu xem xét mẫu sau đây:

-1 2 -1
-1 2 -1
-1 2 -1
Hình 5.3 Kết quả của lọc ảnh trên ảnh hình 4.19.
Giả sử rằng, trong trường hợp này, ảnh chỉ có hai mức xám là 0 và 1,
và một đường biên dọc ảnh có chiều dài tối thiểu là 3 điểm ở một nơi nào
đó trên ảnh. Để tách lấy đường biên dọc ảnh thì chúng ta phải chồng lên

65

và quét mẫu lên trên bề mặt ảnh. Tại bất kỳ vùng nào chúng ta nhân phần
tử chứa trong mẫu với với mức xám tương ứng được che bởi mỗi phần
tử của mẫu, sau đó tính tổng các kết quả. Bởi vì tổng của tất cả các phần
tử của mẫu bằng không, kết quả sẽ là không cho nền và khác không cho
các nơi khác. Nếu cột giữa của mẫu trùng với một đường biên có ít nhất
ba điểm theo chiều cao, cột giữa và phải che các giá trị 1, cột trái che các
giá trị 0, chúng ta có giá trị là 3, theo
(-1* 0) + (-1* 0) + (-1* 0) + 2*1 + 2* 1 + 2* 1 + (-1* 1) + (-1* 1)
+ (-1* 1) = 3

Thuật toán trên có thể biểu diễn bằng biểu thức sau đây:

 
 

1
1
1
1
22112121
1 2
),(),(),(
k k
knknIkkhnny (5.3)
ở đây h(k
1
,k
2
) là phần tử của mẫu, với h(0,0) ở trung tâm của mẫu và
I(n
1
,n
2
) là mức cường độ sáng của ảnh. Biểu thức (5.3) biểu thị cho
tương quan chéo giữa mẫu với ảnh. Mặc dù thuật toán này chỉ áp dụng
cho ảnh nhị phân, một ảnh chỉ có hai mức xám, nó cũng có thể áp dụng
trong trường hợp tổng quát cho ảnh có nhiều mức xám như chúng ta sẽ
xem xét sau này trên ảnh thật. Một số các mẫu thường được gọi là một
đường biên hoặc là một mặt nạ xử lý, đã được cho sẵn trong tài liệu. Các
loại mặt nạ hay dùng nhất sẽ được đề cập sau.

5.3.1 Toán tử Robert
Nó bao gồm hai mặt nạ sau đây :




Đáp ứng từ tất cả mặt nạ này được tính từ biểu thức (5.3). Chiều dài
đường biên ảnh có thể rút ra bằng cách dùng bất kỳ phép xử lý không
tuyến tính nào sau đây.
y i j y i j y i j( , ) ( , ) ( , ) 
1
2
2
2
(5.4)



y i j y i j y i j( , ) max ( , ) , ( , )
1 2
(5.5)



y i j y i j y i j( , ) ( , ) ( , ) 
1 2
(5.6)
W
1


0 -1
1

0

W
2

-1 0
0

1


66

Trong đó y
1
(i,j) và y
2
(i,j) là đáp ứng rút ra từ mẫu W
1
và W
2
. Hai biểu
thức cuối cùng được dùng thường xuyên nhất. Hướng của đường biên

(i,j), tính theo phương nằm ngang, có thể rút ra bởi

),(

),(
tan
4
),(
1
2
1
jiy
jiy
ji





(5.7)
Các phần tử trong mặt nạ gọi là các trọng số.
5.3.2 Toán tử Sobel
Phương pháp Sobel được thiết kế để xấp xỉ hàm gradient rời rạc. Mặt
nạ xử lý Sobel có dạng sau:







Và ảnh chiều dài đường biên tính ra từ tính toán dùng biểu thức (5.4),
5.5) hoặc (5.6). Hướng của đường biên tính từ:



( . ) tan
( , )
( , )
i j
y i j
y i j

1
2
1
(5.8)
Chú ý rằng W
1
dùng để tách lấy đường biên dọc ảnh, còn W
2
dùng để
tách lấy đường biên ngang của ảnh.
5.3.3 Các mặt nạ gradient khép kín
Chúng được phát triển dựa trên sự đánh giá tất cả các hướng có thể
của một đường biên ảnh trong một ảnh rời rạc. Bởi vậy thay vì chỉ áp
dụng hai mặt nạ như hai phương pháp trước, tám mặt nạ đã được dùng,
mỗi cái cung cấp một cạnh đường biên dọc theo một trong tám hướng có
thể của vòng (xem hình 5.4). Bốn kiểu khác nhau của các mặt nạ của
phương pháp này cho ở phía dưới. Chúng là sự phát triển dựa trên mô
hình dữ liệu cơ sở cho đường biên trong ảnh.







1 0 -1
2 0 -2
1 0 -1

W
1

-1 -2 -1
0 0 0
1

2

1

W
2


1
2
0
7
6
5
4
3
E

NE

N

NW
W
SW
S

SE


67










Hình 5.4 Các hướng xử lý.
Các toán tử Prewitt. Có hai kiểu toán tử sau:

Kiểu 1:















111
121
111
0
W












111
121

111
1
W














111
121
111
2
W














111
121
111
3
W














111
121
111
4
W














111
121
111
5
W















111
121
111
6
W












111
121
111
7
W

Kiểu 2:















111
000
111
0
W












110
101
011
1

W














101
101
101
2
W














011
101
110
3
W













111
000
111
4
W














110
101
011
5
W














101
101

101
6
W












011
101
110
7
W

Với kiểu thứ 2 bạn chỉ cần bốn mặt nạ đầu tiên vì tính đối xứng giữa
chúng với bốn mặt nạ cuối cùng.

Toán tử vòng Sobel. Toán tử này được tính theo tám mặt nạ sau:


68














121
000
121
0
W












210
101

012
1
W














101
202
101
2
W














012
101
210
3
W












121
000
121
4
W














210
101
012
5
W














201

102
001
6
W












012
101
210
7
W

cũng do tính đối xứng mà bạn chỉ cần dùng bốn mặt nạ đầu tiên .

Toán tử vòng Kirsh. Các toán này được xem như là các toán tử
thuần nhất. Nó tạo ra một sự thay đổi nhỏ trong gradient và tạo ra các sự
so sánh lần lượt như các phương pháp trước đây. Tám mặt nạ này được
mô tả như sau:











Trong phương pháp xử lý tuần hoàn thì các đường biên ảnh có thể
phát hiện ra theo:
y i j y i j y i j( , ) max{| ( , ), ,| ( , )|}

0 7
(5.9)
ở đây y
0
, y
1
là các sửa lại qua các mặt nạ W
0
, W
1
trên ảnh. Góc

(i,j)
tính theo phương nằm ngang xác định bằng:


( , )i j


hướng trong phạm vi của giá trị lớn nhất của y
k
(i,j)
= tan
-1

y i j
y i j
k
( , )
( , )
0







(5.10)
Bây giờ chúng ta sẽ kiểm tra một số phép xử lý này. Chúng ta sẽ phát
triển hai chương trình, một cho các xử lý của Sobel (dùng hai mặt nạ) và
một cho các xử lý của Kirsh. Các bước phát triển cho chương trình này
tương tự như các bước phát triển cho chương trình lọc FIR. Chương trình
gốc của xử lý Sobel được cho ở dưới đây:











333
303
555
0
W












333
305
355
1
W













335
305
335
2
W












355
305
333
3

W











555
303
333
4
W












553

503
333
5
W












533
503
533
6
W













333
503
553
7
W

69


Chương trình 5.1 “SOBEL.C” Chương trình để rút ra chiều dài
đường biên ảnh dùng xử lý Sobel.

/* This program is for obtaining the edges using
the Sobel directional operator. */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <alloc.h>
#include <conio.h>
#include <io.h>
#include <ctype.h>

/* Sobel masks. */
int S1[3][3]={{1, 0, -1},
{2, 0, -2},
{1, 0, -1}};

int S2[3][3]={{ -1, -2, -1},
{0, 0, 0},
{1, 2 , 1 }};

void main()
{
int i,j,n1,n2,image_width, image_length,k1,k2,ind;
char file_name[14],ch;
unsigned char **w;
unsigned char *temp,tmp;
int y1, y2;
float nsq;
unsigned int zn2;
FILE *fptr, *fptr1;

clrscr();
printf("Enter file name for input image ->");
scanf("%s",file_name);
if((fptr=fopen(file_name,"rb"))==NULL)
{
printf("%s does not exist.", file_name );

×